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 Solar energy is one of the most promising renewable energy resources. Over 

the last few decades, photovoltaic (PV) systems have grown in popularity. 

Since the maximum power point (MPP) of a solar system changes with 

environmental circumstances, the maximum power point tracking (MPPT) 

technique is required to get the most power out of the solar system. Various 

MPPT techniques based on classical and artificial intelligence (AI) 

methodologies have been proposed in the literature so far. In this paper, we 

aim to provide a thorough comparative analysis of the most widely used 

MPPT algorithms based on AI. The MPPT techniques discussed are based 

on fuzzy logic (FL), artificial neural networks (ANN), and the suggested 

hybrid approach ANN-fuzzy. The designed MPPT controllers are evaluated 

in the same PV system, which consists of a PV module, a DC-DC boost 

converter, and a DC load, under the same weather profile. Using the 

MATLAB/Simulink simulation tool, the tracking accuracy, response time, 

overshoot, and steady-state ripple of each method are tested in different 

weather conditions. The simulation results show that the ANN-fuzzy 

proposed tactic outperforms both the FL and the ANN MPPT controllers in 

correctly and successfully tracking the maximum power under diverse 

atmospheric conditions. 
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1. INTRODUCTION 

The need for energy is increasing daily despite the depletion of fossil fuel resources. They create 

enormous environmental harm and are hazardous to our health, necessitating the development of new energy 

sources. Renewable energy sources, including wind, tides, hydroelectric, geothermal, and solar energy, might 

provide a workable solution to these problems. Solar energy is one of the most durable kinds of alternative 

energy since it is not only clean, but it is also inexhaustible, it does not cost anything, and it has a very long 

lifetime. The energy consumed on earth is around ten thousand times less than the energy supplied by the 

sun. As a result, it is vital to build instruments that will use unlimited energy sources via a photovoltaic (PV) 

system. 

PV panels are instruments that use the photoelectric effect to turn sunlight directly into electricity. 

The fundamental component of the PV solar system is a group of solar cells [1]. The worldwide PV energy 

market grow significantly in 2021. At least 175 GW of PV systems were erected and commissioned last year. 

At the end of 2021, total cumulative PV installed capacity will reach at least 942 GW [2]. In 2022, the 

amount of solar power installed around the world is expected to go over 1.1 TW for the first time ever. This 
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is possible because the price of solar energy fell by an impressive 90% between 2009 and 2021. This made 

solar a worldwide phenomenon and led many countries to adopt this clean energy technology [3]. 

In light of this, Algeria has started a comprehensive effort to develop renewable energy sources in 

order to diversify its energy supply and encourage sustainable energy use. Algeria's energy strategy is 

primarily focused on the development of solar energy, which is motivated by the country's vast solar 

potential [4]. The initiative calls for the construction of a 1,000 MW PV solar power plant, which will be 

distributed around the country in lots ranging from 50 to 300 MW. It is part of a national renewable energy 

initiative with the goal of deploying 15,000 MW by 2035 [5]. 

The PV module's output characteristics, current-voltage (I-V) and power-voltage (P-V), are 

nonlinear and heavily influenced by climatic circumstances (irradiance and temperature) that affect the 

performance of a PV system. Consequently, variations in irradiance have an impact on PV output current, 

whereas changes in temperature have an influence on PV output voltage. However, PV systems are designed 

to operate at their maximum output power levels regardless of solar irradiation intensity or temperature. In 

order to improve the efficiency of a PV system, a DC-DC boost converter is required between the PV panel 

and the direct current (DC) load. 

The maximum power point tracking (MPPT) control unit adjust the duty cycle of the DC-DC boost 

converter in real time and controls the switch (metal oxide semiconductor field-effect transistor (MOSFET) 

or insulated-gate bipolar transistor (IGBT) of the converter. As a result, the system produces its maximum 

amount of power regardless of the prevailing weather conditions. To optimize PV power, researchers 

developed numerous MPPT algorithms, like fractional open-circuit voltage [6], [7], short-circuit current  

[6], [8]. These methods are based on the linear relationship between the maximum power point (MPP) 

current or voltage and the corresponding values for the short-circuit current and open-circuit voltage. The 

most common method for determining maximum power is the perturb and observe (P&O) method [9]-[13], 

due to its ease of implementation. This technique works by periodically perturbing the terminal voltage of the 

PV module and then comparing the PV output power to the power output during the preceding cycle of 

perturbation. When the operating voltage of the PV module varies and its power rises, the control system 

adjusts the operating point accordingly. If the condition is not satisfied, the operating point is shifted in the 

other direction [10]. Incremental conductance (IC) [14]-[17] is a well-known method based on a 

mathematical model. This algorithm computes the derivative of the output power of the panel from the 

voltage (V) and its difference dV as well as the current I and its difference dI. Its derivative is zero at 

maximum power, whereas it is positive to the left and negative to the right [10]. These methods belong to the 

conventional approaches for monitoring the highest power point MPPT delivered by PV systems. The PV 

panel is removed from the system in order to measure the short-circuit current and open-circuit voltage in the 

first two methods. With the panel being isolated for short periods of time, energy is being wasted. On the 

other hand, IC and P&O are more common. These methods make use of a PV panel's (P-V) characteristics. 

After the MPP is determined, steady-state oscillations occur for P&O because of the perturbations made by 

this strategy to maintain the MPP, increasing the loss of power. The IC principle considers the slope of the  

P-V characteristic to be zero at MPP, and thus, theoretically, there is no more fluctuation once MPP is 

identified. As a result, fluctuations are dampened considerably. However, in practice, the zero value on the 

PV characteristic slope is rarely seen because of how digital processing works. As a result, the IC technique 

may generate an imprecise response when the irradiation is rapidly increased [12]. 

To deal with these problems, the MPPT control strategies were developed. They are mainly based 

on artificial intelligence (AI) techniques like fuzzy logic (FL), artificial neural networks (ANN), genetic 

algorithm (GA), neuro-fuzzy technique, and other techniques. They are more appropriate than conventional 

methods in order to enhance the response time, tracking efficiency, and minimization of overshoot in the 

transitional phase, as well as oscillation around the MPP under irradiation and/or temperature variations. 

Research by Algarín et al. [18], a P&O controller is described, and its performance is compared to that of a 

fuzzy controller able to detect the MPP of a PV array. The simulation findings indicate that the fuzzy 

controller is superior to the traditional controller in terms of convergence time, power waste, and oscillation 

around the operational point. A comparative analysis of four different MPPT algorithms that are based on 

FLC can be found in [19]. Asif et al. [20] recommended the conception and evaluation of an insulated PV 

system equipped with a push-pull converter and a MPPT algorithm based on FL. Research by  

Messalti et al. [21], both the fixed and variable step-size ANN-MPPT controllers were proposed, analyzed, 

and compared. Toure et al. [22] do research on a hybrid controller for solar system MPPT based on an ANN 

using MATLAB/Simulink. The researchers presented a new FL-based hybrid technique [23] to enhance 

MPPT. The algorithm presented by researchers consists of two parts. One of which includes operationel point 

calculation and the other of which is accurate adjustment. Short circuit current is used to calculate the 

operation point, which predicts the estimated maximum power. Accurate adjustment is based on the FL 

approach and follows the accurate value of the power point. The proposed technique is simulated in 

MATLAB/Simulink. Kumar et al. [24] show the advantages of using the GA over P&O and IC. The authors 
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conclude, after studying a variety of methodologies in [25], that machine learning, FL, and AI techniques 

appear to be the most useful and promising in the process of harvesting the most power from a solar PV 

system. According to [26] and [27], different intelligent MPPT approaches are grouped into three categories: 

offline, online, and hybrid methods. Each category's simulation results were also compared using 

MATLAB/Simulink. Soft computing methods based on MPPT have recently been reviewed in [28]. A 

thorough categorization of MPPT approaches has been published in [29]. A full overview of the principles of 

MPPT approaches is provided, as well as a comparison of certain critical parameters. Many reviews have 

established the feasibility of using AI approaches in PV system MPP trackers for modeling, prediction, and 

control. These have lately been developed and are utilized to increase the effectiveness of energy conversion. 

On the other hand, rapid advancements in field programmable gate arrays (FPGAs) offer excellent chances to 

integrate MPPT trackers based on AI approaches effectively for real-time applications. More research is 

being conducted to take advantage of potential trends and challenges in the design of MPPT trackers 

incorporating intelligent digital controllers in an FPGA, as mentioned in [30]. During research, special 

factors such as cost, complexity of implementation, efficiency, convergence speed, overshoot, and possible 

practical implementation are evaluated. Based on the combination of ANN and the FL approach, an optimal 

and effective hybrid solution for tracking a PV panel's maximum power point (MPPT) is presented in this 

work. This hybrid approach will be evaluated against both approaches. ANN and FL are each used separately 

in various environmental conditions (irradiation and temperature). Based on simulations conducted with 

MATLAB/Simulink, key metrics for each approach, including efficiency, time response, overshoot, and 

oscillation in the steady state regime, were compared.  

The paper is structured as follows: after the introduction in section 1, a description of the PV system is 

presented in the following section. Section 2 describe pv system, section 3 describes the three MPPT strategies 

and includes details on the FL MPPT model, ANN, and proposed hybrid tactic ANN-fuzzy employed in this 

study. In section 4, the simulation results are analyzed and compared. For conclusion describes in section 5. 

 

 

2. PHOTOVOLTAIC SYSTEM 

As part of this research, a standalone PV system is taken into account. A PV panel, a DC-DC boost 

step-up converter, a MPPT controller, and a resistive DC load make up the components of the system, as 

shown in Figure 1. The system contains different parts, which will be developed in the following paragraphs. 
 
 

 
 

Figure 1. PV system 

 

 

2.1.  Solar panel 

A variety of models are employed to reflect the properties of the PV source. The single-diode model 

is the most widely used model, which is noted for its precision, simplicity, and moderate computing effort. 

The goal of this model is to characterize the PV source under various radiation and temperature 

circumstances. As a result, the (I-V) characteristic is described as (1): 
 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑜 [exp (
𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝑛𝑁𝑠𝑉𝑡
) − 1] −

𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
 (1) 

 

Where Iph signifies PV current, Io denotes diode saturation current, n denotes diode ideality factor, Rs is the 

series resistance of the PV module, Rsh is the parallel resistance of the PV panel, Ns is the number of cells in one 
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module, and Ipv is the output current. The output voltage is Vpv, and the thermal voltage is Vt [6].  

Figures 2 and 3 depict the I-V and P-V characteristics for different light intensities and temperatures. As indicated 

in Figure 3, open circuit voltage has an inverse relationship with temperature, which means that as the 

temperature rises, open circuit voltage and maximum power drop, whereas short circuit current and light intensity 

have a direct relationship. Short circuit current and maximum power rise as light intensity increases [23]. 
 

 

 
 

Figure 2. I-V and P-V characteristics under different irradiation levels 
 

 

 
 

Figure 3. I-V and P-V characteristics under different temperature levels 

 

 

2.2.  Modeling of boost converters 

A DC-DC step-up converter is positioned in this configuration between the PV panel and the load in 

order to extract the maximum amount of power possible from the panel. It is employed for the purpose of 

matching the load to the solar panel [23]. Figure 4 shows the boost DC–DC converter circuit. The DC voltage 

at the input of the DC–DC converter is provided by the PV solar panel. The converter duty cycle D is the 

most important and crucial factor in selecting the boost converter components and IGBT control in order to 

optimize the harvested power from the solar PV system [31]. The relationships between input and output 

voltages and currents of the boost converter can be written as (2): 
 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
1

1−𝐷
 (2) 

 

𝐼𝑜𝑢𝑡 = 𝐼𝑖𝑛(1 − 𝐷) (3) 
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Figure 4. Boost converter 

 

 

3. MPPT TECHNIQUES 

Because the maximum available power of solar arrays varies with the weather, a real-time MPPT is 

an essential element of the PV system. The goal of an MPPT controller is to be able to monitor the MPP 

under various climatic conditions (irradiance and temperature). This control has been designed with the 

intention of making an automated adjustment to the duty cycle so that it is brought to the MPP. Numerous 

MPPT techniques have been developed in scientific research to solve these problems. Accuracy, tracking 

effectiveness, response time, overshoot in the transient phase, oscillation around the MPP at steady state, and 

cost are the parameters that will be utilized to evaluate the various MPPT approaches presented by the 

researchers [21]. 

 

3.1.  Fuzzy logic technique 

One of the most successful MPPT optimization strategies is FL. Numerous studies, including  

[31]-[42], have used FL to make the PV work around the MPP [36]. As shown above, climate is the primary 

effect on the non-linear features of the I-V and P-V characteristics. FL control has several benefits. It doesn't 

need exact mathematical modeling and can manage non-linearity and imprecise inputs. However, background 

information is required for FL controller design [4]. In order to keep tabs on the MPP that PV systems 

generate, FL was utilized, as mentioned in section 1. It is used to improve the efficiency of traditional MPPT 

techniques (such as P&O, IC, or proportional integral derivative (PID)) or in tandem with other AI-based 

methods like ANNs or GAs. Hill climbing method (HC), P&O, and IC are examples of traditional MPPT 

approaches based on fixed step-size that have significant drawbacks, including slow convergence, 

oscillations around the MPP, and an inability to follow the MPP during abrupt changes in atmospheric 

conditions (irradiation and temperature). Larger step sizes allow for faster follow-up, but excessive  

steady-state oscillations are inevitable. On the other hand, oscillations can be minimized by using a smaller 

step size with slower dynamics. The step size should provide an acceptable trade-off between dynamics and 

oscillations depending on the operational environment (irradiation, temperature) [21]. The FL controller FLC 

will offer a variable step size to get over these issues. The step size will be set by the membership functions 

and inference rules, which have improved system performance in both permanent and temporary regimes by 

adapting to weather circumstances. The FLC's primary steps can be divided into three categories: 

fuzzification, inference rules, and defuzzification. A FL controller composed of two inputs, one output, and 

25 rules shown in Table 1 [36] is proposed. The synoptic scheme of the PV system using the FL MPPT 

technique is shown in Figure 5. E and CE are the fuzzy controller variable inputs defined using (4) and (5): 

 

𝐸(𝑘) = 𝑉(𝑘) − 𝑉𝑚𝑝𝑝  (4) 

 

𝐶𝐸(𝑘) = 𝐸(𝑘 − 1) − 𝐸(𝑘)  (5) 

 

Where Vmpp is the MPP,V(k) is the instantaneous voltage of the solar panel observed at sample time k, E(k) 

represents the error between V(k) and Vmpp at the sample time k, and CE(k) represents the error change at 

sampling time k. Duty cycle D is the output variable. The variables are transmitted to the deduction unit after 

being fuzzified, and after applying the rules, they move into the defuzzification stage. Then, a real value of 

the duty cycle D is then generated by the controller [23]. The membership functions for the input variables E 

and CE are depicted in Figures 6 and 7, respectively, while the membership function for the output duty cycle 

D is represented in Figure 8. 
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Table 1. The 25 rules of the FL controller 
ECE NB NS Z PS PB 
NB Z Z Z B M 
NS Z Z S M B 
Z Z S M B VB 

PS S M B VB VB 
 PB M B VB VB VB 
*NB is negative big; NS is negative small; Z is zero; PS is positive small; PB is positive big; S is small; M is medium; B 

is big; VB is very big 
 

 

 
 

Figure 5. Synoptic schematic of a solar system using FL MPPT 
 

 

  
  

Figure 6. Membership function of error for FL 

MPPT 

Figure 7. Membership function of change of error for 

FL MPPT 
 

 

 
 

Figure 8. Membership function of duty cycle for FL MPPT 
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3.2.  Artificial neural networks MPPT algorithm 

ANN approaches have been regarded as one of the greatest alternatives for computational systems 

over the last few decades due to the numerous advantages they offer over traditional computational systems. 

They are able to deal with some complicated and non-linear problems without the need for an exact 

mathematical model. An ANN is a data-processing system made up of numerous artificial neurons, which are 

conceptually comparable to biological brain cells in that they are simple, densely linked processors. These 

neurons are linked together by many weighted linkages that allow for the transmission of electric signals. 

Each neuron has several connections that send information in but only one that transmits data out. When it 

comes to learning and recognizing patterns, these neural networks really shine. As shown by recent 

applications, there is great hope for the use of ANNs in solving complex data processing and interpretation 

problems. ANN are seen as a good fit for applications involving PV systems, notably in the monitoring of the 

MPP for a PV system [22], due to their efficacy in system identification and adaptive controls. To reach 

MPP, we use a pair of ANN to monitor the peak power point (see Figure 9). 
 
 

 
 

Figure 9. Synoptic schematic of a solar system using the ANN MPPT method 
 

 

The first network is a multi-layer feed-forward neuron system that accounts for irradiance and 

temperature changes (see Figure 10). There are three distinct parts to the multilayer neural network's 

architecture. Two neurons make up the input layer, and the data they receive are the sun's intensity and the 

ambient temperature. The number of neurons in the hidden layer, ten, was arrived at by utilizing the 

empirical rule, which suggests that one should begin with a high number of neurons and progressively lower 

them until one has a more stable network with more precise outputs. The output layer is made up of just one 

neuron, whose MPP is where its optimal voltage is (see Figure 10). 
 

 

 
 

Figure 10. Feed-forward neural network 
 

 

It should be noted that numerous attempts to enhance the accuracy of the ANN developed led to the 

adoption of this structure. Through a brief MATLAB code generation, the data used to train the ANN 

controller is acquired in order to complete the learning process. The dataset contains both the input values 

(irradiance and temperature) and the output target MPP voltage (Vmpp). All the data needed for training in 

offline mode can be found in the MATLAB workspace after executing the program MATLAB [43]. To 

increase prediction accuracy, datasets used to train neural networks must contain a large set of measurements 

[4]. It can be trained in a variety of ways. The Levenberg-Marquardt approach [44] is utilized to train the 

ANN in this research (see Figure 11). It was observed that the Levenberg-Marquardt (LM) algorithm is the 

optimum training function for tracking the MPPT from PV panels regardless of the weather  

(irradiation and temperature). 
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Figure 11. Training ANN 
 

 

The performance was evaluated using the mean square error (see Figure 12). Faster convergence, a 

smaller mean square error, as well as a greater regression coefficient were all attained via feed-forward 

networks (see Figure 13). This paper's presented ANN-based MPPT approach can follow MPP under a 

variety of environmental circumstances (sun irradiance and temperature) [45]. 

 

 

  
  

Figure 12. Mean square error vs epochs Figure 13. Regression coefficient 
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To cover the majority of situations in the most geographical locations of the world, the temperature 

(T) ranges from 0 °C to 55 °C with random variation (the variation step changes randomly) and the solar 

irradiation (G) ranges from 100 W/m2 to 1,000 W/m2 to cover most cases of insolation (low, medium, and 

high levels of irradiation). This dataset was used to train the first neural networks (offline mode). It was 

divided into 70% for learning, 15% for testing, and 15% for validation data. After each training, the learned 

ANN models are continuously updated to build stable and precise neural networks, and the outcomes are 

tested and maintained. When it comes to convergence, a performance factor that determines how well the 

networks operate. To keep track of how well models are performing, validation data is employed. If the 

networks perform as well on both the test and validation data, we may conclude that they are accurate in 

generating the optimal voltage when activated by these inputs (G,T) [22]. After training the ANN and 

specifying the neuron weights, the output is now automatically related to Vmpp in the case of any T and G as 

ANN inputs [44]. 

The structure, activation function, and training procedure of the second neural network are identical 

to those of the first. A large amount of data is employed to train the second neural network in offline mode in 

order to enhance the prediction accuracy. The error E and the variation of the error CE, which are described 

by (4) and (5), are the respective inputs of the second neural network, whereas the output of the second 

neural network is the duty cycle. The standalone PV system is simulated using MATLAB/Simulink and 

consists of a PV module coupled to a DC-DC boost converter whose IGBT switch is controlled by a unit of 

control that is based on a trained ANN model. 

 

3.3.  ANN-fuzzy MPPT 

FL and ANNs are combined in the ANN-fuzzy method. It is an improved effective hybrid method 

which is proposed for monitoring the MPP of a PV panel. The ANN (Figure 14) used to calculate the optimal 

voltage Vmpp based on environmental factors (such as sun irradiation and temperature) is structurally similar 

to the first ANN described in the previous section. In other words, the important aim of the ANN controller is 

to compute the Vmpp for every given combination of irradiance and temperature. 

 

 

 
 

Figure 14. Synoptic schematic of a solar system using the ANN-fuzzy MPPT strategy suggested 

 

 

Then, Vmpp is considered a reference value (target) that the PV module output voltage should 

follow in order to reach the optimum power point in various weather circumstances. To accomplish this task, 

the FL regulator gets involved. The goal is to reduce and remove the difference between the output voltage 

measured from the PV module at sampling time k and Vmpp by generating the appropriate duty cycle. A 

PWM generator drive the IGBT switch of the DC-DC boost converter in order to follow the highest power 

point of the PV module whatever the climatic conditions (irradiation and ambient temperature). The FL 

controller receives two inputs: the error E(k) (Figure 15) and the change in the error CE(k) (Figure 16), with 

the duty cycle D serving as the ultimate output of our proposed approach, which is displayed in Figure 17. In 

(4) and (5) from the preceding section are used to determine the error E(k) and the variation in error CE(k). 

One of the most accurate ways to monitor the MPP is by using FL. It offers excellent technological 

features such as fast speed, precision, and efficiency. The cost of the controller rises as the number of rules 

grows, but it also becomes more precise while lowering speed, and adding more rules will increase 

complexity and expense. A system with high precision, few rules, and low cost is the perfect fuzzy system. 
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Therefore, by reducing the number of rules, we can minimize the cost of the FL controller while also making 

this technology easier to implement [33]. 

The suggested technique's most important advantage is the minimization of the number of FL 

controller rules to seven (see Table 2), as opposed to the 25 rules presented in [18], [32], [34], [38]. While 

there are some references such as in [41], use 36 rules and use 49 rules as mentioned in [20], [31], [40]. The 

aim of optimizing the number of rules in our proposed approach is to lower the expense of the MPPT 

technique while also making the technique simple to implement in real time. The presented hybrid technique 

includes seven rules, as shown in Table 2. It will also reduce the number of commutations that occur in 

converters, as a result, extending their lifespan. 15 KHz was used in the ANN-fuzzy proposed method instead 

of 20 kHz or more in the other publications in the literature such as [18], [32], [34], whose switching 

frequency is 20 kHz. In the case of [31], the switching frequency is 30 kHz. The following figures represent 

the membership functions of the two inputs E(k) and CE(k), as well as the output D (duty cycle). 

 

 

  
  

Figure 15. Membership function of error for ANN-

fuzzy MPPT 

Figure 16. Membership function of change of error for 

ANN-fuzzy MPPT 

 

 

 
 

Figure 17. Membership function of duty cycle for ANN-fuzzy MPPT 

 

 

Table 2. ANN-fuzzy MPPT controller rules 
ECE Mf1 NB NS Z PS PB Mf7 

Z Z Z S M B VB VB 
*Mf1: mumbership function number 1 

*Mf7: mumbership function number 7 
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4. RESULTS AND DISCUSSION 

To simulate the MPP tracking of the PV system based on the proposed MPPT controllers under 

varied weather circumstances (irradiation and temperature), the simulation program MATLAB/Simulink is 

employed. It is an adequate way to analyze the performance of each technique proposed above. The entire 

PV system is simulated and subjected to weather profiles, enabling testing in a range of situations to choose 

the best designed controller from the methodologies described in the earlier portions. The PV system 

depicted in Figure 1 includes a solar PV panel, which is a Soltech 1STH-215-P PV module (Table 3), and a 

DC-DC boost converter, which has a switching frequency of 15 kHz. The boost converter contains an input 

capacitor (300 uF), an input inductance (45 uH), and an output capacitor (300 uF). A resistive load of  

20 ohms serves as the output load. The MPPT approaches mentioned above are used to control the boost 

converter. The characteristics of the Soltech 1STH-215-P module are listed in Table 3. 

 

 

4.1.  Results under variations of irradiation 

Figure 18 displays the irradiation profile, with an irradiation of 1,000 W/m2 initially delivered from 

zero to 0.5 seconds. During the simulation, the temperature is kept at T=25 °C in this instance, while abrupt 

changes in irradiation levels occur at 0.5 s, 1 s, and 1.5 s. Irradiation variations range from 1,000 W/m2 to  

500 W/m2, 500 W/m2 to 800 W/m2, and lastly, 800 W/m2 to 600 W/m2, as well as in Figure 19, which depicts 

the reactions of several MPPT control approaches under varied irradiation circumstances. 

 

 

Table 3. Parameters of the PV module 
Parametres Values 

Maximum power (Pmpp) 213.15 W 
Voltage at MPP (Vmpp) 29 V 
Current at MPP (Impp) 7.35 A 
Open circuit voltage (VOC) 36.3 V 
Short circuit current (ISC) 7.84 A 
Temperature coefficient of (VOC) -0.36099%/°C 
Temperature coefficient of (Isc) 0.102%/°C 

 

 

 
 

Figure 18. Simulation-used level of irradiation 
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Figure 19. The output power of the PV system under scenario I of irradiation variation as simulated using the 

FL, ANN, and the proposed ANN-fuzzy MPPT techniques 
 
 

Figures 20 and 21 depict MPP monitoring by the designed MPPT controllers, which are following 

the weather profile displayed above. For the initial interval t∊[0, 0.5] s at STC conditions (standard test 

conditions: sun radiation G=1000 W/m2 and ambient temperature T=25 °C), all controllers tracked the MPP 

with sufficient precision. This is evident by the power levels being quite close to the theoretical value 

associated with the rate of irradiation and temperature in this circumstance. However, the ANN-fuzzy 

methodology obviously outperforms both the other methods in terms of tracking accuracy. This is 

demonstrated by the power value delivered by this unit of control, which is closer to the MPP than the values 

produced by both the FL and ANN MPPT controllers. According to Figure 20, the proposed ANN-fuzzy 

MPPT controller reacts to changes in irradiance and reaches the stationary operating point in less than 5 ms at 

start-up and for the STC conditions. The FL MPPT controller responds to changing irradiation in 10.94 ms, 

whereas the ANN MPPT controller takes 40 ms. So, the FL MPPT controller response time is 2,189 times 

slower than the ANN-fuzzy MPPT controller, while the ANN-fuzzy MPPT controller has a convergence 

speed that is eight times as fast as the ANN MPPT controller. From Figure 21, the suggested ANN-fuzzy 

algorithms perform well in steady state in STC weather conditions with a low steady-state oscillation of  

0.1 W. This value corresponds to 0.047% of the power obtained with this method. In comparison to the ripple 

created by the FL technique, which is equal to 0.2 W (0.094%), the ANN algorithm caused a significant 

oscillation around the MPP of 0.4 W (0.18%). This resulted in a significant waste of energy for a PV system. 
 

 

 
 

Figure 20. Response time of the FL, ANN, and ANN-fuzzy MPPT at start-up 
 

 

 
 

Figure 21. FL, ANN, and ANN-fuzzy MPPT power ripple techniques at start-up 
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Figures 22 and 23 illustrate MPP tracking using MPPT controllers developed and tested in 

compliance with the abovementioned weather profile. The irradiation drops from 1,000 W/m2 to 500 W/m2 

for the second period t∊[0.5,1] s while the temperature remains unchanged at T=25 °C. Both ANN-fuzzy and 

ANN controllers successfully tracked the MPP, and in both situations, the power values were extremely close 

to the predicted value related to the rate of irradiation and temperature in this case. Regarding the power 

value of the FL controller, it is less precise than the values of the ANN-fuzzy and ANN controllers. 

Moreover, in terms of tracking accuracy, the ANN-fuzzy methodology clearly exceeds both other 

approaches. Figure 22 shows that the suggested ANN-fuzzy MPPT controller responds to variations in 

irradiance and reaches the steady state operating point in 2 ms when the irradiance declines from 1000 W/m2 

to 500 W/m2 at T=25 °C. When the sun's irradiance varies, the FL-MPPT controller reacts in 9.9 ms, whereas 

the ANN-MPPT controller takes 21.3 ms. 

In addition to producing a less accurate power value than the other methods, the FL MPPT 

controller has a response time that is 4.95 times that of the ANN-fuzzy MPPT controller, whereas the ANN 

MPPT controller has a response time that is 10.65 times that of the ANN-fuzzy MPPT controller. The 

positive point for all approaches is that they do not produce any overshoot during the transient phase, which 

allows them to prevent energy loss during the transient regime. As shown in Figure 23, the proposed ANN-

fuzzy algorithms and the ANN technique work well in steady state under meteorological conditions (sun 

irradiation G=500 W/m2 and temperature T=25 °C), with a low oscillation in steady state of 0.2 W for the 

ANN-fuzzy method. This value represents 0.185% of the power value achieved by this technique, and 0.2W 

for the ANN method, which represents 0.186% of the power value reached by this technique. The power 

value provided by the FL algorithm is less accurate than the other two methods, with a steady state ripple of 

0.2W (0.191%). 

 

 

 
 

Figure 22. Response time of the FL, ANN, and ANN-fuzzy MPPT techniques during the change of insolation 

from 1,000 W/m2 to 500 W/m2 

 

 

 
 

Figure 23. FL, ANN, and ANN-fuzzy MPPT power ripple during the change of insolation from 1,000 W/m2 

to 500 W/m2 

 

 

In accordance with the weather conditions described above, Figures 24 and 25 show the MPP 

tracking performed by the MPP monitoring systems outlined in the previous sections. The irradiation is 
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raised to 800 W/m2 for the third period, t∊[1,1,5] s, while the temperature is maintained at T=25 °C. The 

MPP has been closely monitored by the ANN-fuzzy and ANN controllers. In both situations, the power 

levels generated by these controllers are quite near to the expected values corresponding to the given 

irradiance and temperature level, especially for the ANN-fuzzy technique, which matches the theoretical 

value of the MPP correctly and with excellent precision. Although the power value of the FL controller is 

higher, it is less precise than the values of the ANN-fuzzy and ANN controllers, but it is acceptable in this 

case. In terms of tracking accuracy, the ANN-fuzzy methodology clearly outperforms both other approaches. 

As seen in Figure 24, when the solar irradiation is raised from 500 W/m2 to 800 W/m2 at T=25 °C, the 

proposed ANN-fuzzy MPPT controller responds to changes in irradiance and reaches the steady-state 

operating point in 2 ms. When the irradiation increases, the FL controller reaches the steady state after 8 ms, 

while the ANN MPPT controller needs 12 ms.  

Compared to other methods, the FL-MPPT controller provides an inaccurate power value, which in 

this case is relatively far from the expected theoretical power value for the specific irradiance and 

temperature. All techniques have the advantage of not overshooting during the transient phase, allowing them 

to prevent energy loss during the transient regime. According to Figure 25, the proposed ANN-fuzzy 

algorithm operates well in a steady state under the specified weather conditions, with a low steady state 

oscillation of 0.1 W for the ANN-fuzzy method, representing 0.058% of the power value reached by this 

technique. Regarding the ANN method, the oscillation around the MPP generated by this method in steady 

state is 0.4 W, which corresponds to 0.23% of the power value achieved by this technique, resulting in 

significant energy waste for a PV system. The FL algorithm provides a less precise power value than the 

other two approaches, with a ripple of 0.1 W (0.059%) at steady state. 

 

 

 
 

Figure 24. Response time of the FL, ANN, and ANN-fuzzy during the change of insolation from 500 W/m2 to 

800 W/m2 

 

 

 
 

Figure 25. FL, ANN, and ANN-fuzzy MPPT power ripple MPPT techniques during the change of insolation 

from 500 W/m2 to 800 W/m2 

 

 

Figures 26 and 27 demonstrate how the intended MPPT controllers track MPP with respect to the 

weather profile indicated in the previous figure. The graph shows MPP tracking utilizing developed MPPT 

controllers that have been tested using the aforementioned weather profile. The irradiation is reduced from  
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800 W/m2 to 600 W/m2 for the final period t∊[1,5,2] s at T=25 °C. The ANN-fuzzy and ANN controllers 

closely followed the MPP, and in both cases, the power levels were extremely near to the predicted values 

corresponding to the irradiation and temperature rates specified in this instance. The power value supplied by 

using the FL controller is less accurate than those for ANN-fuzzy and ANN controllers. Furthermore, the  

ANN-fuzzy methodology significantly excels the other two approaches in terms of tracking accuracy. The 

proposed ANN-fuzzy MPPT regulator responds to variations in sunlight and achieves the steady-state 

operating point in 2 ms, as can be observed in Figure 26. The FL controller enters a steady state regime after 

13 ms of decreasing irradiation, whereas the ANN MPPT controller needs 14 ms. In comparison to the other 

methods, the FLMPPT controller delivers a less precise power value. Additionally, the reaction times for the 

FL MPPT and ANN MPPT approaches are 6.5 and 7 times slower than those for the ANN-fuzzy MPPT 

controller. All methods have the advantage of not overshooting during the transient phase, which allows them 

to avoid energy losses during the transient regime. From Figure 27, the proposed algorithm ANN-fuzzy 

behaves well in a steady state regime under the specified climatic factors of this case, and this strategy 

produces a smooth power curve, almost without steady state oscillation. The ripple around MPP created by the 

ANN method at steady state is 0.2 W, which is 0.155% of the power value obtained by this methodology, 

resulting in significant energy loss for a PV system. The FL algorithm provides a less precise power value than 

the other two approaches, with a steady-state ripple of 0.1 W (0.079%). As a result, the system's dynamic 

response and steady-state performance are good when using the proposed ANN-fuzzy technique. In addition, 

the recommended ANN-fuzzy method has good tracking speed compared to the other simulated algorithms. 
 
 

 
 

Figure 26. Response time of the FL, ANN, and ANN-fuzzy during the change of insolation from 800 W/m2 

to 600 W/m2 
 
 

 
 

Figure 27. FL, ANN, and ANN-fuzzy MPPT power ripple MPPT techniques during the change of insolation 

from 800 W/m2 to 600 W/m2 

 

 

4.1.1. Efficiency during irradiation variation 

Efficiency is a crucial factor to consider when evaluating any MPPT technique. Furthermore, to 

assess the precision of the power results, the MPPT efficiency is calculated using the following [6], [16]. 

 

𝜂𝑀𝑃𝑃𝑇 =
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝑡ℎ𝑒𝑜𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 × 100 (6) 
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Pmeasured denotes the computed power using the FL MPPT, ANN MPPT, or ANN-fuzzy MPPT. 

Ptheoritical is the estimated theoretical MPP value that the PV panel will deliver for a given temperature and 

irradiance. To compare the ANN-fuzzy MPPT, the FL MPPT, and the ANN MPPT in terms of mean tracking 

efficiency, these performances are compiled in Table 4. According to the results displayed in Table 4, the 

ANN-fuzzy MPPT exhibits great efficiency and outperforms both the ANN MPPT and FL MPPT for any 

abrupt change in irradiance. 
 
 

Table 4. Efficacy evaluation of the FL, ANN, and ANN-fuzzy methodologies under varying irradiance 

Irradiation 

(W/m2) 
MPP 

(W) 

MPPT (FL 

technique) 
(W) 

MPPT (ANN 

technique) 
(W) 

MPPT (ANN-

fuzzy technique) 
(W) 

Efficiency 

FL MPPT 
(%) 

Efficiency 

ANN MPPT 
(%) 

Efficiency 

ANN-fuzzy MPPT 
(%) 

500 108 104.3 107.3 107.8 96.57 99.35 99.81 
600 129.5 126.2 129.1 129.3 97.45 99.69 99.84 
800 171.8 169.5 171.4 171.8 98.66 99.76 100 

1,000 213.1 212.4 212.2 212.7 99.67 99.57 99.81 
Average  98.08 99.59 99.86 

 

 

4.2.  Results under variation of temperature 

Figure 28 depicts the temperature profile, with an irradiation of 1,000 W/m2 during the simulation  

(2 seconds), and the initial temperature is set at T=25 °C from zero to 0.5 s. Following that, abrupt 

temperature changes occur at 0.5 s, 1 s, and 1.5 s. The corresponding temperature ranges are 25 to 35,  

35 to 45, and 45 to 20 ºC. The different MPPT systems described in this research paper will be evaluated 

using their accuracy, tracking efficiency, convergence speed, overshoot in the transient phase, and oscillation 

around the peak power point. Figure 29 shows the responses of various MPPT control strategies under 

varying temperature conditions. 
 

 

 
 

Figure 28. Simulation temperature rate 
 

 

 
 

Figure 29. The output power of the PV system under scenario II of temperature variation as simulated using 

the FL, ANN, and the proposed ANN-fuzzy MPPT techniques 
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The outcomes in the first interval when t∊[0, 0.5] are identical to those in the previous situation. 

(See Figures 20 and 21 in the previous section, "results under variation of irradiation"). Figures 30 and 31 

show MPP monitoring utilizing MPPT controllers that were designed and simulated using the 

abovementioned environmental factors. When the temperature is 35 °C and the radiation is 1,000 W/m2, for 

the second period t∊[0.5, 1] s, the MPP is tracked correctly by the ANN-fuzzy MPPT controller, and in this 

case, the power value is very close to the expected MPP for the specified temperature and irradiation. 

Although the FL controller's power value is less accurate than that produced by the ANN-fuzzy controller, it 

is still acceptable. The ANN MPPT controller is the least accurate in terms of tracking the MPP among all the 

algorithms presented earlier in these irradiation and temperature conditions. Furthermore, compared to the 

other two methods, the ANN-fuzzy approach allows for more precise tracking of the highest power point 

MPP produced by the PV panel. The suggested ANN-fuzzy MPPT controller responds to temperature 

changes and reaches the steady state operating point in 0.6 ms when the temperature is increased from 25 °C 

to 35 °C and for solar irradiation G=1,000 W/m2, as shown in Figure 30. We also observe an overshoot of  

0.3 W (0.147%) when using the ANN-fuzzy MPPT technique, but this last quickly restarts the peak point 

tracking operation. The FL MPPT controller responds to the temperature change in 2 ms, while the ANN 

MPPT controller needs 7.4 ms. The ANN MPPT controller produces an inaccurate power value compared to 

the other approaches. We can also see that the FL MPPT and ANN MPPT techniques have response times 

that are 3.33 times and 12.33 times slower than the ANN-fuzzy MPPT controller, respectively. According to 

Figure 31, the proposed algorithm ANN-fuzzy and FL techniques behave well in a steady state under the 

specific climate circumstances for this case, with a low steady state oscillation of 0.1 W for the ANN-fuzzy 

method. This value represents 0.049% of the power value achieved by this technique, and 0.2 W for the FL 

method, which represents 0.0985% of the power value reached when using this technique. The power value 

supplied by the ANN algorithm is less accurate than the other two methods, with a significant ripple of 1.4 W 

(0.7%) at steady state. This causes an important energy loss for the PV system.  

 

 

 
 

Figure 30. Response time of the FL, ANN, and ANN-fuzzy MPPT during the change of temperature from  

25 °C to 35 °C 
 
 

 
 

Figure 31. The FL, ANN, and ANN-fuzzy MPPT power ripple techniques during the change of temperature 

from 25 °C to 35 °C 
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Figures 32-34 illustrate MPP tracking via constructed and simulated MPPT controllers based on the 

weather profile shown above. For the third interval t∊[1,1,5] s, the insulation is G=1,000 W/m2, and the 

temperature is T=45 °C. The ANN-fuzzy MPPT controller accurately tracked the MPP, as evidenced by the 

power value provided by this last, which is extremely close to the theoretical value matched to the sunshine 

and temperature conditions specified in this instance. The FL and ANN MPPT controllers fail to follow the 

theoretical MPP value, especially for the power value produced by the ANN controller, which is far from the 

MPP in this case. The tracking accuracy of the peak power point generated by the PV array is, in this case, 

significantly better with the ANN-fuzzy algorithm than with other methods. 
 

 

 
 

Figure 32. Overshootof of the FL, ANN, and the proposed ANN-fuzzy MPPT techniques during the change 

of temperature from 35 °C to 45 °C 
 

 

 
 

Figure 33. Response time of the FL, ANN, and ANN-fuzzy MPPT techniques during the change of 

temperature from 35 °C to 45 °C 
 

 

 
 

Figure 34. FL, ANN, and ANN-fuzzy MPPT power ripple during the change of temperature from 35 °C to 45 °C 
 

 

When the temperature increases from 35 °C to 45 °C and the irradiation is 1,000 W/m2, the proposed 

ANN-fuzzy MPPT controller responds to temperature variations and achieves the steady state operating point 

in 1 ms. The FL controller reaches steady state after 8 ms, while the ANN MPPT controller takes 20 ms. 

Both the ANN and FL MPPT controllers give a less precise power value than the ANN-fuzzy approach. We 

can also see that the ANN MPPT and FL MPPT techniques have response times that are 20 times and 8 times 
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slower than the ANN-fuzzy MPPT controller, respectively. We also observe an overshoot of 0.4 W (0.2%) 

when using the ANN-fuzzy MPPT technique. However, it rapidly restarts the maximum point tracking 

operation. The FL and ANN MPPT approaches induced significant overshoot that was more than that 

produced by the ANN-fuzzy technique, which results in increased energy loss during the transient period. 

The FL MPPT overshoot is 0.7 W (0.375%), while the ANN MPPT overshoot is 1.9 W (1.085%). From 

Figure 34, the suggested algorithm ANN-fuzzy performs well in a steady state under the particular weather 

conditions in this instance,with a low steady state oscillation of 0.1W for the ANN-fuzzy method. This value 

represents 0.051% of the power value produced by this technique.Regarding the FL MPPT method, the ripple 

around MPP caused by this technique at steady state is 0.2 W,which represents 0.107% of the power value 

reached by this technique. The power value supplied by the ANN algorithm is less accurate than the other 

two methods, with a large amount of oscillation of 2.5 W (1.427%) at steady state; this results in significant 

energy waste for a PV system. 

Figures 35 and 36 show how the designed MPPT controllers respond to tracking the MPP against 

the weather profile presented in the previous section. During the last interval, the temperature is T=20 °C and 

the insolation is G=1,000 W/m2, t∊[1,5,2] s. The ANN-fuzzy controller closely followed the MPP, as shown 

by the power value delivered by the PV system using this last control unit. This is quite near to the predicted 

values associated with the specific solar irradiation and temperature in this situation. Compared to the  

ANN-fuzzy MPPT controller, the ANN MPPT controller generates a less accurate power value. However, it 

is a reasonable value. The power value provided by the FL controller is less accurate than the ANN-fuzzy 

and ANN controller values. In terms of tracking accuracy, the ANN-fuzzy methodology performs noticeably 

better than the other two methods. As shown in Figure 35, the proposed ANN-fuzzy MPPT controller 

responds to temperature changes and reaches the steady-state operating point when the temperature drops 

from 45 °C to 20 °C and the illumination is maintained constant at 1,000 W/m2 in 1 ms.  
 

 

 
 

Figure 35. Response time of the FL, ANN, and ANN-fuzzy MPPT during the change of temperature from  

45 °C to 20 °C 
 

 

The FL controller enters a steady state after 3 ms of decreasing the temperature, whereas the ANN 

MPPT controller needs 10 ms. Compared to the other methods, the FLMPPT controller provides a less 

accurate power value. We can also see that the response times of the FL MPPT and ANN MPPT methods are 

respectively 3 times and 10 times slower than those of the ANN-fuzzy MPPT controller. All methods have 

the advantage of not overshooting (undershooting) during the transient phase, which allows them to avoid 

energy losses during the transient regime. In Figure 36, the suggested algorithms ANN-fuzzy perform well in 

a steady state under the specified meteorological conditions. In this case, the power curve produced by this 

methodology is nearly smooth, with a small steady-state oscillation of 0.1 W (0.046%). For the ANN 

method, the fluctuations caused by this technique at steady state are more important than the oscillations 

caused by the two other methods 0.6 W, which represents 0.279% of the power value attained by this 

technique, For a PV system, this led to considerable energy waste. Compared to the other two approaches, 

the FL algorithm's power value is less precise, with a steady state ripple of 0.2 W (0.093%). When using the 

ANN-fuzzy approach, the system's dynamic responsiveness and steady-state performance are therefore good. 

The ANN-fuzzy method that was suggested has a faster tracking speed than the other simulated approaches. 
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Figure 36. The FL, ANN, and ANN-fuzzy MPPT power ripple techniques during the change of temperature 

from 45 °C to 20 °C 

 

 

4.2.1. Efficiency during temperature variation 

Table 5 depicts the efficiency of our system under various temperature conditions. The findings 

indicate that for any sudden change in temperature, the ANN-fuzzy MPPT performs better than both the 

ANN MPPT and the FL MPPT. In this case, its average efficiency is 99.825% 
 

 

Table 5. Efficacy comparison of the FL, ANN, and ANN-fuzzy methodologies when the temperature varies 

Temperature 
(°C) 

MPP 
(W) 

MPPT (FL 

technique) 

(W) 

MPPT (ANN 

technique) 

(W) 

MPPT (ANN-

fuzzy technique) 

(W) 

Efficiency 

FL MPPT 

(%) 

Efficiency 

ANN MPPT 

(%) 

Efficiency 

ANN-fuzzy MPPT 

(%) 
25 213.1 212.4 212.2 212.7 99.67 99.57 99.81 
35 204.2 203 199.2 203.9 99.41 97.55 99.85 
45 195.4 186.4 175.1 194.9 95.39 89.61 99.74 
20 217.2 214.7 215.4 217 98.85 99.17 99.9 

Average  98.33 96.475 99.825 

 

 

5. CONCLUSION 

In this work, we examined how solar systems monitor their highest power points. The MPPT 

controllers discussed in this paper were developed using FL, ANN, and the suggested ANN-fuzzy approach 

(combining the two methods previously mentioned). After that, they are tested in the MATLAB/Simulink 

environment using a simulated PV system in various test conditions. The suggested controllers are then 

evaluated using a comparative study that takes into account factors including accuracy, efficiency, 

convergence speed, transient overshoot, and steady-state oscillation around the MPP. The simulation 

outcomes demonstrate the effectiveness of the suggested ANN-fuzzy MPPT controller in both transient and 

steady state regimes, as proven by the fact that the proposed strategy outperforms both FL and ANN MPPT 

controllers in terms of tracking the MPPs quickly and precisely under standard test conditions and a variety 

of suddenly changing meteorological conditions (irradiation and temperature). The major contribution of this 

research paper is the combining of the two approaches previously described and the exploitation of each 

method's benefits, such as the ANN technique's learning capacity and the FL method's quick tracking and 

precision. On the other hand, reducing the number of rules utilized by the FL component of the hybrid  

ANN-fuzzy MPPT controller to 7 instead of 25 in the majority of publications in the literature allows the cost 

of this control unit to be optimized. 
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