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This article evaluates the performance of the support vector machine (SVM),
decision tree (DT), and random forest (RF) on the dataset that contains the
medical records of 299 patients with heart failure (HF) collected at the
Faisalabad Institute of Cardiology and the Allied hospital in Pakistan. The
dataset contains 13 descriptive features of physical, clinical, and lifestyle
information. The study compared the performance of three classification
algorithms employing pre-processing techniques such as min-max scaling,
and principal component analysis (PCA). The simulation result shows that
the performance of the DT, and RF decreased with dimensionality reduction
while the SVM improved with dimensionality reduction. The SVM achieved
84.44%. Thus, feature scaling improves the performance of the SVM. The
RF performs at 82.22%, the DT at 81.11%, and the SVM shows an
improvement of 1.64% with scaled features, compared to the original
dataset.
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1. INTRODUCTION

In recent years, machine learning has been widely applied in the healthcare industry for medical
decision-making. Various machine-learning models such as supervised learning methods have been widely
researched for the automation of medical decision-making aiding the early diagnosis of heart disease [1]. One
of the most widely employed pre-processing methods is feature selection, which improves the effectiveness
of supervised learning for heart disease diagnosis [2].

Research by Assegie et al. [3] developed a cox-based model for heart failure (HF) survival
prediction. The simulation of the study revealed that the cox-based model performs with a C-index receiver
operating characteristic (ROC) of 0.74 and a log-likelihood ratio of 81.95 on 11 degrees of freedom on the
validation dataset. While the study has shown the encouraging result of the use of the cox-based model for
HF survival prediction, the study did not focus on the pre-processing of the original HF dataset.

Research by Zhang et al. [4] highlighted the importance of class balancing for improving the
performance of light gradient boosting machine (light-GBM) for coronary artery diagnosis. The simulation of
the study has shown that the performance of the proposed model improved on the balanced dataset. In the
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study, synthetic minority oversampling (SMOTE) is applied for class balancing. Despite the use of the class
balancing method for model performance improvement, the study did not suggest the significance of other pre-
processing methods such as feature scaling and feature reduction with the principal component analysis
(PCA).

Habib and Tasnim [5] developed an ensemble-voting model for cardiovascular disease diagnosis.
The study suggested the early diagnosis of HF with a supervised learning model is significant to save the
patient life. The model is implemented using gradient boosting, Gaussian naive Bayes (GNB), random forest
(RF), and multi-layer perceptron (MLP) as base classifiers. The simulation of the performance of the
developed model shows that the GNB outperforms the other model with an accuracy of 74%.

Several studies [6], [7] have proposed a neural network (NN) based heart disease prediction model.
The study [6] compared RF and logistic regression (LR) for HF prediction and tested the performance of the
RF, and LR on an electronic HF dataset. The result reveals that the RF model performs better than the LR for
the HF dataset. In addition, the study highlighted that feature selection improves the performance of NN for
HF prediction [7].

In addition, another study applied support vector machine (SVM) for HF prediction [8]. The
researcher tested the developed SVM model on the HF dataset and the result highlights that the SVM model
has shown 92.22% accuracy on the HF simulation dataset. The result obtained shows that the SVM model
appears effective in HF prediction although the model has scope for improvement with pre-processing and
feature selection.

Despite the wider application of various supervised learning methods such as SVM [9], [10], deep
learning [11], RF, decision tree (DT) [12], MLP [13], and LR [14] for HF prediction, the effectiveness of
these HF prediction methods have scope for improvement and requires much research effort. The literature
review shows that most of the supervised methods are developed on the original dataset and the significance
of pre-processing such as feature scaling, and dimensionality reduction for the linear model such as SVM is
widely ignored [15]-[20]. To address the research gap, this study investigates feature scaling, and PCA as a
method for improving the performance of DT, RF, and SVM models for HF prediction. The objective of this
study are: i) to provide a literature review of the HF prediction model; ii) to apply feature scaling and PCA
and evaluate the performance of DT, RF, and SVM; and iii) to compare the performance of DT, SVM, and
RF on original and pre-processed data. The rest of the article is organized as follows: section 2 presents the
method, section 3 presents the result and discusses the result, and the section 4 concluded the work.

2. METHOD

This study employed an HF dataset obtained from the Institute of Cardiology and Allied hospital by
Ahmad et al. [21] previously studied by [22]-[25] for HF survival prediction. The dataset contains
299 samples of patients aged above 40 years. The HF dataset contains 105 womens and 194 mens. The
researchers followed the following steps to conduct this study. The first step involved a dataset collected
from the public Kaggle data repository. The second step involves the manual assessment of the dataset
checking the difference in the magnitude of different continuous features. The third step pre-processed the
dataset by feature scaling before training DT, RF, SVM, and model to avoid the impact of the magnitude on
model performance. The final step applied PCA to the dataset and compared the performance of the model on
reduced and original features. The model is trained using k-1 of the folds as training data. The remaining part
uses testing data to measure the accuracy of each fold. Table 1 decsribes the HF features used in the study.

Table 1. The feature description of the HF dataset

Feature Description Statistics
Age Age of patient Minimum age 40 and maximum age 95
Anemia Whether the patient has anemia or not O=absence (170 patients) and 1=presence (129)
Diabetes Whether the patient has diabetes or not O=absence (174 patients) and 1=presence (125 patients)
Sex Sex of patient O=female (105 patients) and 1=male (194)
Smoking whether the patient has a smoked or not 0=not smoked (203 patients) and 1=smoked (96 patients)
Platelets Platelets in the blood in kiloplatelets/mL Range: 25.01-850.00 and mean=263.358
Blood pressure Absence/presence of hypertension O=absence (194 patients) and 1=presence (105 patients)
CPK CPK enzyme in blood in mcg/L Range: 23-7861 and mean=581.839
Serum creatinine  creatinine in blood in mg/ dL Range: 0.50-9.40 and mean=1.394
Serum sodium sodium in blood in mEg/L Range: 114-148 and mean=136.625
DEATH_EVENT label O=survived (203 patients) and 1=deceased (96 patients)

Ejection fraction Blood leaving the heart at each contraction  Range: 14-80 and mean=38.084
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3. RESULTS AND DISCUSSION

In this section, the simulation results of the research are presented. The performance of the DT,
SVM, and RF models is evaluated on the original 299 of which 203 are negative or not suffering from HF,
and 96 belong to the positive class or suffer from HF. In the simulation, 70% of the dataset, or 142 samples
belonging to the negative class and 67 belonging to the positive class were used to train the model. Then the
model is tested or evaluated on 30% or 61 samples belonging to the negative class and 29 samples belonging
to the positive class. The details of the simulation results are presented in subsections 3.1 and 3.2.

3.1. Performance of decision tree, and random forest on the original dataset

Figures 1 and 2 illustrate the effect of depth on the performance of the DT and RF model
respectively. As demonstrated in Figure 1, the DT model performance is better when the depth of the tree is
lower. The highest cross-validated accuracy is obtained at depth of 1 as illustrated in Figure 1. However, the
accuracy increases with an increased depth value as the DT model overfits. Thus, a better cross-validation
value is achieved at depth of 1 for the DT model.
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Figure 1. Depth vs the performance of the DT model
Figure 2 demonstrates the performance of the RF model on the original HF dataset. The cross-
validated accuracy varies with variation in the depth of the RF model as illustrated in Figure 2. The highest

cross-validated accuracy is achieved at depth of 5. Thus, the RF model achieves the highest accuracy for HF
prediction when trained with a depth value of 5.
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Figure 2. Depth vs the performance of the RF model
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3.2. The effect of principal component analysis on the performance of the model

This section discusses the results obtained from the simulation of the DT, RF, and SVM models with
the HF test set. Figure 3 illustrates the effect of the PCA on the performance of the DT, RF, and SVM
models. The DT and RF models performed well on the original HF dataset compared to the PCA-reduced
feature set. However, the performance of the SVM model improves with the PCA illustrated in Figure 3.
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Figure 3. The effect of PCA on the performance of DT, RF, and SVM

4. CONCLUSION

This study presented a comparative analysis of the performance of three supervised learning
methods such as SVM, DT, and RF. The study compared the effectiveness of these methods on the original
and scaled 299 HF dataset with a min-max scaler. Furthermore, the study compared the effectiveness of the
models on pre-processed and PCA-component-reduced HF datasets. The simulation result shows that the
performance of the RF classifier technique performed scoring the highest accuracy without PCA and feature
scaling having an accuracy of 86.62%. Thus, it is been shown that the RF model can assist the decision-
making process for identifying the HF.
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