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Abstract

This article proposes a system based on the interpretation on the Quranic text that has been
translated into English language using word sense disambiguation. This system is based on a combination
of three traditional semantic similarity measurements, which are Wu-Palmer (WUP), Lin (LIN), and Jiang-
Conrath (JCN) for word sense disambiguation on the English Al-Quran. The experiment was performed to
obtain the best overall similarity score. The empirical results demonstrate that the combination of the three
mentioned semantic similarity techniques obtained competitive results when compared with using
individual similarity measurements.
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1. Introduction

The Holy Quran is the central religious verbal text of Islam, and the right understanding
of the Quranic text is very necessary for Muslim people. It is the religious text of more than 1.5
billion Muslims around the world, who speak in different languages. It was consists of 114
‘surah’ (chapters), which have obvious textual boundaries. In general, the longer ‘surah’ appear
earlier in the Quran, while the shorter ones appear later. Each ‘surah’ comprises several ‘ayat’
or verses. Neither the number of verses in the ‘surah’ nor the word count of the verses is the
same. The Arabic Quranic corpus consists of 77,784 word tokens and 19,287 word types [14,
15, 16].

Although Muslims read the Arabic text of the Holy Quran, it can be helpful to have its
translation and well-formed interpretation in the mother tongue of every nation or in an
internationally studied language like English in order to create a better understanding of the
Quran. It was originally written in Arabic and therefore when it is translated into other languages
the closest meaning among various possible choices presents an innate challenge. When
translations are carried out, there is always a degree of human judgment whereby the translator
endeavours to select the best interpretation. Even though modern linguistics brings clarity and
understanding, there may still be a lingering doubt about whether the original meaning is being
conveyed. Disambiguation identifies words that have more than one meaning so there is no
ambiguity. Often this is clear from the context of the concepts being communicated. The
process of defining meaning is also relevant to computer-related writing, including internet
search engines. Writing can contain implied meaning, for example by the use of inference or
reciprocal pronouns, which are interpreted by the reader as part of coherent understanding. In
computational linguistics, word sense disambiguation (WSD) is a technique that resolves
ambiguity by analysing the context in which they are written. For example, the concepts
associated with the word ‘issue’ include ‘giving an item to a person’, ‘a particularly copy of a
publication’, or ‘a difficulty that needs overcoming’. The WSD concept is an integral and
complex part of natural language processing. The complexity has to be resolved by other
methods than human interpretation. The process must overcome ambiguity by identifying the
intended sense, including by algorithms that evaluate language. The style in which the verse of
the Quran are written poses a challenge for humanity to dispel any confusion and grasp the
intended meaning, as some words and phrases are ambiguous as the component words convey
various senses or are polysemous. Problems arise in word sense disambiguation in relation to
words that do not have a finite meaning and when the sense requires interpretation. To resolve
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the ambiguity a forced choice has to be made that establishes the closest fit of the meaning to
the word. There has been extensive research to find the best approach and method for word
sense disambiguation, carried out in various languages.

Quranic text Information Retrieval (IR) is quite demanding yet very trivial. As such,
users will not always use the exact keywords to retrieve the relevant Quranic text (verse). Many
have tried to overcome this problem by expanding or reformulating the query entered by users
by using semantic approaches and resources such as ontologies and thesauri. Word Sense
Disambiguation (WSD) has been less interesting to the IR research community due to its
insignificant or very little significant impact on the IR performance. Recently, researchers have
been interested in applying WSD to the IR problem, believing that an in-depth semantic analysis
of the query process will have a good impact on the IR performance. However, there have not
been any studies so far that mention the use of WSD for Quranic IR. As such, it is assumed that
very little or no research on WSD for Quranic IR has been carried out. Thus, this research is
motivated to create a WSD that somehow can be used to enhance any Quranic domain
application. This perceived gap motivated the direction of this research, which examines its
performance in this context. The concepts of similarity or relatedness are central to natural
language processing functions such as word sense disambiguation, machine-based translation,
analysis of discourse structure, classifying, summarising and annotating text, information
extraction and retrieval, automated indexing, and lexical [1]. There are a variety of methods
available to compute word similarity or relatedness. They can be grouped into two methods:.
The first involves groups or categories into which the concepts expressed by words take up a
natural position. The second concerns the position in which words occur in phrases and which
sequences are more likely to occur than others. According to Hirst and St-Onge, the approach
goes beyond simple edge-counting and takes into account a broader context within the full
vector of words and in relation to anomalies in language that can extend the number of links [3].
Methods by Random, Wu-Palmer, and Leacock—Chodorow tests of similarity, return character
strings, relative depth or paths [10,6], and density [2]. Interest in statistical and machine learning
approaches, as opposed to analytical methods, is increasing and it was suggested by Resnik,
Lin, and Jiang—Conrath to combine knowledge sources, such as a thesaurus, with basic corpus
statistics [9, 8, 5]. The existing approaches to Word sense disambiguation (WSD) are
categorized according to the primary source of knowledge employed within the procedure for
the differentiation of sense. The methods that have been acknowledged in dictionaries, thesauri
and lexical knowledge bases that do not incorporate any form of corpus proof are defined as
dictionary-based or knowledge-based methods. With regard to the type of evidence or
knowledge sources utilized, the existing algorithms relating to monolingual WSD are clustered
within two major groupings, namely knowledge-based approaches and machine learning-based
approaches, of which the former are further categorized into supervised, unsupervised and
semi-supervised approaches [13]. The supervised approaches utilize a sense tagged corpus,
the unsupervised approaches utilize an untagged corpus and the semi-supervised approaches
utilize a limited amount of tagged corpora but incorporate large quantities of untagged corpora.
The first algorithm that was developed in relation to semantic disambiguation was the Lesk
algorithm (1986). It was applied to all words and there was no restriction or preparation phase
carried out on the text before the algorithm was applied. The concept behind this algorithm was
to identify where different senses overlapped and thereby to understand which words were most
associated with disambiguation. This was carried out by first identifying the number of words
which each sense had in common. The pairs of words from each sense which had the highest
number of overlapping occurrences were then selected. A sense was then assigned to each
word pair. Ambiguous word pairs were manually interpreted by definitions from the Oxford
Advanced Learner’s Dictionary. It was observed that this algorithm was able to identify with 50—
70% precision the different senses, indicated by the word pairs [7].

Many other concepts of relatedness in WordNet introduced as apart from the is—a
relation [5]. It was intended to assess the connectivity between heterogeneous pairs of parts of
speech, for example, the relatedness between a noun and a verb. On this the strength of all
semantic relatedness measurements would rely. It was originally used to identify lexical chains,
which are a series of related words that maintain coherence in a written text. The algorithm was
evaluated using the Senseval-2 English lexical sample data. Each of the 4,328 instances
consists of a sentence with one target word to be disambiguated. Additional context comes from
one or two surrounding sentences
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An adapted Lesk algorithm was proposed [3]. The probably sense in a particular context
is identified from definitions of target and related words. The combination of senses in a text is
scored using a function, to identify the sense configuration with the highest score. The adapted
Lesk algorithm uses the WordNet hierarchy to expand the context of a target word by
considering hypernyms, hyponyms, holonyms, meronyms, troponyms, attribute relations, and
their associated definitions. When a comparison was made on 4,320 ambiguous instances in
the Senseval-2 English noun data set, the precision of the algorithm doubled to 32%.

In order to calculate the similarity between senses in WorldNet, researchers proposed
combining domain information and the Wu-Palmer similarity measure. The genetic word sense
disambiguation algorithm (GWSD) was first tested on two sets of domain terms. Almost all the
terms were successfully disambiguated. The next step was to develop a new fitness function
that disambiguates terms by weighting the frequency of usage using the weighted genetic word
sense disambiguation algorithm (WGWSD). It was tested on SemCor which was extracted from
the Brown Corpus and tagged semantically with WordNet senses. Based on nouns from 74
SemCor files, using the GWSD algorithm some researchers achieved 64.2% precision.
However, when the WGWSD algorithm was used on the same set, the best and worst precision
reported were 83.51% and 56.83% respectively, depend on the files used. The average
precision recorded by researchers was 71.98% [11].

2. Research Method

There are three traditional semantic relatedness sequential approaches applied in
computational linguistics, which can be used to measure and resolve problems associated with
word sense disambiguation. These are summarised in figure 1.

2.1 Pre-Processing Phase

The first is the Pre-Processing Phase, which is the most important process as it
prepares a summary of the text and analyses the structure. The level of efficiency at this stage
will affect accuracy in the later stages. This phase can be broken down into three sub-
processes, which are Tokenisation, Stop Word Removal, and Stemming.

e Tokenization:- it is based on white space and punctuation and divides the text into
sentences and words.

e Stop words removal:- in this step it examines the text from the perspective of words that
are redundant in the computational analysis. This includes prepositions (on, at, over),
questions (if, do, how), and auxiliary verbs (can, could, might).... Etc.

e Stemming:- the third step is Stemming, which applies the Porter approach by removing
suffixes and prefixes and reducing a word to its canonical form. The algorithm used
distinguishes consonants and vowels in this process.

The following example show pre-processing steps on Quranic verse (Ayah):

Quranic Ayah: 2. Praise be to Allah, the Cherisher and Sustainer of the worlds.
Tokenizaion result:
“2™ “"Praise""be*"to""Allah*”,*"the*"Cherisher*’and“"Sustainer*"of"the*"worlds""."

Stop Words Removal Result: “Praise™Allah™Cherisher™Sustainer™worlds”
Stemming Result:

“Praise™Allah™Cherish™Sustain”
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Figure 1. Framework of the Quranic WSD

2.2 Words Synonyms Matching Phase

In this phase, Synonyms and Word Matching are processes that involved. The WordNet
dictionary is used to establish all the possible meanings and to select the best similarity to
words used in the Quranic text. The algorithm is able to identify all the potential senses that
could involve the target word and the words that appear immediately before and after the target
word are from the window of context.

Table 1. Provides an example of the WordNet synonyms for Surat-al-Fatihah

Word Synonyms

Allah God, Lord, Sustainer, Master
Gracious Beneficent, Affectionate
Mereciful Dispenser of Grace
Judgement Recompense, Requital, religion
Way Road, Path, Route

2.3 Semantic Similarity Measuring Phase

In this phase, it which examines word strings or syntax, to score the possible meanings.
This phase is divided into identifying the relative depth of semantic similarity, and the
information content based methods. The scoring assesses the different meanings and senses of
a target word and relates it to the senses in the surrounding words. The depth relative method
used in our study considers a target word and the shortest path length between two sense
nodes or semantic distance. To quantify similarity, it also considers the depth of the edges and
connectivity to the structure of the ontology. An example of this is the Wu—Palmer Similarity
Measure. The Informational Content approach quantifies the amount of information that is
associated with each sense, and the values intermediate senses in the taxonomy range from 1
to 0. A leaf node word will score 1, as it cannot be further associated or disassociated within its
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context. However, at the root node level the sense can be have more than one linkage and has

the most abstract level of meaning and scores 0. The Lin- and Jiang—Conrath Similarity

Measures are example of this approach. The methods we have adopted are as follows:

1) WU Palmer (WUP): the Wu—Palmer test of senses (S1 and S2) to determine features
shared by the two sense nodes, considering the depths of sense nodes in the ontology [10]
and the longest common subsumer (LCS).

2 X Depth ((LCS(s1,5s2))
Depth(s1) + Depth (s2)

sim(sl,s2) =

(1)

2) Lin (LIN): Lin tests, based on the similarly of the informational content (IC) which is found in
the specific ancestor node and measures the closeness in concept [8].

2 x log P(LCS(Sy,S5))
log P(S;) +logP (S,)

)

simyin(S1,S,) =

3) Jiang Conrath (JCN): the Jiang—Conrath similarity test, which examines the juxta
positioning of semantic and informational content (IC), which can assess each edge to find
the maximum similarity and use statistical probability to overcome the unreliability of edge
distances [5].

Distance;cy(Sy,S,) = 1C(Sy) + 1C(S,) — 2 X IC(LCS(S;, S,))
=2 logP(lso(Sl,SZ)) — (log P(S;) +log P(S,))
sim JCN(s1,s2) = —

Distance

®3)

4) Combination Method: In the combination of similarity measures it takes the advantages
from the methods mentioned above in order to improve the quality of similarity result. The
similarity between two senses s1 and s2 will be computed according to the previous
egequations, thenilter the result by applying a very common statistical process which is
smoothing factor to give a weight for each method by applying the following Equation:

Simoverall(sl’ Sz) = }\1 X SirnWP + }\2 X SirnLin + }\3 X Sirnjcn (4)

Where 0 < 4 < 1. Moreover, A; + A, + 23 = 1.

The weight A is given to each method to improve the quality of similarity result. Where
Simwup(sl,s2) result of the wu palmer measure, simy (S;, S;)result of Lin similarity measure
and dist;cn (S5, S;) result of Jiang and Conrath measure.

3. Evaluation and Experimental Results

The purpose of word sense disambiguation in the context of this study is based on
target words that appear in data prepared from the Quranic texts. The first step is to retrieve
from WordNet those words which have ambiguous senses. Next, an algorithm is applied to the
selected word window which takes into account all the words preceding and all subsequent
words to the target word found in WordNet. Once the juxta positioned words are identified, they
are also assessed in relation to the potential sense they convey. The relatedness is measured
by comparison of the surrounding words to the semantic context of the target word. Finally, a
computation is made of the scores for the sense of the target word against the senses of the
surrounding words. The highest score is selected as it will indicate which is the most likely
candidate sense based on its relevance to the context. The empirical evaluation of the Quran is
based on the Budanitsky and Hirst model [1]. The approach considers spelling sensitivity in
relation to nearby words and the semantic relatedness of the different spellings. This follows on
from the Wu—Palmer, Lin, and Jiang—Conrath tests of similarity already described, and it takes
into account whether spelling anomalies are clearly related to existing semantic concepts. The
measurement in this system is based on a comparison of word pairs. The number of instances
the relationship is presumed to be accurate, is divided by the total number of instances. The
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verses are taken from the English translation and the results are shown in Table 2. The specific
relatedness based on each approach is defined in separate columns in the Table. From the
scores, the Combination of approaches (novel method) is ranked the highest because it
employes the advantages of all measurements, followed by the Wu Palmer, Lin, and Jiang—
Conrath approaches. And figure 2. Represents the correlation results between the proposed
methods result and combined method results.

Table 2. The comparison on the similarities measures on accuracy performance

Ayah Target Word Window of context Best suitable meaning WUP LIN JCN Combine
citation them
(2:268) poverty Evil, threatens, Poverty#1: the state of the

poverty, bids, conduct, state of lack of money and 75.0 71.4 66.6 88.8

unseemly, promiseth, material possessions
forgiveness, bounties,
careth, knoweth.
(108:2) prayer Lord, prayer, sacrifice. ~ Prayer#l: (significant or
urgent request) "an  47.8 45.8 44.0 83.3
entreaty to stop the
fighting”; "an appeal for
help"; "an appeal to the
public to keep calm”
(2:285) messenger Messenger, believeth, Messenger#l: a person

hath, revealed, lord, who carries a message 66.7 66.6 65.6 70.0
believed, angels,
books, messengers,
distinction,
messengers, obey,
seek, forgiveness,lord,
journeys.
(23:16) judgment Day, judgment, raised. Judgment#7: The mental
ability to understand and  76.9 77.5 66.3 80.1
discriminate between
relations)
100
. 80 )\
] —4—\WUP
g 60
£ LIN
2 40
3 A ) ==JCN
w
20 == Combined
0
0.120.230.340.440.560.650.710.820.91 1

Figure 2. The correlation results between the combined method result and semantic relatedness
measurements

4. Conclusion

The application of WSD in IR is has been risen due to the availability of Word Sense
information like WordNet. Our article on Word Sense Disambiguation uses three traditional of
semantic relatedness measurements and applied on English Quranic Translation as a DataSet
which based on Abdullah Yusuf Ali (YA) [12]. His translations cover a large number of readers
of the Quran in the English language. This article motivation to solve the problem of ambiguity
words in English Al Quran in order to help people who are not familiar with the Arabic language
to understand Allah’s guidance. This study achieves a better result in the novel method which is
a combination of these measurements and we can also make as a future work i) a combination

Bulletin of EEI Vol. 4, No. 3, September 2015: 241 — 247



Bulletin of EEI ISSN: 2089-3191 B 247

of these measurements with supervised or unsupervised word sense disambiguation methods,
or ii) make a combination with structural semantic interconnection (SSI) because SSI used to
create a structural specifications to the expected significances of the candidate senses for each
word in a context. SSI can also be used for different semantic disambiguation problems such as
disambiguate sentence in general texts, disambiguate words in glossary definitions and
automatic ontology population
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