
Bulletin of Electrical Engineering and Informatics 

Vol. 12, No. 4, August 2023, pp. 2302~2312 

ISSN: 2302-9285, DOI: 10.11591/eei.v12i4.4711      2302  

 

Journal homepage: http://beei.org 

Feature-based real-time distributed denial of service detection 

in SDN using machine learning and Spark 
 

  

Sama Salam Samaan, Hassan Awheed Jeiad 

Department of Computer Engineering, University of Technology, Baghdad, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 7, 2022 

Revised Nov 2, 2022 

Accepted Dec 5, 2022 

 

 Recently, software defined networking (SDN) has been deployed 

extensively in diverse practical domains, providing a new direction in 

network management by separating the control plane from the data plane. 

Nevertheless, SDN is vulnerable to distributed denial of service (DDoS) 

attacks resulting from its centralized controller. Several studies have been 

suggested to address the DDoS attacks in SDN utilizing machine learning 

approaches. However, these approaches are resource-intensive and cause 

performance degradation since they cannot perform effectively in large-scale 

SDN networks that generate vast traffic statistics. To handle all these 

challenges, we build a DDoS attack detection model in SDN using Spark as 

a big data tool to overcome the limitations of conventional data processing 

methods. Four machine learning algorithms are employed. The decision tree 

(DT) is elected to be used for real-time deployment based on the 

performance results, which indicates that it has the best accuracy of 0.936. 

The model performance is compared with state-of-the-art and shows an 

overall better performance. 
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1. INTRODUCTION 

With the rapid improvements in the IT infrastructure field, networks have become larger, leading to 

increased complexity. Consequently, fundamental network characteristics such as confidentiality, integrity, 

authentication, non-repudiation, and information availability become demanding. In recent years, many 

industries and researchers have shifted their interest to designing more scalable, robust, and secure networks. 

Software defined networking (SDN) is considered the latest advancement in networking as a step towards 

building a centralized and dynamic network as opposed to the distributed and static environment of 

conventional IP-based networks, which are complicated to manage.  

When there is a need to implement a new policy in a traditional network, the network operator 

should configure every device using vendor-specific commands. As a result, it becomes very demanding to 

implement the required policy in existing IP-based networks. Another side of the inflexibility of such 

networks is the vertical integration in which the control plane and the data plane are tightly coupled, adding 

more rigidness to the overall architecture and hampers the evolution of network infrastructure. Therefore, 

SDN is considered a suitable solution to the problems of the existing IP networks mentioned above. SDN is 

an evolving architecture that presents an aspiration for a competent network infrastructure for the following 

reasons. First, it ends the vertical integration of the traditional networks by separating the control plane that 

determines packet routes from the data plane that forwards these packets. Second, by this separation, the 

https://creativecommons.org/licenses/by-sa/4.0/
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control logic of the whole network is laid down in a logically centralized controller. Therefore, network 

switches turn into simple forwarding devices that simplify network management and add rapid 

implementation, flexibility, and programmability. 

Although the SDN architecture can enhance network security with a global overview of the entire 

network, a centralized controller, and the creation of forwarding rules in demand [1], SDN still has some 

challenges and concerns like scalability, supportability, and security. Among all these aspects, security has 

significant prominence. Because the centralized controller is responsible for network management, the 

controller failure would hinder the entire network. Therefore, the controller and the communication links 

between the controller and their assigned switches might be victims of complicated distributed denial of 

service (DDoS) attacks. Besides, [2] shows that in SDN, the DDoS attacks can be classified based on the 

targeted plane into data plane DDoS attacks, control plane DDoS attacks, and application plane DDoS 

attacks. 

Presently, there are two basic approaches to detecting DDoS attacks in SDN. The first approach sets 

a threshold for monitoring traffic indicators like maximum entropy, traffic rate, and packet delay. The 

network may encounter an attack if these indicators surpass a pre-defined threshold. This approach leads to 

excessive false-error rates due to the rigid threshold. The second approach depends on traffic flow features 

using machine learning algorithms to classify traffic into benign or attack. Although this approach is widely 

adopted since it performs better than the first one, it is considered highly resource-intensive because the 

amounts of traffic statistics in large-scale networks are huge. In these large-scale networks, for instance, data 

centers and cloud servers, conventional data processing systems pose some limitations when processing 

massive amounts of data [3]. For all these reasons, there is a need for scalable, reliable, and efficient big data 

solutions to process such amounts of data in real time with high accuracy and minimum prediction speed. 

The main contributions of this work are as follows.  

- Design a machine learning pipeline that represents a seamless workflow to combine a set of stages as a 

single entity. The pipeline design is achieved in the learning stage of the proposed model. 

- The analysis of variance (ANOVA) F-test technique is used for feature selection to reduce 

dimensionality, improve classification effectiveness, and lower computation time. 

- Evaluate the produced models in a streaming data environment by incorporating Spark Streaming. 

- The model with the highest accuracy is elected and deployed in the online DDoS detection in the SDN 

network. This step is accomplished in the deployment stage of the proposed model. 

Detection and classification mechanisms of traffic anomalies should be flexible and straightforward 

to detect the fast-growing types of anomalies. The design of such mechanisms is complicated since they need 

to have a precise and global view of the entire network, the capability to detect new types of attacks, and the 

necessity to classify these attacks accurately. da Silva et al. [4] proposed anomaly detection and machine 

learning traffic classification for software-defined networking (ATLANTIC), a framework to detect, classify, 

and mitigate DDoS attacks jointly. The suggested framework consists of two phases. The first phase, which 

is the lightweight phase, computes the entropy deviations of flow tables. The second phase, which is the 

heavyweight phase, deployed support vector machine (SVM) to classify traffic into normal and abnormal. 

Although the centralized controller in SDN represents its primary benefit, sometimes it becomes a 

vital security threat. When an intruder succeeds in attacking the controller, he will gain access to the whole 

network. Therefore, it is crucial to detect attacks on the SDN controller ahead of time. Meti et al. [5] 

suggested two classifiers utilizing SVM and neural network to detect doubtfully and likely damaging in the 

SDN controller connections. 

The cooperation between the cloud and SDN can facilitate the difficulties in a traditional cloud 

platform, such as the particular isolation of the cloud user and network flow control. While in an SDN-based 

cloud, the centralized SDN controller is vulnerable to DDoS attacks, disabling the whole network.  

Chen et al. [6] suggested an improved DDoS detection method named extreme gradient boosting (XGBoost) 

that is based on the conventional gradient boosting decision tree (GBDT) algorithm. This method attempts to 

differentiate the benign flow from the attack flow utilizing the greedy GBDT that analyses the traffic flow 

features. 

In traditional machine learning, essential input features are designed manually, and the system 

automatically learns how to map these features to an output. While in deep learning, there are various levels 

of features that are discovered automatically and are composed together at different levels to generate 

outputs. Tang et al. [7] suggested a deep learning intrusion detection system in SDN. They built a deep 

neural network consisting of an input layer with three neurons, three hidden layers with 12, 6, and 3 neurons, 

respectively, and an output layer with two neurons. They used 6 out of 41 features of the NSL-KDD dataset 

for training the model. The acquired accuracy was 75.75%. 

Stacked autoencoder (SAE) is a deep learning approach consisting of stacked sparse autoencoders 

and soft-max classifiers for unsupervised learning and classification. Niyaz et al. [8] suggested a deep 

learning approach based on a SAE to detect DDoS attacks in SDN networks. The SAE resulted in an 
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accuracy equal to 95.65%. Despite the high accuracy, the two-stage process of the SAE unveils exceptional 

complexity that drains SDN network resources. 

Nowadays, SDN is widely used in diverse practical domains, providing a new way to manage 

networks by separating the control plane from its data plane. Nevertheless, it becomes vulnerable to DDoS 

attacks because of its centralized control. Research by Dinh and Park [3], utilized big data tools in building a 

framework to overcome conventional limitations in data processing and detect DDoS attacks in a large-scale 

SDN network. The suggested framework consists of three sequential stages; data ingestion, data 

preprocessing, and machine learning model training and deployment. Apache Kafka, Spark streaming, Spark 

core, hadoop distributed file system (HDFS), and Spark machine learning library (MLlib), are the big data 

tools used in the proposed framework. 

 

 

2. THEORETICAL CONCEPTS 

Before diving deeply into the proposed SDN real-time DDoS detection model, it is essential to 

describe the theoretical fundamentals related to the proposed work. This section briefly introduces the 

concepts and techniques applied in this work. It includes the Spark MLlib, machine learning pipeline, the 

dataset used, and the ANOVA F-test technique for feature selection.  

 

2.1.  Machine learning with spark 

Recently, various types of structured and unstructured data are likely generated by humans and 

machines of huge sizes. As a result, solving machine learning problems using traditional techniques face a 

big challenge. Here comes the need for a distributed machine learning framework to handle these problems 

efficiently. Developed on top of Spark, MLlib is a library that provides preprocessing, model training, and 

making predictions at scale on data [9]. Various machine learning tasks can be performed using MLlib like 

classification, regression, clustering, deep learning, and dimensionality reduction. MLlib integrates 

seamlessly with other Spark components like Spark Streaming, Spark SQL, and DataFrames [10]. In Spark, a 

DataFrame is accumulated data arranged into named columns distributed across multiple nodes. 

 

2.2.  Machine learning pipelines 

The concept of pipelines facilitates the creation, tuning, and examination of machine learning 

workflows. It consists of stages chained together to automate a machine learning workflow [11]. Each stage 

is either an estimator or a transformer. An estimator is an abstraction of an algorithm fitted on a DataFrame to 

create a transformer; e.g., a learning algorithm is an estimator which trains on a DataFrame and develops a 

fitted model. A transformer is an algorithm that transforms one DataFrame into another by deleting, adding, 

or updating existing features in the DataFrame. For example, a machine learning model is a transformer that 

transforms a DataFrame with features into a DataFrame with predictions appended as columns. Pipeline 

stages are run consecutively, and the input DataFrame is converted as it goes across each stage. The pipeline 

design is elaborated in section 4.  

 

2.3.  Dataset description  

For training purposes, a dataset [12] is used that has been created by executing a transmission 

control protocol (TCP-SYN) flood attack. In this attack, the targeted machine is flooded with bogus SYN 

requests by deceived IP addresses. Since these addresses are deceived, the machine will never have 

additional replies for its SYN/ACK packets. As a result, the corresponding port is kept needlessly open. 

When the number of bogus SYN requests becomes significant, all the ports of the targeted machine are 

blocked, and it becomes unable to communicate with authorized users [13]. 

This dataset consists of 28 feature columns and 1,536,950 records. Traffic flow information is 

carried in each record, such as source and destination IP addresses, TCP port numbers, and TCP window 

size. Numeric features are the majority in this dataset. In addition, there are nominal features. The class 

column contains two values; DDoS and benign. 

 

2.4.  Feature selection 

It is familiar to have hundreds or even thousands of features in today’s datasets. More features might 

give more information about each record. However, these additional features might introduce complexity 

without offering valuable information [14]. The biggest challenge in machine learning is building robust 

predictive models using a minimum set of features. The concept of feature selection is to eliminate the 

number of input features when building a predictive model to enhance the overall performance. It aims to 

mitigate problems such as the curse of dimensionality and computational cost. 
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Nevertheless, given the sizes of massive datasets, it isn’t easy to figure out which feature is 

important and which isn’t. This work uses the ANOVA F-test, which stands for ANOVA. It determines 

whether the means from three or more data instances come from identical distribution. F-test, also known as 

F-statistics, is a statistical test that determines the ratio between the explained and unexplained variance using 

a statistical test like ANOVA. The ANOVA method used in this context is a class of F-statistics known as the 

ANOVA F-test. Above all, ANOVA is deployed in classification tasks when the input features are numerical 

and the target feature is categorical [15], which is the case of the employed dataset in this work. The results 

of the F-test are used in feature selection. 

 

 

3. THE PROPOSED MODEL FOR THE FEATURE-BASED REAL-TIME DDOS DETECTION 

IN SDN 

This section presents the proposed model for DDoS detection in SDN using Spark. The main 

contribution of this paper is located in the SDN application plane. In this model, shown in Figure 1, two 

stages are introduced; learning and deployment. Each stage is explained in the subsections. 
 

 

 
 

Figure 1. The proposed SDN real-time DDoS detection model using Spark 
 

 

3.1.  Learning stage 

This stage (illustrated in Figure 2) highlights the essential contribution of this work. In this stage, a 

machine learning pipeline is designed as a powerful method to automate complicated machine learning 

workflows. Before explaining the pipeline design, the nominal typed features are dropped from the dataset 

since the vector assembler, the second stage in the presented pipeline, accepts only numeric, Boolean, and 

vector types [15]. The dropped features are the frame number, eth src, eth dst, eth type, ip id, ip flags, ip src, 

ip dst, tcp flags, and tcp payload. In addition, duplicated records are removed since they might be a reason 

for non-random sampling and could bias the fitted model [16]. The number of removed records equals 

109,565. As a result, the number of records becomes 1,427,385.  

Afterwards, the resulting DataFrame is randomly divided into 70% for training and 30% for testing. 

Two subsets are constructed. The first subset (training DataFrame) is used to train the model. The second 
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subset (testing DataFrame) is used for model evaluation to realize how the model performs on unseen data. 

The training DataFrame consists of 999,120 records, and the testing DataFrame consists of 428,265 records.  

Part (a) of Figure 2 illustrates the machine learning pipeline design consisting of six stages. The first 

five stages are data preprocessing stages. The third stage is the feature selector, in which the ANOVA F-test 

method is used. After removing the nominal features and applying the feature selection, the number of the 

remaining features is five features. The scaled features obtained from the fourth stage and the label column 

resulting from the string indexer stage are used in the machine learning model building in the final stage. The 

training DataFrame is used in fitting the pipeline to produce the fitted model, while the testing DataFrame 

transforms the fitted model and makes the predictions. 
 

 

 
 

Figure 2. The learning stage 
 

 

The pipeline consists of the following components: 

- Imputer: handling missing values is an essential step since several machine learning algorithms do not 

allow such values [17]. The imputer is an estimator used to complete the missing values by mean, 

median, or mode of numerical columns. In this case, the mean is used, which is calculated from the 

remaining values in the related column. The pseudocodes for feature mean computation and imputation 

process are listed.  

 
Step 1-Pseudocode for feature mean computation 

 

For i = 1 to total_no_of_features 

For j = 1 to total_no_of_instances 

feature_sumi = ∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑗
𝑡𝑜𝑡𝑎𝑙_𝑛𝑜_𝑜𝑓_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
𝑗  

 EndFor 

feature_meani = 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑢𝑚𝑖

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡𝑖
 

EndFor 

 

Step 2-Pseudocode for feature imputation  

 

For i = 1 to total_no_of_features 

For j = 1 to total_no_of_instances 

 IF feature _valueij = null || none || nan || ‘ ’  

   feature _valueij = feature _meani 
  EndIF 

 EndFor 

EndFor 
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- Vector assembler: Spark machine learning works differently from other systems. It operates on a single 

column rather than an array of different columns. The raw features are combined into a single vector to 

select the features in the next stage. The vector assembler is a transformer that combines multiple 

columns into a single vector column. Figure 3 shows the result of this stage for the first five records. The 

vector length equals 17, which refers to the number of the remaining features after removing the nominal 

features.  
 
 

 
 

Figure 3. The vector resulted from the vector assembler stage for the first five records 
 
 

- Feature selection: this work employed the ANOVA F-test as a feature selection technique to remove 

features independent of the target. As a result, the following features are removed: 
 

ip hdr_len, ip ttl, ip proto, tcp seq, tcp nxtseq, tcp ack, tcp hdr_len, frame len,  

tcp window_size_value, tcp window_size, bytes_in_flight, and push_bytes_sent.  
 

And the remaining features are ip len, tcp src port, tcp dst port, tcp len, and tcp stream. Figure 4 shows 

the result of this stage for the first five records. 
 

 

 
 

Figure 4. The vector resulted from the feature selection stage for the first five records 
 

 

- Standard scaler: values of some features might range from small to vast numbers. This stage transforms a 

vector row by normalizing each feature with zero mean. While it is an optional stage, it helps in reducing 

the convergence time. Figure 5 shows the result of this stage for the first five records. The pseudocode for 

feature standard deviation computation and standard scaler computation are listed below. 
 

 

 
 

Figure 5. The vector resulted from the standard scaler stage for the first five records 
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Step 1-Pseudocode for feature standard deviation computation 

 

For i = 1 to total_no_of_features 

For j = 1 to total_no_of_instances 

feature_stddevi =  √
1

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡𝑖
∑ (𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑗 − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑒𝑎𝑛𝑖)2𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑐𝑜𝑢𝑛𝑡𝑖

𝑖=1
 

EndFor 

EndFor 

 

Step 2-Pseudocode for feature standard scaler computation  

 

For i = 1 to total_no_of_features 

For j = 1 to total_no_of_instances 

feature _standardizationij = 
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙𝑢𝑒𝑗  − 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑒𝑎𝑛𝑖 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑡𝑑𝑑𝑒𝑣𝑖
 

 ENDFor 

EndFor 

 

- String Indexer: in this stage, the class feature is mapped from string labels to a column of label indices 

(zero or one). As a result, benign is indexed as 0, and DDoS is indexed as 1. 

- Machine learning model building: this is the final stage of the pipeline in which the machine learning 

models are built using the outcomes from the previous stages. Four machine learning algorithms available 

in Spark MLlib are utilized: decision tree (DT), random forest (RF), logistic regression (LR), and gradient 

boosted trees (GBT). The deployed machine learning algorithms with their tuned parameters are 

presented as follows:  

a. Decision tree 

The DT is a supervised learning algorithm that handles continuous and discrete data. Data in DT is 

split continuously according to a specific parameter. It is used to represent decisions and decision-making 

explicitly [18]. As the name suggests, DT is a tree-based model characterized by its simplicity in 

understanding decisions and the ability to select the most preferential features [19]. In addition, it can classify 

data without vast calculations [20]. 

b. Random forest 

The RF comes under the supervised learning algorithms used in classification problems. It depends 

on ensemble learning that unites multiple classifiers to solve complicated problems and enhance the model 

performance. One of RF’s strengths is its efficiency in handling massive training datasets [21]. 

c. Logistic regression 

The LR is a predictive analysis, supervised learning algorithm for classifying categorical variables. 

It is built on the concept of probability. In LR, the output is transformed using the logistic sigmoid function 

to return a probability value.  

d. Gradient boosted trees 

Gradient boosting is a machine learning algorithm used in classification and regression. It produces 

a prediction model in the shape of an ensemble of weak prediction models, predominantly decision trees [22]. 

Hyperparameters are configurations that specify the main structure of the model and influence the training 

process, namely model architecture and regularization. The hyperparameters of all the above models are set 

according to Table 1. After all the stages are prepared, they are placed in the pipeline. Using the training 

DataFrame, the pipeline is fitted to produce the machine learning models to be evaluated and used in the 

deployment stage to make predictions. This is illustrated in part (b) of Figure 2. 

 

3.2.  Deployment stage 

The deployment stage consists of the messaging system, Spark streaming, and the machine learning 

model. The messaging system is in charge of transmitting traffic statistics from the SDN controller to Spark 

streaming to perform the required analysis. The chosen messaging system should be scalable, fault-tolerant, 

elastic, and can transfer high volumes of data in real time with low latency. Apache Kafka has all these 

capabilities [23]. In addition, it can be integrated conveniently with the OpenDayLight (ODL) since this 

controller has a northbound plugin that allows real-time event streaming into Kafka [24], [25]. The ODL 

controller publishes traffic flow data as messages on Kafka using a common topic. Next, Spark streaming 

subscribes to that topic and gets the message streams from Kafka. 

Spark streaming represents the analytics point that performs data cleaning and preprocessing to 

generate the required information for the machine learning model [26]. The machine learning models built in 

the learning stage are evaluated in terms of accuracy and speed. Based on the evaluation results, the machine 

learning model with the best performance is used in the deployment stage to predict the traffic type  
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(benign or DDoS). These predictions are utilized in security decisions to lower the required time to detect 

security threats. The deployment stage implementation is currently beyond the scope of this work. 

 

 

Table 1. The hyperparameter tuning for the machine learning algorithms 
Model Parameter Explanation Value 

DT maxDepth The maximum tree depth, the default equals 5 10 

impurity The required criterion for the selection of information gain (gini or entropy) gini 
LR maxIter max number of iterations 150 

family Can be multinomial or binary binary 

standardization Whether to standardize the training features before fitting the model TRUE 
elasticNetParam A floating-point value from 0 to 1. This parameter specifies the mix of L1 and L2 

regularization according to elastic net regularization 

0.8 

RF numTrees The total number of trees to train 200 
maxDepth Maximum depth of the tree, must be in range [0, 30] 8 

maxBins Max number of bins for discretizing continuous features, must be >=2 32 

GBT maxIter Total number of iterations over the data before stopping 10 

 

 

4. MACHINE LEARNING MODELS EVALUATION AND TESTING 

This section evaluates and tests the machine learning models built in the learning stage. The pipeline 

implementation, evaluation, and testing are done on a laptop with CPU Intel Core (TM) i7 and installed 

memory (RAM) of 16 GB. The software tools are Apache Spark 3.3.0 and Python 3.10. The amount of 

memory needed for the driver process is configured to 15 GB to prevent out of memory errors. 

 

4.1.  Machine learning models evaluation 

In this subsection, the accuracy of each machine learning model is computed. The model with the 

highest performance will be applied in the deployment stage. Accuracy is calculated according to the 

following (1) [27]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (1) 

 

True positives, also known as sensitivity, are results where the model predicts the positive classes correctly. 

True negatives, also known as specificity, are results where the model predicts the negative classes correctly.  

Besides accuracy, precision, recall, and F1-score metrics are computed because accuracy alone is 

inadequate to evaluate the performance of the models. The precision ratio outlines the model performance in 

predicting the positive classes. It is calculated as (2): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (2) 

 

  False positives are results where the model mispredicts the positive classes. The recall ratio is 

computed as (3): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3) 

 

False negatives are results where the model mispredicts the negative classes. F1-score is computed 

according to the following (4): 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Figure 6 shows the overall statistics for the machine learning models built in the learning stage. DT 

and GBT models have comparable metrics. They exhibit the best accuracy, F1-score, recall, and precision 

among the other candidates. As part of the evaluation process, we measure the training time when employing 

the machine learning pipeline in the learning stage. This is illustrated in Figure 7. 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2302-2312 

2310 

 
 

Figure 6. Accuracy, F1, recall, and precision for the four machine learning algorithms 

 

 

 
 

Figure 7. Training time in seconds using machine learning pipeline 

 

 

4.2.  The prototype testing 

To test the machine learning models produced from the learning stage, there is a need to replicate 

the online data streaming. Therefore, a prototype is implemented in which the testing DataFrame is 

repartitioned into 100 different files; each file has approximately 4,282 records. Spark streaming accepts data 

from various sources (e.g., file source, Flume, and Kafka) and processes it in real time. Figure 8 illustrates 

the streaming process from the file directory as a data source for Spark streaming. In the implemented 

prototype, Spark Streaming listens to the file directory where the testing files are stored. Since the DT model 

has the best accuracy, it is used to make predictions. 

 

 

 
 

Figure 8. File source for streaming data to the machine learning model 
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Figure 9 shows a sample snapshot of the streaming, including the actual label, the probability, and 

the model prediction. As seen in the first row, the vector in the probability column is [1, 0]. The first value in 

the vector is the probability of class 0 (benign), and the second value is the probability of class 1 (DDoS). 

The model chooses the largest probability and designates the streamed data to the class with that probability. 

In the case of the first row, the model selects the larger probability, i.e., 1, and designates the streamed data to 

class 0 (benign), and it is correct compared with the actual label. In the second row, the model chooses the 

largest probability, i.e., 0.5384760349268171, and designates the streamed data to class 1 (DDoS), which is a 

false prediction compared with the actual label. 

 

 

 
 

Figure 9. Sample output of the label, probability, and prediction on the unseen data 

 

 

5. CONCLUSION 

This paper presented the architecture for a feature-based, real-time DDoS detection model for SDN 

using Spark. The proposed model consists of two stages; learning and deployment. A pipeline is designed to 

streamline and automate the machine learning processes in the learning phase. Four machine learning models 

are built using the Spark machine learning library; decision tree, random forest, logistic regression, and GBT. 

These models are evaluated in four terms of evaluation metrics; accuracy, precision, recall, and f1-score. In 

addition, the training time of each model is measured. Results show that the decision tree and the GBT 

models have the best accuracy with 0.9362 and 0.9366, and training time equals 54 sec and 72 sec, 

respectively, when using the machine learning pipeline. Spark streaming is incorporated to stream the data to 

the elected machine learning model to replicate the online network traffic flow of data. In future work, the 

second stage of the proposed model, i.e., deployment, is intended to be implemented to utilize the valuable 

information acquired from the learning stage in diverse network security and management aspects. 
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