
Bulletin of Electrical Engineering and Informatics

Vol. 12, No. 4, August 2023, pp. 2457~2463

ISSN: 2302-9285, DOI: 10.11591/eei.v12i4.4982  2457

Journal homepage: http://beei.org

Hash algorithm comparison through a PIC32 microcontroller

Asmae Zniti, Nabih El Ouazzani
Faculty of sciences and Technology (FST), University Sidi Mohamed Ben Abdellah, Laboratory of Signals Systems and Components,

(LSSC), Fez, Morocco

Article Info ABSTRACT

Article history:

Received Oct 10, 2022

Revised Jan 5, 2023

Accepted Jan 29, 2023

 This paper presents a comparative study involving SHA-3 final round

candidates along with recent versions of hash algorithms. The proposed

comparison between hash functions is performed with respect to cycles per

byte and memory space. Tests are also carried out on a PIC32-based

application taking into account several input cases, thus resulting in a set of

ranked algorithms in terms of their specified metrics. The outcome of this

work represents a considerable contribution in data protection and

information security in relation to various communication and transmission

systems, serving as a handy reference for developers to select an appropriate

hash algorithm for their particular use condition.

Keywords:

Cycles per byte

Hash functions

Memory size

PIC32

SHA-3 This is an open access article under the CC BY-SA license.

Corresponding Author:

Asmae Zniti

Signals Systems and Components Laboratory (LSSC)

Sidi Mohamed Ben Abdellah University

Faculty of sciences and Technology (FST), Route d’Imouzzer, Fez, Morocco

Email: znitiasmae@gmail.com

1. INTRODUCTION

Modern technology has made electronic devices smarter, more autonomous and better connected to

the external word thereby making information security and data integrity questions of the utmost importance.

In order to protect data from malicious attacks and to ensure information authenticity, various cryptographic

hash functions have been developed. A hash function converts binary sequences of arbitrary length, called

messages, into binary strings of a specific length [1], called message digests or hash values [2], [3]. Hash

functions are mainly used for the confirmation of data integrity [4] as well as for message authentication

codes (MAC) [5] or hash message authentication code (HMAC) [6]–[8].

Although, Message-Digest Algorithm 5 (MD5), Secure Hash Algorithm 1 (SHA-1) and Secure Hash

Algorithm 2 (SHA-2) [9]–[12] have long been the three most popular cryptographic hash functions,

significant recent advancements in cryptanalysis have triggered concerns over the level of security in the

future. As a result, the National Institute of Standards and Technology (NIST) announced an open

competition for the developement of Secure Hash Algorithm 3 (SHA-3) [13], a new cryptographic hash

function which could be an alternative in case the other functions are broken. In December 2010, the

competition was narrowed down to five finalists: Blake, Grøstl, JH, Keccak, and Skein. In October 2012, the

Keccak algorithm was selected as the SHA-3 winner [14], [15] while all five finalists continued to be used in

several applications [16], [17] based on their individual strengths [18].

Several investigations have been performed to compare the performance of these algorithms and

have provided insights. In [19], the author presents a performance evaluation of various hash functions on an

ATMEL AVR ATtiny45 8-bit microcontroller. The results suggest that Blake offers the best performance

among the SHA-3 finalists, followed by Grøstl, Keccak, Skein, and JH.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2457-2463

2458

Rajeev Sobti et al. present in [20], a comparison of the performace of three of the five finalists for

the SHA-3 hash function standard on the ARM Cortex M3 processor. In terms of the cycles per byte metric,

Grøstl turns out to outperform Blake and JH. With increasing input size, JH shows a significant drop in

cycles per byte value whereas Blake and Grøstl have only a slight change.

In [21], the performance of SHA-3 finalists are discussed in terms of execution time on a 64-bit Intel

Core processor where it is found that Skein and Blake perform better than the other candidates insofar as the

digest length and block size followed by Grøstl, Keccak, and JH in this order. Sobti and Geetha [22] discuss the

results of a performance evaluation of the same algorithms on the ARM Cortex A8 architecture. The evaluation

is acheived based on the cycles per byte metric, the results indicating that Blake, Keccak and Skein are the most

efficient algorithms, closely followed by Grøstl and JH. For shorter messages, Blake's performance is better

than Skein but as the message size increases, Skein starts improving to perform almost as well as Blake. For

longer messages, Skein is the most efficient algorithm and narrowly overtakes Keccak and Blake.

Similar comparisons are carried out on the ARM Cortex-M4 processor hignlight that Blake is the

best performer, followed by Keccak and Skein [23], Grøstl and JH occupying the lowest two positions. For

long messages, the results are similar to those of short messages, with Blake again performing the best,

followed by Keccak and Skein. A study of the previously mentioned algorithms based on ARM Cortex-A9

processor yields similar results [24]. Blake emerges as the clear victor, with a far superior rate of execution

compared to its counterparts whereas Grøstl lags behind the other contenders. There seems to be plenty of

conflicting information available as to which of the SHA-3 finalists is the overall best performing algorithm.

Some studies suggest that Blake is the best, while others propose the Skein algorithm; however, it is

important to keep in mind that the conclusions drawn in each of these studies are based on specific hardware

and software implementations as well as message sizes.

This paper provides a comprehensive and up-to-date comparison of hash algorithms by examining

the SHA-3 finalists as well as other newer versions such as Blake2 (2012), Shake (2015), Kangaroo Twelve

(2016) and Blake3 (2020) on a PIC32 microcontroller platform. The main metrics considered include the

number of cycles per byte required for a particular algorithm to fixed hash inputs, and the ROM capacity

needed to store the program of the cryptographic algorithm. The choice of a PIC32 is strongly motivated by

the fact that this microcontroller is integrated in several data transfer applications and sophisticated systems

such as automotive embedded networks.

The rest of the paper is organized as follows. Section 2 gives a brief introduction about SHA-3

algorithm contenders. The tools adopted to carry out the evaluation of the algorithms are presented in

section 3. Section 4 shows the experimental results and draws comparisons between different algorithms.

Finally, the conclusions of the work are given in section 5.

2. SHA-3 CONTENDERS

2.1. SHA-3 finalists

The SHA-3 finalists are listed and defined as:

a. Keccak: Keccak hash function is the winner of the SHA-3 competition. It is based on sponge construction

and consists of seven permutation functions of different bit lengths, used in XOR and rotation operations.

b. Blake: the Blake algorithm is an adaptation of the ChaCha stream that carries out transformations on 4

words involving XOR and a bit rotation with a fast implementation. A total of 10 to 14 rounds of

ChaCha functions are used according to the required size of the message digests [25].

c. Skein: Skein is based on the Threefish block cipher and is compressed by using mathematical

operations such as addition, XOR and rotation to create a MIX function. The Skein algorithm requires

72 or 80 rounds depending on the block size needed to run the algorithm.

d. Grøstl: the Grøstl algorithm was developed by a team of cryptographers from Technical University of

Denmark (DTU) and TU Graz. It extracts elements from the advanced encryption standard (AES)

cipher algorithm [26]. Since several optimizations on AES have been performed on software and

hardware over the years, its throughput is at a high level.

e. JH: the JH algorithm was created by Hongjun Wu. Inspired by the AES and Serpent cipher algorithms,

it consists of 42 rounds of execution.

2.2. New algorithms versions

The new versions are as follows:

a. Blake2: Blake2 is an improved version of Blake, created in fall 2012 after Keccak was declared as

SHA-3 [27]. It was initially engineered to leverage Blake’s high efficiency and security and then

adapted to modern applications prioritizing simplicity and usability. Blake2 has two main flavors,

Blake2b designed for 64-bit platforms and Blake2s for smaller architectures [28].

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hash algorithm comparison through a PIC32 microcontroller (Asmae Zniti)

2459

b. Shake: in August 2015, Shake was announced by NIST as part of the SHA-3 family. It has two

extendable Output Functions (XOFs), Shake-128 and Shake-256 [29].

c. Kangaroo Twelve: Kangaroo Twelve is a fast and secure arbitrary output-length hash function combining

many features in common with Shake-128 such as the sponge construction, the cryptographic primitive,

the eXtendable Output Function (XOF) and the 128-bit security strength. Kangaroo Twelve is based on a

reduced round version (12 rounds) of SHA-3 permutation function (Keccak [1600]), proposed by

Bertoni et al. [30] with the purpose of being faster than SHA-3 and Shake.

d. Blake3: released in 2020, this successor of Blake 2 was designed to run even faster [31]. Blake3

compression function is very close to that of Blake2s, its main difference being the number of rounds

reduced from 10 to 7.

3. IMPLEMENTATION DETAILS

3.1. Hardware platform

PIC32 is one of the most widely-used processors in embedded systems such as the automotive, and

is able to deliver high-performance computing and power efficiency at a reduced cost. The under-test

algorithms are run on the chipKIT Max32, a microcontroller board based on the Microchip

PIC32MX795F512 which functions at up to 80 MHz with a Flash memory of 512KB and a RAM of 128 KB

It can be programmed by means of the multi-platform integrated development environment (MPIDE).

3.2. Pro.cedure and metrics

The entire implementation process and evaluation follow the requirements listed as:

− Each candidate algorithm has at least four cryptographic hash functions, called “algorithm_Name”-X,

where the suffix X stands for the corresponding length of the output which can be 224,384,256 or 512 bits.

− The basic metrics considered for evaluation are the code size and the number of cycles per byte. The latter

refers to the necessary number of cycles required by a hash function divided by the number of input bytes.

This metric is chosen over execution speed as it does not change regardless of device frequency. The cycle

consumption is measured multiple times and then the average is calculated to record the readings.

− Performances are measured according to 5 different message lengths, ranging from a very small

(smaller than one block) to a large sequence, which are 30, 48, 78, 150 and 400 bytes.

4. RESULTS AND DISCUSSION

Along the same line as in section 3, algorithm performances are determined based on two primary

metrics: memory space and processing time for a variety of message sizes. The graph in Figure 1, illustrates

the code size expressed in bytes for candidates with a 256-bit hash size. Through this evaluation, it is obvious

that blake2s needs the least memory space, which is 16756 bytes, whereas Keccak uses the largest size,

reaching 56476 bytes. However, as the total capacity available within the platform substantially outsizes

those needed by various codes, this problem is less likely to be influential in this case.

Figure 1. Code size in bytes

Conversely, Figures 2-3 illustrate the cycles per byte for four distinct hash sizes (224, 265, 384 and

512-bit) with varying input lengths. Figure 2 reveals the cycles per byte for three shorter inputs (30, 46, and

78 bytes) while Figure 3 examines the cycles per byte for two extended ones (150 and 400 bytes). These

figures shed light on the performance of the hash functions for different input lengths, thereby providing a

comprehensive overview of the efficiency of the hash algorithms.

From Figures 2(a) and 2(b) where results of 224 bits and 256 bits, respectively, are shown, it should

be noted that Blake3 is the fastest for input sizes of 30- and 46-byte followed by Blake2s, Blake, Kangaroo

0
10000
20000
30000
40000
50000
60000

Blake2s Shake Blake Grøstl JH Kangaroo

Twelve

Skein Blake3 Keccak

C
o

d
e

S
iz

e
(b

y
te

)

SHA-3 candidates

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2457-2463

2460

Twelve, Skein512, JH, Keccak Shake-128 and Shake-256, then Groestl. However, for the 78-byte input size

the order remains the same except that Blake and Kangaroo Twelve are reversed. With regard to the 384-bit

and 512-bit hash sizes, hardware simulation results are presented in Figures 2(c) and 2(d), respectively. The

same order of algorithms is observed for input sizes 30, 46 bytes, with Blake3 at the top followed by

Kangaroo Twelve, Skein512, Blake2s, Blake JH Keccak Shake-128, Shake-256 then Groestl. The 78-byte

input size follows a similar trend except in Figure 2(c) where the order of Skein512 and Blake2s is reversed

whilst in Figure 2(d) both Skein512 and Blake2s are reversed while Keccak moved down two places.

Figure 2. Cycles per byte for input sizes of 30, 46 and 78 bytes (a) 224-bit hash size, (b) 256-bit hash size,

(c) 384-bit hash size, and (d) 512-bit hash size

(a)

(b)

(c)

(d)

14

140

1400

14000

30 46 78

cy
cl

es
 p

er
 b

y
te

s

Input size (bytes)

14

140

1400

14000

30 46 78

cy
cl

es
 p

er
 b

y
te

s

Input size (bytes)

14

140

1400

14000

30 46 78

cy
cl

es
 p

er
 b

y
te

s

Input size (bytes)

14

140

1400

14000

30 46 78

cy
cl

es
 p

er
 b

y
te

s

Input size (bytes)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hash algorithm comparison through a PIC32 microcontroller (Asmae Zniti)

2461

In addition, from the 224-bit and 256-bit hash size results illustrated in Figure 3(a) and Figure 3(b),

respectively, we notice that Blake3 is the fastest for input size of 150-byte, followed by Blake2s, Kangaroo

Twelve, Blake, Skein512, JH, Shake-128, Keccak, Shake-256 and then Groestl. A somewhat similar pattern

can be seen at the 400-byte input size except that the order of Blake and Skein512 is reversed in comparison

to the former case.

Figure 3(c) reveals that Blake3 is the most effective algorithm for both 150-byte and 400-byte

inputs, while when it comes to the input size of 150-byte, Kangaroo Twelve and Skein512 are close second

and third respectively. These are followed by Blake2s, Blake, JH Shake-128 and Keccak Shake-256, leaving

Groestl trailing behind at the bottom of the list. A similar hierarchy is observed for 400-byte inputs, with the

exception of Keccak that moves up one position towards the end of the order. This pattern remains the same

for 512-bit hash sizes as demonstrated in Figure 3(d) through both 150 and 400 byte inputs.

(a)

(b)

(c)

(d)

Figure 3. Cycles per byte for input sizes of 150 and 400 bytes (a) 224-bit hash size, (b) 256-bit hash size, (c)

384-bit hash size, and (d) 512-bit hash size

In terms of cycles per byte, it is obvious from Figures 2-3, that the Blake3 candidate has the highest

computing speed, beating the other algorithms in all situations. In contrast, Grøstl ranks the lowest in all

cases. In order to better illustrate the results, an alternative presentation can be adopted. First, a score is

assigned to every position obtained in the ranking, starting with 10 and ending with 1, as shown in Table 1.

Second, the overall rankings are summarized in Table 2 indicating that Blake3 is the winner, followed by

Kangaroo Twelve and Blake2s, while keccak, shake and Grøstl come in order with the lowest ratings.

14

140

1400

14000

150 400

cy
cl

es
 p

er

b
y
te

s

Input size (bytes)

14

140

1400

14000

150 400

cy
cl

es
 p

er

b
y
te

s

Input size (bytes)

14

140

1400

14000

150 400

cy
cl

es
 p

er

b
y
te

s

Input size (bytes)

14

140

1400

14000

150 400

cy
cl

es
 p

er

b
y
te

s

Input size (bytes)

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2457-2463

2462

Table 1. Ranking scores

Table 2. SHA-3 candidate ranking

5. CONCLUSION

Throughout this work, various SHA-3 algorithms have been subjected to a thorough comparative

analysis related to important parameters such as memory size and number of cycles per byte. In order to carry

out this investigation, a hardware implementation was set up on a PIC32, thereby running several diiferent

simulations. Several input sizes have been dealt with considering different output lengths in order to give a

more complete picture of the performance of each algorithm. As a result and according to the specified

metrics, Blake3 is at the top of the ranking. The second position based on the output size is occupied by

Kangaroo Twelve in the case of long outputs and Blake2s for short outputs, while Grøstl comes in last.

The current investigation is set up to provide designers and information security protocol

developpers with an efficient algorithm which aims to be implemented in various platforms. Knowing that

PIC32 microcontrollers are increasingly incorporated into such systems, the present contribution can be

useful, especially in the automotive industry.

REFERENCES
[1] J. Tchórzewski and A. Jakóbik, "Theoretical and Experimental Analysis of Cryptographic Hash Functions," Journal of

Telecommunications and Information Technology, vol. 1, no. 2019, pp. 125–133, Mar. 2019, doi: 10.26636/jtit.2019.128018.

[2] A. Kuznetsov, I. Oleshko, V. Tymchenko, K. Lisitsky, M. Rodinko, and A. Kolhatin, "Performance Analysis of Cryptographic
Hash Functions Suitable for Use in Blockchain," International Journal of Computer Network and Information Security, vol. 13,

no. 2, pp. 1–15, Apr. 2021, doi: 10.5815/ijcnis.2021.02.01.

[3] A. Mittelbach and M. Fischlin, "The Theory of Hash Functions and Random Oracles," in The Theory of Hash Functions and
Random Oracles: An Approach to Modern Cryptography, A. Mittelbach and M. Fischlin, Eds. Cham: Springer International

Publishing, 2021, pp. 1–788. doi: 10.1007/978-3-030-63287-8_1.

[4] M. A. AlAhmad, "Design of a New Cryptographic Hash Function – Titanium," Indonesian Journal of Electrical Engineering and
Computer Science, vol. 10, no. 2, p. 827, May 2018, doi: 10.11591/ijeecs.v10.i2.pp827-832.

[5] A. W. A. Qader, I. E. Salem, and H. R. Abdulshaheed, "A new algorithm for implementing message authentication and integrity

in software implementations," TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 18, no. 5, p. 2543,
Oct. 2020, doi: 10.12928/telkomnika.v18i5.15276.

[6] M. Harran, W. Farrelly, and K. Curran, "A method for verifying integrity and authenticating digital media," Applied Computing

and Informatics, vol. 14, no. 2, pp. 145–158, Jul. 2018, doi: 10.1016/j.aci.2017.05.006.
[7] P. Zhang, X. Zhang, and J. Yu, "A Parallel Hash Function with Variable Initial Values," Wireless Personal Communications, vol.

96, no. 2, pp. 2289–2303, Jun. 2017, doi: 10.1007/s11277-017-4298-9.

[8] V. Rao and P. K.V, "Light-weight hashing method for user authentication in Internet-of-Things," Ad Hoc Networks, vol. 89, pp.
97–106, Jun. 2019, doi: 10.1016/j.adhoc.2019.03.003.

[9] D. Rachmawati, J. T. Tarigan, and A. B. C. Ginting, "A comparative study of Message Digest 5(MD5) and SHA256 algorithm,"

Journal of Physics: Conference Series, vol. 978, p. 012116, Mar. 2018, doi: 10.1088/1742-6596/978/1/012116.
[10] R. L. Quilala and T. F. G. Quilala, "Improved MSHA-1 algorithm with mixing method," Bulletin of Electrical Engineering and

Informatics, vol. 10, no. 4, pp. 2144–2151, Aug. 2021, doi: 10.11591/eei.v10i4.2366.
[11] Rohit, S. Kamra, M. Sharma, and A. Leekha, "Secure Hashing Algorithms and Their Comparison," in 2019 6th International

Conference on Computing for Sustainable Global Development (INDIACom), Mar. 2019, pp. 788–792.

[12] B. U. I. Khan, R. F. Olanrewaju, M. A. Morshidi, R. N. Mir, M. L. B. M. Kiah, and A. M. Khan, "Evolution and analysis of
secured hash algorithm (SHA) family," Malaysian Journal of Computer Science, vol. 35, no. 3, pp. 179–200, Jul. 2022, doi:

10.22452/mjcs.vol35no3.1.

[13] S. Chang et al., "Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition," National Institute of Standards
and Technology, Nov. 2012, doi: 10.6028/nist.ir.7896.

[14] S. Ghoshal, P. Bandyopadhyay, S. Roy, and M. Baneree, "A Journey from MD5 to SHA-3," in Lecture Notes in Networks and

Systems, Springer Singapore, 2020, pp. 107–112, doi: 10.1007/978-981-15-1624-5_11.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Score 10 9 8 7 6 5 4 3 2 1

Candidate
Ranked Score

1 2 3 4 5 6 7 8 9 10

Blake3 20 0 0 0 0 0 0 0 0 0 200
Blake2S 0 10 2 8 0 0 0 0 0 0 162

Blake 0 0 4 4 12 0 0 0 0 0 132
Kangaroo twelve 0 10 6 4 0 0 0 0 0 0 166

Skein512 0 0 8 4 8 0 0 0 0 0 140

JH 0 0 0 0 0 20 0 0 0 0 100
Keccak 0 0 0 0 0 0 11 3 6 0 65

Shake-128 0 0 0 0 0 0 9 11 0 0 69

Shake-256 0 0 0 0 0 0 0 6 14 0 46
Grøstl 0 0 0 0 0 0 0 0 0 20 20

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hash algorithm comparison through a PIC32 microcontroller (Asmae Zniti)

2463

[15] P. P. Pittalia, "A Comparative Study of Hash Algorithms in Cryptography," International Journal of Computer Science and
Mobile Computing, vol. 8, no. 6, pp. 147–152, 2019.

[16] A. Zniti and N. E. Ouazzani, "Improvement of the Authentication on In-Vehicle Controller Area Networks," in Embedded

Systems and Artificial Intelligence, Springer Singapore, 2020, pp. 23–32, doi: 10.1007/978-981-15-0947-6_3.
[17] M. Harikrishnan and K. V. Lakshmy, "Secure Digital Service Payments using Zero Knowledge Proof in Distributed Network," in

2019 5th International Conference on Advanced Computing and Communication Systems (ICACCS), Mar. 2019, doi:

10.1109/icaccs.2019.8728462.
[18] A. J. Hłobaż, "Analysis of the possibility of using selected hash functions submitted for the SHA-3 competition in the SDEx

encryption method," International Journal of Electronics and Telecommunications, vol. 68, no. 1, Feb. 2022, doi: 10.24425-

ijet.2022.139848.
[19] J. Balasch et al., "Compact Implementation and Performance Evaluation of Hash Functions in ATtiny Devices," in Smart Card

Research and Advanced Applications, Springer Berlin Heidelberg, 2013, pp. 158–172, doi: 10.1007/978-3-642-37288-9_11.

[20] R. Sobti, G. Geetha, and S. Anand, "Performance Comparison of Grøestl, JH and BLAKE - SHA-3 Final Round Candidate
Algorithms on ARM Cortex M3 Processor," in 2012 International Conference on Computing Sciences, Phagwara, India, Sep.

2012, pp. 220–224, doi: 10.1109/iccs.2012.57.

[21] R. K. Dahal, J. Bhatta, and T. N. Dhamala, "Performance Analysis of Sha-2 and Sha-3 Finalists," International Journal on
Cryptography and Information Security, vol. 3, no. 3, pp. 1–10, Sep. 2013, doi: 10.5121/ijcis.2013.3301.

[22] R. Sobti and G. Geetha, "Performance Comparison of Keccak, Skein, Grøstl, Blake and JH: SHA-3 Final Round Candidate

Algorithms on ARM Cortex A8 Processor," International Journal of Security and Its Applications, vol. 9, no. 12, pp. 367–384,
Dec. 2015, doi: 10.14257/ijsia.2015.9.12.34.

[23] R. Sobti and G. Ganesan, "Performance Evaluation of SHA-3 Final Round Candidate Algorithms on ARM Cortex–M4

Processor," International Journal of Information Security and Privacy, vol. 12, no. 1, pp. 63–73, Jan. 2018, doi:
10.4018/ijisp.2018010106.

[24] A. Zniti and N. E. Ouazzani, "A comparative study of hash algorithms with the prospect of developing a CAN bus authentication

technique," International journal of electrical and computer engineering systems, vol. 13, no. 9, pp. 741–746, Dec. 2022, doi:
10.32985/ijeces.13.9.2.

[25] S. Barbero, E. Bellini, and R. H. Makarim, "Rotational analysis of ChaCha permutation," Advances in Mathematics of

Communications, vol. 0, no. 0, p. 0, 2021, doi: 10.3934/amc.2021057.
[26] A. Menezes and D. Stebila, "The Advanced Encryption Standard: 20 Years Later," IEEE Security and Privacy, vol. 19, no. 6, pp.

98–102, Nov. 2021, doi: 10.1109/msec.2021.3107078.

[27] H. E. Makhtoum and Y. Bentaleb, "Comparative Study of Keccak and Blake2 Hash Functions," in Networking, Intelligent
Systems and Security, Springer Singapore, 2021, pp. 343–350, doi: 10.1007/978-981-16-3637-0_24.

[28] M.-J. O. Saarinen and J.-P. Aumasson, "The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC)," Internet

Engineering Task Force, Request for Comments RFC 7693, Nov. 2015, doi: 10.17487/RFC7693.
[29] M. J. Dworkin, "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions," National Institute of Standards

and Technology, Jul. 2015, doi: 10.6028/nist.fips.202.

[30] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, R. V. Keer, and B. Viguier, "KangarooTwelve: fast hashing based on
Keccak-p," in Applied Cryptography and Network Security, Springer International Publishing, 2018, pp. 400–418, doi:

10.1007/978-3-319-93387-0_21.

[31] J. O’Connor, J.-P. Aumasson, S. Neves, and Z. W. O’Hearn, "BLAKE3: one function, fast everywhere," BLAKE3 team, Feb. 22,
2023.

BIOGRAPHIES OF AUTHORS

Asmae Zniti received a Bachelor's degree in Industrial Engineering, in 2015, and

a Master’s degree from Sidi Mohamed Ben Abdellah University, Faculty of Sciences and

Technology, Fez, Morocco (FST–Fez), in 2017. She is currently pursuing her PhD degree in

Automotive Electronics at the Laboratory of Signals, Systems and Components (LSSC), FST–

Fez. Her research interests include controller area network security, cryptographics and

authentication. She can be contacted at email: znitiasmae@gmail.com.

Nabih El Ouazzani received his Ph.D degree in microwave circuits, especially

microwave filters, from the University of Limoges-France at the Xlim institute in 1995. Since

then he has been a professor at the Faculty of Sciences and Technology–Fez, Morocco (FST–

Fez) and a member of the Laboratory of Signals, Systems and Components (LSSC). He carries

out several activities with respect to research and education. The disciplines relevant to his

expertise are high- frequency technology and telecommunication devices. He is also involved

in the research area of embedded systems, particularly in the automotive field with regard to

circuit protection and network security. He has co-organized many international conferences

related to the subjects of ICT and telecommunication in Morocco and has participated in

numerous scientific committees. He can be contacted at email:

nabih.elouazzani@usmba.ac.ma.

https://orcid.org/0000-0001-6819-1710
https://orcid.org/0000-0003-1677-4388

