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Abstract 
The lightning energy can be very harmfull to the wind turbine farm components. This paper 

attempts to evaluate the overvoltages at the sensitive points in wind farm, using ATP-EMTP package 
program. Four cases were performed; a) the transient voltage distribution in the insulating layer of the 
control line, b) the transient voltage on the control equipment, c) the coupling voltage between the tower 
and the control, and, d) the transient voltage distribution in the wind turbine WT generator, boast 
transformers and grid. These cases were performed under different lightning current conditions and at 
conventional design and proper design of grounding system. The results show that the ground potential 
rise (GPR) is reduced with using the proper design of wind turbine ground system, but the induced voltage 
at the control system will not affected. This work determines the optimum location of wind turbine at the 
areas of maximum lightning incidence. Ant colony optimization (ACO) technique is implemented to find the 
optimum wind farm location. This work enhances the protection strategy of the wind farms against lightning 
stroke. 
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1. Introduction. 

When wind turbines are attacked by lightning, a harmful induced voltage can be 
generated on wind turbine blade, tower, conductors of internal control cable, and shielding layer 
of cables [1, 2, 3, 4]. The method and path of induced voltage generation can be classified as; 
the inductive induced voltage and the capacitive induced voltage. However, another serious 
problem known as "back-flow surge" is happened, which can cause damages not only to the 
struck wind turbine, but also the other turbines. The back-flow surge phenomenon has been 
defined as the surge flowing from a customer’s structure such as a communication tower into 
the distribution line. High resistivity soil often increases the GPR and at the same time the Surge 
Arresters (SAs), at tower earthing systems, operate in reverse direction and conduct backflow 
current to the grid. The phenomenon of surge invasion from a wind turbine that is struck by 
lightning to the distribution line in a wind farm is quite similar to the case of “back-flow surge” [2]. 
In this paper capacitive induce voltage and GPR will be simulated and analyzed. From the 
simulation results, characteristics and hazards of back-flow surge, GPR, and capacitive induce 
voltages in wind farm are analyzed using onshore wind farm as an example. The transient 
voltage distribution in the insulating layer of the control line, the transient voltage on the control 
equipment, the coupling voltage between the tower and the control, and the transient voltage 
distribution in the WT Generator, Boast transformers and grid, were performed under different 
lightning currents (51 kA (8/20 μs) and 51 kA (2/631 μs), both at conventional design and proper 
design of grounding system. The impacts of GPR on generators insulation, boost transformer 
insulation and grid will be analyzed. The impact of capacitive induced voltages on the wind 
turbine system, i.e. insulation of shielding control cables, electrical control device, de-icing 
systems will be investigated. The impact of induced voltage inside tower and probability of 
electrical breakdown will be presented. The impact of surge voltage on the insulation on both 
ends of control line will be investigated. Ant Colony Optimization (ACO) technique is 
implemented to find the optimum wind farm location. 
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2. Description of the Onshore Wind Farm under Study 
The layout of onshore wind farm composed of two identical wind power generators is 

shown in Figure 1. Boost transformers for the generators are installed in vicinity of the wind 
turbine towers. All boost transformers are connected to the grid via grid-interactive transformer 
by overhead distribution line. Surge arresters are inserted to the primary and secondary sides of 
the boost and grid-interactive transformers. 

 
 

 
 

Figure 1. Wind farm single line diagram and detailed model of lightning struck turbine [2] 
 
 

3. Modeling of Onshore Wind Farm Components Using ATP/EMTP 
In this section, the detailed high frequency modeling of the electric components of the 

onshore wind farm using the ATP/EMTP is demonstrated. These components include Tower, 
Control systems, Transmission line (TL), transformers, power system grid and surge arresters. 
Table 1 shows the different components and their simulation circuits. 

Frequency dependent transformer model and frequency dependent model of Surge 
arrester (SA) is a combination of non linear elements and linear inductances which provides 
dynamic behavior during lightning and tower including control systems [8]. The SAs are used at 
low, medium and high voltage levels in the wind farm as shown in Figure 2. 

Figure 3 shows detailed π- lumped equivalent circuit wind turbine model including the 
internal controlling used in this study. The wind turbine was the 3 part 60 m Vestas V47-690/200 
kW found in zafarana wind farm, Egypt [4], and the tower-control line model was built according 
to the tower structure of the wind turbine. When the tower of the wind turbine struck directly by a 
lightning stroke, the control line inside the tower is simulated by its equivalent inductance, the 
insulation of the control wire is simulated by its equivalent capacitance and the air insulation 
between control line and the internal surface of the tower is simulated by its equivalent 
capacitance. Where C01~C010 are grounding capacities of tower, C12 is the capacitive 
coupling path between tower and shielding layer of cable, C23 is the capacitive coupling path 
between shielding layer of cable and inner conductor, z1, z2, and z3 are the impedance of 
tower, impedance of shielding layer of cable, and the impedance of cable conductor [4].  
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Table 1. Different component of wind farm and simulation circuits 
Component Simulation shape Data used 

Lightning current 

 

51kA-2/631μs winter lightning in japans [2] 

Synchronous 
Generator- Y connected 

 

Voltage (line rms) 0.660 [kV] 
Rated power 1.0 [MVA] 

Leakage reactance 0.1 [H] 
Frequency 60.0 [Hz] 

Transformer (Boost, 
Grid-Interactive) 

 

Connection method  Y    /  Δ ,    Y    /  Δ 
Voltage (line rms) 0.660/6.6 [kV], 66.0/6.6 

[kV] 
Rated power 1.0 [MVA], 10.0 [MVA] 

Line  

 

Positive / zero phase inductance [mH/Km] 
0.83556/2.50067 

Positive / zero phase capacitance [nF/Km] 
12.9445/6.4723 

Surge arresters 

 

440kV   SA with L1 and L0 are equal 0.07μH 
[5,6] 

Conventional grounding 
system 

 

Ring only#12 Diameted at 1 meter depth [7] 

Proposed grounding 
system 

 

12 rods in this design and three rings with 
radius of 6m, 8m and 10m respectively and 
foundation from steal conductor constructed 
in an area of 15*15m [7]. 
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Figure 2. ATPDraw circuit of two wind turbines with frequency dependant model 
 

 

 
 

Figure 3. Electromagnetic induction model of the internal controlling of wind turbine 
 

 
4. Lightning Hazards at Sensitive Points in Wind Farm 

To estimate the hazards of the lightning strokes on the wind farm sensitive components; 
four locations are taken into considerations as the more sensitive locations; namely:  
a) The transient voltage distribution in the insulating layer of the control line, 
b) The transient voltage on the control equipment,  
c) and the coupling voltage between the tower and the control 
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d) The transient voltage distribution in the WT Generator, Boost transformers and the grid. 
These cases were performed under the following conditions. 
i .Lightning current: 51 kA (8/20 μs), 51 kA (2/631 μs) 
ii. Grounding design: Conventional design and proper design, 

 
4.1. Transient Voltage Distribution in the Insulating Layer of Control Line 

The voltage distribution in the insulating layer of each segment of the control line from 
the top to the bottom for each insulating layer VN2i ~ N3i (i=1 ~ 11) estimated. Figures 4 and 5 
show the transient voltage (VN211_N311) waveforms in the insulating layer of the bottom 
control line under various lightning currents and grounding design. The results show that the 
transient voltage phenomena in the insulating layer of the control line for different ground 
systems are similar. Under various lightning currents, the maximum transient voltages are 25 kV 
and 2.5 MV, respectively.  

 
 

 
 

Figure 4. Insulation layer voltage under only 51kA 8/20μs 
 

 

 
 

Figure 5. Insulation layer voltage under only 51kA 2/631μs 
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Figure 6 shows the induced voltage on the insulation layer at top, bottom and center of 
tower; under proposed grounding design and different lightning current. The maximum 
insulation withstand voltage is 66 kV [4], whereas the insulating layer thickness of the control 
cable is 1.1 mm. The figure shows also that, the transient voltage at the top and bottom of the 
control cable is higher than that at the middle length of the control cable. According to the 
results, the higher tail time lightning wave resulted in greater transient voltages. The insulating 
layer of the control line will be breakdown with lightning current of long tail time. 
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Figure 6. Insulation layer voltages under proposed grounding design and different lightning 

current 
 
 

4.2. Transient Voltage on the Control Equipment 
This case demonstrated the effects of transient voltage (VN311) on the control 

equipment when a tower struck by different lightning current. Figures 7 and 8 show the 
waveforms of transient voltage (VN311) on the control equipment under various lightning 
currents and grounding design. 

The results show that the ground design has no effect on the magnitudes of over 
voltage at control device under the same lightning current. When the lightning current was 51 kA 
(2/631 μs), the influence was more severe; whereas overvoltage reach to 3MV.  
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Figure 7. Control device voltage under only 51kA 8/20μs 
 
 

 
 

Figure 8. Control device voltage under only 51kA 2/631μs 
 
 
4.3. Induced Voltage on the Tower  

This section is aimed at assessing the induced transient voltage (VN1-N21) at the top of 
the tower, coupled with the control line through stray capacitance, when the tower is directly 
struck by lightning stroke. 

Figures 9 and 10 show the induced coupling voltage at the top of the tower. The results 
show that, when the conventional ground design used, the induced coupling voltage is greater 
than that with the proposed grounding design. However, when the lightning current is 51 kA 
(8/20 μs), the coupling voltage can be as high as 3000 kV. When the lightning current was 51 
kA (2/631 μs), the coupling voltage can be as high as 15000 kV. To protect wind turbines from 
damages under 51 kA (8/20 μs) lightning the distance between the tower and the shielding layer 
should be 100 cm and under 51 kA (8/20 μs) should be 500 cm but this not practical.  
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Therefore, an appropriate distance between the tower and the control line should be 
maintained.  
 
 

 
 

Figure 9. Tower top voltage under only 51kA 8/20μs 
 
 

 
 

Figure 10. Tower top voltage under only 51kA 2/631μs 
 
 

4.4. Transient Voltage Distribution in WT Generator and Boost Transformers 
Figure 11 shows the induced voltage at generator terminal, secondary side of boost 

transformer, GPR at turbine struck by the lightning stroke, and grid when using grounding 
system including ring electrode only and our proposed design. The results show that the 
overvoltage reduced by about 95% and GPR decrease by about 97% when using proposed 
design of grounding system. This can attributes to the fact that, the proposed grounding grid 
covers large area of ground. 
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a. Voltage waveforms Comparison at generator terminal of WT#1 
 
 

 
 

b. Voltage waveforms Comparison at boast transformer of WT#1 
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c. Voltage waveforms Comparison at Grid 
 

 
 

d. GPR waveforms Comparison at WT#1  
 

Figure 11. Overvoltages, GPR at turbine struck by lightning and grid under different grounding 
arrangements 
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5. Mitigation of Lightning Hazards Using Ant Colony Optimization Technique 
From previous results The GPR is reduced by a proper design of wind turbine ground 

system but induced voltage in control system not affected so this paper introduced to identify 
optimum new location of wind turbine distant from the areas with maximum lightning incidence. 
Ant Colony Optimization (ACO) technique is implemented to find the optimum wind farm 
location. This paper can increase the capital on the protection from lightning in that area.  

The ant colony optimization algorithm (ACO) is a probabilistic technique for solving 
computational problems which can be reduced for finding good paths through graphs. This 
algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it 
constitutes some metaheuristic optimizations. It is initially proposed by Marco Dorigo in 1992 in 
his PhD thesis [9]. The first algorithm was aiming to search for an optimal path in a graph, 
based on the behavior of ants seeking a path between their colony and a source of food. In the 
natural world, ants (initially) wander randomly, and upon finding food return to their colony while 
laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling 
at random, but to instead follow the trail, returning and reinforcing it if they eventually find food. 
Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive 
strength. The more time it takes for an ant to travel down the path and back again, the more 
time the pheromones have to evaporate. A short path, by comparison, gets marched over more 
frequently, and thus the pheromone density becomes higher on shorter paths than longer ones 
[10]. Figure 12 illustrates the behavior of real ants in searching the source of food [11]. 

 
 

 
 

Figure 12. Ants from nest to the source of food 
 
 

The algorithm of ACO is build according to equations (1) and (2), where: P is the 

probability, α, β,  are parameters related to ACO algorithm, d is the distance, Q being a 

constant parameter, Lk is the kth ant solution,  is a parameter used to avoid unlimited 
accumulation of the pheromone trails and m is the number of ants. 

The fist equation describes the probability of the ant to move between the two nodes i 
and j, while the second one describes the local updating of pheromone after travelling from a 
node to another one. 
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Advantages of ACO technique can be represented as: 

 Positive Feedback accounts for rapid discovery of good solutions 

 Distributed computation avoids premature convergence. 

 The greedy heuristic helps finding acceptable solution in the early solution in the early 
stages of the search process. 

While disadvantages of ACO technique can be represented as: 

 Lower convergence than other Heuristics. 

 Performs poorly for problems have larger than 75 nodes. 

 No centralized processor to guide the ACO towards good solutions [12]. 
In this paper ACO algorithm is used to find the optimum wind farm location. 
 
 
5.2. Problem Definition 

Even when the lightning strikes the ground, the generated electromagnetic waves can 
cause problems to communication lines and electronic circuits. Figure 13 shows lightning strike 
is at a distance D from the pair of wires at distance w from each other forming the loop with area 
A=a*b. The flux changes in the area A because of different distances from the lightning current. 
The integral is taken on defining voltage induced in loop A. It is assumed that loop A is 
perpendicular to the magnetic field of the lightning current. The objective function is to minimize 
the voltage induced in this loop. Voltage is a function of the rate of change of lightning current 
and distance from the stroke site. The voltage induced in loop A decreases with the increase of 
the distance; equation (3). 
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Where 

µ0：the absolute magnetic inductivity 4π×10-7(H/m) 

M : mutual inductance in the loop 
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Figure 13. Voltage induced in a loop due to lightning current [2] 
 
 

5.3. Optimum Location of Wind Farm 
It is assumed that the area of interest is 1000 x 1000 units of length, the lightning 

direction of propagation is vertical, the wind farm location is much smaller than the area in 
study, and the lightning strikes are occurring in a grid 100 x 100 as shown in Figure 14. As a 
restriction, it is supposed that the wind turbines are required to be located in the inner area, from 
100 to 900 in both axes. 

 
 

 
 

Figure 14. Simulation area 
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A flowchart for this optimization process is shown in Figure 15. 
 
 

 
 

Figure 15. Voltage induced algorithm flow chart 
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The distance as well as the rate of change of lightning current is considered to 
determine the best location of minimum interference with lightning transients. The distribution of 
rate of change of current is random through the strike sites. Figure 16 and Figure 17 represent 
the simulation of ten random distributed strike locations in the area under study. The rate of 
change of lightning current is Gaussian distributed with mean 25 000 A/s and two standard 
deviations [13]. The best wind farm location is found at the site with distance from the stroke 
locations (876, 484). The algorithm takes into account the amount of rate of change of lightning 
current for stroke locations. The best function value is plotted as 0.001. It took 100 out of 1000 
alterations for the objective function to converge. 
  
 

 
 

Figure 16. Mean and Best Fitness 
 
 

 
 

Figure 17. Ten distributed strikes and obtained wind farm location 
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6. Conclusions 
This study presented a process for analyzing all components of wind farms including 

control systems, wind tower and boost transformer. Also, it simulated the induced transient 
voltages, GPR and capacitive induce voltage, resulting from lightning strikes. Based on local 
lightning characteristics and different grounding systems, four simulated cases were analyzed 
and discussed. The results show that the transient voltage of the upper and lower ends of the 
insulating layer of the control line was higher than that at the middle. The characteristics of the 
lightning currents were closely related to the voltage of the tower coupled to the control line. If 
the distance is insufficient, flashover may occur, causing damage. Overvoltage is reduced by 
about 95% and GPR is decreased by about 97% when using the proper design of the grounding 
system. The GPR is reduced by using the proper design of wind turbine ground system, while 
the induced voltage in control system is not affected. This paper presented a technique to 
identify the optimum location of wind turbine distant from the areas of maximum lightning 
incidence. Ant Colony Optimization (ACO) technique is implemented to find the optimum wind 
farm location. Ant Colony Optimization (ACO) technique can contribute on designing the best 
place for wind farms and can increase the capital on the protection from lightning in that area. 
Therefore, the cost of lightning protection can be reduced by using the simulation process 
proposed in this study depending on the wind turbine structure and the lightning characteristics 
of the installation site.  
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