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 The paper describes pulse width modulation (PWM) technique and Kalman 

filter (KF) process to improve performance of direct torque controlled 

permanent magnet synchronous motor (DTC-PMSM) drive. Performance of 

DTC methods are strongly affected by high stator current ripple. For 

lowering the ripple, high switching frequency space vector PWM and KF are 

utilized in the paper. Mathematical model of PMSM and calculations of 

important quantities of DTC applied to PMSM drive are presented in the 

first part. The second part shows computation process of space vector PWM 

and KF. Performance indices are utilized to evaluate the drive structures. 

Theorectical assumptions are validated via simulations with Gaussian noised 

stator current measurement. 
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1. INTRODUCTION 

Industrial applications required high mechanical accuracy such as computer-numerical-control 

machines, robotics, electric vehicles utilizing permanent magnet synchronous motors (PMSMs) because of 

their high power, low moment of inertia, high start-up torque [1]. Similarly to induction motor drive (IMD), 

field-oriented-control (FOC) and direct torque control (DTC) strategies [2], [3] are used in high-performance 

torque and flux controls of PMSM drive [4], [5]. The DTC has a simpler structure than FOC, therefore its 

simulation and real implementation are easier than FOC. This strategy also gives high robustness and fast 

response of torque [1], [5]. 

Conventional DTC methods bring high torque and current ripples because they utilize look-up tables 

for desired voltages to control the flux and torque [3], [5]. Besides that, they make switching frequency of 

power converters not constant, even though it was fixed. Integrating pulse-width modulation (PWM) into 

DTC makes switching frequency constant, and provides improved performance of the torque and the current 

[6]-[17]. Popular PWM methods are sinusoidal PWM (SPWM) [6]-[8] and space vector PWM (SVPWM) 

[8]-[10], [12]-[14]. The SVPWM offers a better dc-link utilization of 15% compared to the SPWM [7]. 

In PMSM drive, measurement stator current errors affect performance of DTC strategies [18]. 

kalman filter (KF) and its variations have many applications listed in [19]. KF were employed to observe 
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speed and load [20], estimate currents and their time derivatives [21], [22], identify flux and inductances 

variation [23], estimate parameter combinations [24]. Forgetting factor was employed to compute noise 

covariance in dual adaptive KF algorithms [20]. Time derivatives of stator current were provided by KF in 

model reference adaptive system-based sensorless IMD [21]. Stator currents were estimated by extended KF 

(EKF) in sensorless PMSM drive [22]. Least squares method was utilized together with EKF to obtain 

PMSM parameters [23]. Two KF strategies were employed to estimate online any identifiable electrical 

parameter combinations [24]. Future observations and error minimization of variables were estimated by 

EKF for controller design [25]. In the paper, estimations and identifications are omitted, instead of that KF is 

employed to provide approximation of stator currents distorted by Gaussian measurement noises.  

 

 

2. MATHEMATICAL MODEL OF DTC-PMSM DRIVE 

Figure 1 shows control structure of DTC PMSM drive with PWM and KF. In (1)-(4) describe 

mathematical model of PMSM in [, ] coordinate system: 
 

𝑢𝑠𝛼 =
𝑑𝜓𝑠𝛼

𝑑𝑡
+ 𝑖𝑠𝛼𝑅𝑠 (1) 

 

𝑢𝑠𝛽 =
𝑑𝜓𝑠𝛽

𝑑𝑡
+ 𝑖𝑠𝛽𝑅𝑠 (2) 

 

𝜓𝑠𝛼 = 𝐿𝑠𝑖𝑠𝛼 + 𝜓𝑀 𝑐𝑜𝑠 𝜃𝑟 (3) 
 

𝜓𝑠𝛽 = 𝐿𝑠𝑖𝑠𝛽 +𝜓𝑀 𝑠𝑖𝑛 𝜃𝑟 (4) 
 

Where us, us are stator voltage vector components; s, s are stator flux vector components; is, is are 

stator current vector components; r is rotor position; Rs is stator resistance; Ls is stator inductance; M is 

magnetic flux of the PM. In (5) calculates motor torque Te from stator flux and stator current components, 

and mechanical relation of motor torque, load torque TL, and mechanical speed m is expressed by (6): 
 

𝑇𝑒 = 1.5𝑝(𝑖𝑠𝛽𝜓𝑠𝛼 − 𝑖𝑠𝛼𝜓𝑠𝛽) (5) 
 
𝑑𝜔𝑚

𝑑𝑡
=

(𝑇𝑒−𝑇𝐿)

𝐽𝑚
 (6) 

 

Where p is number of pole pairs, and Jm is motor inertia.  
 

 

 
 

Figure 1. Control structure of DTC PMSM drive with PWM and KF 
 
 

Signal computation block estimates stator flux components, stator flux vector magnitude, orienting 

angle , motor torque utilizing reconstructed stator voltages and Kalman filtered stator currents, according to 

(7)-(11): 
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𝜓̂𝑠𝛼 = ∫(𝑢𝑠𝛼 − 𝑅𝑠𝑖̂𝑠𝛼)𝑑𝑡 (7) 

 

𝜓̂𝑠𝛽 = ∫(𝑢𝑠𝛽 − 𝑅𝑠𝑖𝑠̂𝛽)𝑑𝑡 (8) 

 

𝜓̂𝑠 = √𝜓̂𝑠𝛼
2 + 𝜓̂𝑠𝛽

2  (9) 

 

𝛾 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜓̂𝑠𝛽

𝜓̂𝑠
) (10) 

 

𝑇̂𝑒 = 1.5𝑝(𝜓̂𝑠𝛼𝑖̂𝑠𝛽 − 𝜓̂𝑠𝛽𝑖̂𝑠𝛼) (11) 

 

Where symbol ^ denotes estimated quantities. KF block smooths stator current components distorted by 

Gaussian measurement noises [19]. Next section describes the SVPWM and the KF. 

 

 

3. COMPUTATION PROCESS OF SPACE VECTOR PWM AND KF 

In order to obtain the average value of space vector with desired us, us components, PWM 

techniques are utilized to provide switch-on and switch-off durations of power electronic devices of the 

inverter. For the SVPWM technique, in one switching period ts, durations ta, tb, t0 that are respectively time 

intervals of using vectors Ua, Ub, U0 (V0 or V7) in Figure 2(a), are computed by (12)-(16): 

 

𝑈
∗
= √(𝑢𝑠𝛼

∗ )2 + (𝑢𝑠𝛽
∗ )2 (12) 

 

𝛼 = 𝑡𝑎𝑛−1 (
𝑢𝑠𝛽
∗

𝑢𝑠𝛼
∗ ) (13) 

 

𝑡𝑎 = 𝑡𝑠 {𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 (
𝑠𝑘𝜋

3
) − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 (

𝑠𝑘𝜋

3
)}

√3𝑈
∗

𝑈𝑑𝑐
 (14) 

 

𝑡𝑏 = 𝑡𝑠 {− 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 [
(𝑠𝑘−1)𝜋

3
] + 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 [

(𝑠𝑘−1)𝜋

3
]}

√3𝑈
∗

𝑈𝑑𝑐
 (15) 

 

𝑡0 = 𝑡𝑠 − 𝑡𝑎 − 𝑡𝑏 (16) 

 

Where sk is sector (1 to 6). Figure 2(b) shows that SVPWM utilizes better DC link voltage Udc than SPWM, 

so the SVPWM is implemented in this paper. Switching combination in Table 1 is employed to reduce loss 

due to change state of power electronic devices. 

 

 

  
(a) (b) 

 

Figure 2. SVPWM method [7] (a) phase vector & reference trajectory and (b) comparison with SPWM 

method on maximum linear control voltage  
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Table 1. Switching combination of SVPWM [7] 
Sector 1 2 3 4 5 6 

Upper switches 
(S1, S3, S5)  

 

Lower switches 
(S4, S6, S2) 

S1=ta+tb+t0/2 
S3=tb+t0/2 

S5=t0/2 

S4=t0/2 
S6=ta+t0/2 

S2=ta+tb+t0/2 

S1=ta+t0/2 
S3=ta+tb+t0/2 

S5=t0/2 

S4=tb+t0/2 
S6=t0/2 

S2=ta+tb+t0/2 

S1=t0/2 
S3=ta+tb+t0/2 

S5=tb+t0/2 

S4=ta+tb+t0/2 
S6=t0/2 

S2=ta +t0/2 

S1=t0/2 
S3=ta+t0/2 

S5=ta+tb+t0/2 

S4=ta+tb+t0/2 
S6=tb+t0/2 

S2=t0/2 

S1=tb+t0/2 
S3=t0/2 

S5=ta+tb+t0/2 

S4=ta+t0/2 
S6=ta+tb+t0/2 

S2=t0/2 

S1=ta+tb+t0/2 
S3=t0/2 

S5=ta+t0/2 

S4=t0/2 
S6=ta+tb+t0/2 

S2=tb+t0/2 

 

 

The KF block brings estimate of stator current is, is components according to (17)-(24): 
 

𝑥𝑘 = Fx𝑘−1 (17) 
 

𝑦𝑘 = Hx𝑘 + 𝑣𝑘 (18) 
 

𝑥̃𝑘 = Fx̂𝑘−1 (19) 
 

𝑃̃𝑘 = FP̂𝑘−1𝐹
𝑇 (20) 

 

𝑧̃𝑘 = 𝑦𝑘 − Hx̃𝑘 (21) 

 

𝐾𝑘 = 𝑃̃𝑘𝐻
𝑇(HP̃𝑘𝐻

𝑇 + 𝑅)
−1

 (22) 

 

𝑥̂𝑘 = 𝑥̃𝑘 + 𝐾𝑘𝑧̃𝑘 (23) 

 

𝑃̂𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃̃𝑘 (24) 

 

Where: x=[is  is]T: state vector; F, H: state transition matrix, measurement matrix; v: zero-mean Gaussian 

measurement noise vector with covariance R=2I; symbol~denotes predicted vectors.  

 

 

4. RESULT AND DISCUSSION  

Parameters of PMSM are listed in Table 2. Results are implemented in MATLAB/Simulink 

environment at m,ref=150 rpm, load torque jump= 0.5TN (see Figure 3), values of covariance 2={0.252, 0.52, 

1.02, 2.02, 4.02} (see Figures 4-5). Frequency converter has DC-link voltage of 372 Vdc, and switching 

frequency of 20 kHz. Performance of the proposed control structure and its conventional version without KF 

is evaluated by indices including ripples in forward operation (durations 0.2 s-0.3 s and 0.4 s-0.5 s) and 

reverse operation (durations 0.7 s-0.8 s and 0.9 s-1.0 s), the integral of the absolute value of speed error 

(IAE), the integral of time multiplied by the absolute value of speed error (ITAE) [26]-[28]: 
 

1

0

( )IAE e t dt=   (25) 

 

1

0

( )ITAE t e t dt=   (26) 

 

Figures 4-5 show motor speeds in different cases of noise covariance 2. It is easy to see that the 

larger parameter 2, the higher ripple of motor speeds for both control structures. Table 3 indicates that the 

structure with KF brings reduction of 34%-81%, 53%-75% in motor speed ripple for forward and reverse 

operations respectively compared with the structure without KF, and the larger parameter 2 is, the more 

ripple tends to decrease. The ripples are only computed at the times when maximum value of absolute of 

speed error happens. Table 4 respectively show non-time-related and time-related performance indices IAE 

and ITAE. The structure with KF reduces 0.04%-64%, 0.06%-63% IAE, ITAE values than the structure 

without KF. Above evaluations show that the proposed structure owns much lower performance indices than 

the structure without KF. Reason for this is that filtered stator currents leads not only to smoother stator 

current responses, but also smaller ripples of stator fluxes and motor torque (see Figures 6-8). With large 

values 2.02, 4.02 of 2, ripples of stator currents, stator fluxes and motor torque tend to increase, and it 

requires other approaches to lower the ripples, IAE, and ITAE. 
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Table 2. PMSM parameters [4] 
Symbol Quantity Value 

nN nominal speed 3000 rpm at f=200 Hz 
TN nominal torque 7.73 Nm 
PN nominal power 2.29 kW 
Jm motor inertia 0.00151 kgm2 

UIrms induced line-to-line voltage 263 V at 3000 rpm 
ISN nominal stator current 5.6 A 
M magnetic flux of the PM 0.1706 Wb 
P number of pole pairs 4 
Rs stator resistance 0.65  
Ls stator inductance 7.7 mH 

 

 

  
(a) (b) 

 

Figure 3. Reference (a) motor speed and (b) load torque 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 4. Motor speeds at (a) 2=0.252, (b) 2=0.52, (c) 2=1.02, and (d) 2=2.02 

 

 

 
 

Figure 5. Motor speeds at 2=4.02 
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Table 3. Motor speed ripple [rpm] 

2 

Forward 

operation 
Reverse operation 

Without 

KF 
With 

KF 
Without 

KF 
With KF 

0.252 0.43 0.28 0.52 0.24 
0.52 1.50 0.39 1.48 0.47 
1.02 6.03 1.26 6.01 1.45 
2.02 22.75 5.03 21.46 6.13 
4.02 90.35 16.97 94.55 27.61 

 

Table 4. IAE and ITAE performance indices 

2 

Forward 

operation 
Reverse operation 

Without 

KF 
With 

KF 
Without 

KF 
With 

KF 
0.252 5.425 5.423 2.568 2.567 
0.52 5.585 5.449 2.655 2.582 
1.02 6.343 5.595 3.057 2.662 
2.02 10.055 6.308 4.926 3.070 
4.02 27.792 9.739 13.579 4.953 

 

 

 

  

 
Figure 6. Stator currents is at (a) 2=1.02 and (b) 2=2.02  

 

 

  
 

Figure 7. Stator fluxes s at (a) 2= 1.02 and (b) 2=2.02 

 

 

  
 

Figure 8. Torques at (a) 2=1.02 and (b) 2=2.02 

 

 

5. CONCLUSION  

The drive structure utilizing Kalman filtration and SVPWM of DTC PMSM drive was presented in 

the paper. Simulation results were carried out at a low reference speed, half of nominal torque, and large 

values of measurement noise covariance. The proposed structure dedicated significantly smaller performance 

indices including ripples, IAE and ITAE than the conventional drive structure without KF, especially at large 

covariances. It also provides smoother responses of stator current, stator flux, and motor torque compared to 

the structure without KF. Adaptive KFs can be employed to receive high-performance filtering. The proposed 

structure can be utilized in sensor or sensorless speed-control systems of PMSM drive using intelligent 

control, adaptive control or robust control. 
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