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1. INTRODUCTION

According to the International Agency for Research on Cancer (IARC), the statistics in 2020 say that
hepatic cancer is the sixth most commonly occurring and second death-causing cancer worldwide [[1]. Liver
cancer can be detected with the help of imaging modalities like ultrasound, computed tomography, and mag-
netic resonance imaging. Among these, computed tomography (CT) is the most used modality for visualization.
It gives cross-sectional pictures of the abdomen. To detect and diagnose hepatic cancer, doctors need to per-
form further processing by contouring the liver and its tumors from the whole CT image. Manual liver tumor
segmentation is time-consuming because in a CT scan the liver stretches over 170 slices and is error-prone due
to inter-observer variabilities, low contrast ambiguities of the modality, and especially differences in shape, lo-
cation, and the number of tumors present. So, a robust automatic segmentation assists the radiologists in better
diagnosis and treatment planning. Early methods are based on image processing tools like edge detection filters
and statistical modeling. Later comes the machine learning methods which use handcrafted features to perform
the segmentation.
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Nowadays, the state-of-art methods for automatic liver and liver tumor segmentation are based on
deep learning. Since these methods can read and evaluate data-specific features on their own there is no hassle
of extracting features manually from medical images. The majority of deep learning methods used for seg-
mentation in computer vision and medical imaging fields are convolution neural networks (CNNs) following
the encoder-decoder style of architecture. The CNNs are responsible for better feature extraction and one can
easily change the number of layers to make the network dense [2] for better performance and segmentation.
The first discussion was about Seg-Net which got wide recognition. The Seg-Net [3] encoding block contains
a convolutional layer followed by a max pool layer and the filter size is increased as the network goes deeper
to extract the high-level features like organs within the CT image. Only the primary encoding layers capture
the low-level information like edges which are important for accurate delineation of the targeted organ. Con-
sidering the deep learning-based medical image segmentation methods, U-Net [4] is the major leap where skip
connections are added between the encoder and decoder at each level to pass the information that helps to
improve the training quality as well as the segmentation accuracy. The encoder captures the contextual infor-
mation and the decoder is an expansion path that performs localization to each pixel obtained. Both are almost
symmetric obtaining a U shape architecture. From then, U-Net became a baseline architecture for almost every
medical image segmentation neural network.

V-Net [S] and 3D U-Net [6] were designed by converting normal convolutions of U-Net into 3D
convolutions to perform segmentation on volumetric medical images. U-Net++ [7]] proposed changes in skip
connections to reduce the gap between the feature maps of the encoder and decoder. Simple extensions of
U-Net include res-UNet [8] and dense-UNet [9] where residual connections and dense layers are introduced
accordingly in the encoder-decoder blocks. Residual connections solve vanishing gradients problem and the
dense networks make the present layer to reuse the features of previous layers to achieve ease in training and
efficiency [10]. UNet3+ [11] proposed full-scale skip connections with deep supervision. It has the advantage
of combining low-level features with high-level semantics learned from feature maps obtained from different
scales. The rest of the paper is organised as follows: section 2 contains the review of different papers on liver
and tumor segmentation along with their limitations, section 3 discuss the architectural details of the proposed
method, section 4 shows the pre settings to be done to make the data and network ready for training and
testing along with the experimental results, and section 5 contains the conclusion by discussing the scope of
improvement.

2. RELATED WORKS

In this section, we have briefly reviewed the deep learning architectures developed for liver tumor
segmentation. We have focused more on liver tumors than the liver because of their increased complexity.
According to Christ et al. [12] combined two U-Nets in a cascaded fashion to segment liver and liver tumors
respectively. But this method used 3D conditional random field as a post processing step to refine the seg-
mentation result. According to Chlebus et al. [13] proposed the same cascaded architecture with different
object-based postprocessing step. According to Li et al. [[14] combined U-Net and dense U-Net that extracts
more contextual information through intra-slice features with less computational cost. Budak et al. [15] pro-
posed two encoder decoder convolutional neural networks (EDCNN). The first network segments the liver and
the second one segments the tumors. With liver as region of interest (ROI). Segmentation done from liver im-
ages drastically reduce the false positives. Research by Jin et al. [16] proposed 3D hybrid attention mechanism
called RA-UNet to segment liver and tumors. There are many other papers based on medical image segmen-
tation which can be seen in well written review papers [17], [18]. Some more observations on liver tumor
segmentation are listed in Table [I]to have a quick review. Besides the improvements made by the liver tumor
segmentation family of networks, there are two common drawbacks observed; i) difficult in segmenting small
and even minute liver tumors because of its variations in shape, size, position and ii) to achieve liver tumor
segmentation, liver segmentation is a prerequisite.

Most of the segmentation networks are U-Net variant and these fail in segmenting small liver tumors
because they are designed to have more focus on high-level structures. As going deeper in the network the
encoder downsamples the input image at every stage and the receptive field increases along with the number
of filters and thus forces the network to have more focus on high-level features. Moreover, only the initial
layers of the encoder collect the low-level features making the network prone to difficultly in segmenting small
structures. For example, consider a 4-layer U-Net based network with 64, 128, 256, and 1,024. We can observe
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that only first layer is extracting the low-level features (small structures, edges) and the remaining layers focus
on high-level features. So, the percentage of filters capturing low-level features is m = 6.67%

which is very much less than the filters (93.33%) learning the high-level structures.

Table 1. Overview of liver and its tumor segmentation methods

Authors ~ Year Title Dataset Architecture Observations
[19] 2020 Deep learning and level set ap- LiTS and IRCAD  Cascaded U-Net Used level set approach
proach for liver and tumor segmen- FCN to refine the results and
tation from CT scans used liver segmentation as
a preliminary
[13] 2018 Automatic liver tumor segmenta-  LiTS Cascaded U-Net postprocessing step is used
tion in CT with fully convolutional FCN to refine results and detects
neural networks and object-based bigger lession better than
post processing the smaller ones
[20] 2019 Liver tumor segmentation in CT  LiTS Dense connected  Used liver segmentation as
volumes using an adversarial network with  a preliminary
densely connected network multi scale resid-
ual connections
[21] 2019 A joint deep learning approach for  LiTS U-Net variant Segmentation of tumors is
automated liver and tumor segmen- done in single step but still
tation have misclassifications in
small tumors
[14] 2017 H-DenseUNet: hybrid densely con-  LiTS and IRCAD  H-Dense UNet Segmented liver tumor
nected UNet for liver and tumor 2D-Dense UNet from 2D and 3D slices but
segmentation from CT volumes 3D-Dense UNet suffer from high computa-
tional cost
[22] 2017 3D liver tumor segmentation in CT ~ 3Dircadbl Kernelized fuzzy  Undersegmentation  and
images using improved fuzzy C- C-means with  oversegmentation  prob-
means and graph cuts spatial con- lems
straints
[23] 2020 Liver tumor segmentation in CT  3Dircadbl SegNet archi-  Have false positives
scans using modified SegNet tecture with
pretrained VGG-
16 as encoder
[24] 2020 Improving CT image tumor seg- IRCAD CNN with deep  Slight computation burden
mentation through deep supervision supervision and  but achieved good accu-
and attentional gates attention gates racy
[25] 2018 Liver lesion segmentation informed  3Dircadbl U-Net variant Prone to misclassification
by joint liver segmentation
[26] 2017 Automatic liver segmentation using 1000 annotated =~ CNN with multi  Performed well in liver
an adversarial image-to-image net-  CT volumes level supervision segmentation

work

The difficulty also lies in the properties of tumors. They are shape variant, and size varies from
minute to big, can be present at any place of the liver, and finally they can be multiple. All these properties
make segmenting liver tumor-like searching a needle-in-a-haystack. Addressing the second difficulty, all the
developed networks segmented the liver very well because it is a large structure and comes under the category
of high-level features. But, to segment the liver tumor firstly the liver is to be segmented and then using those
predictions the liver ROI is extracted from whole CT images. Then, the extracted liver regions along with the
tumor masks are fed again to the same or different network to perform tumor segmentation. This procedure
includes two times training and preprocessing which takes computational cost and time.

Training a single network that directly segments the tumors by learning the specific features of tumors
from the whole CT images is much needed to solve the small segmentation as well as the two-stage segmenta-
tion problems. Considering the above points we have proposed a curriculum learning-based overcomplete U-
shaped network (CLU-Net) to perform liver tumor segmentation that segments the tumors directly (i.e. without
liver ROI) and achieves an improvement in accuracy with a good learning paradigm and architectural structure.
Our contributions are pointed as follows.

— Proposed a CLU-Net, where the network learns to efficiently segment the liver tumors by refining its
learning progressively from easy samples to complex ones.
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— The network used for training is combination of overcomplete and undercomplete branches and the
architecture is U-Net variant (i.e encoder-decoder framework).

— The learning strategy is robust where we have divided the tumor masks into three categories based on
size and number: big and single tumors, small and few tumors, and finally minute multiple tumors.

— The liver tumors are directly segmented without the need of liver regions.

3. METHOD

The detection and treatment of liver disorders using CT images is an essential task for segmenting the
liver and its tumours. The segmentation of the liver and associated tumor is difficult due to the uneven presence,
fuzzy borders, various densities, forms, and sizes of lesions. The proposed work consists of a neural network
with a fusion of overcomplete and undercomplete branches and curriculum learning that send the inputs based
on the degree of difficulty.In this section, we have discussed overcomplete and undercomplete representations,
curriculum learning strategy and explained how these incorporations improved the overall performance of the
proposed network.

3.1. Overcomplete and undercomplete representations

An overcomplete representation is first described in [27] in signal processing for creating dictionar-
ies on the basis of more representations than the input signals. These representations show high robustness
in reconstructing the signals with noise. This quality made them to be used in autoencoders [28] and recur-
rent neural networks [29]. Denoising autoencoders using this representation obtained better feature detection
quality. Coming to the undercomplete representation, traditional encoder-decoder networks are called as under-
complete networks because the receptive field increases due to the downsampling that takes place in encoder.
This increase in receptive field cause the network to concentrate more on high-level representations and make
them to have less or no focus on small structures. To understand in detail, lets us consider an example. Let M
be a medical image and FM1 and FM2 are the two feature maps extracted from two convolutional blocks and
k is the filter size and the pooling coefficient and stride is set to the value 2 for both the networks. In an under-
complete network, the size of the receptive field is directly dependent on the variables of maxpooling layer i.e.
pooling coefficient and stride. So, the receptive field size in second conv block is 2xkx2xk and 4xkx4xk for
block 3 and this continues till the last block of the encoder. We can generalize this into a formula for receptive
field (RF) size in conv block ’b’ as (1).

RE, = 220-1) » | x k (1)

Similarly, in an overcomplete network, the receptive field size depends upon an upsampling layer which works
opposite to the maxpooling layer. Then the recptive field for conv 2 is 1 x k x 1 x k and for conv 3 it is

2 2
i X k X % x k and this can be generalized to block b’ as (2).

RF, = (1))=Y xkxk (2)

But in our architecture, we have made the receptive size neutral or the same in both the branches
by considering filter size to 3x3, stride, and pooling value to 1 and is depicted in Figure |l where Figure 1(a)
denotes the receptive field increasing by each level whereas Figure 1(b) shows that the receptive field is common
for all the levels. From the discussion one can conclude that the overcomplete networks are good at extracting
small structures i.e., it is efficient in capturing low-level features whereas the under complete networks are
good at extracting large structures i.e. efficient in capturing high-level features. Each representation has an
advantage of its own. So, we have combined these two networks into a single U-Net variant network.

3.2. Curriculum learning

Deep learning networks are state-of-the-art methods today in every field. The research improvements
aremainly focusing on building deeper networks, adding residual and dense connections and new attention
mechanisms that help to improve the overall performance of the network. But, less approaches on the way of
training, all the networks are trained on random inputs. Since the neural networks are inspired by the human
brain, it is quite achievable to inspire the way they learn. Every human brain learns a topic starting from
easy tasks to complex tasks which is called a curriculum followed by all the school system and organizations.
This method helps learning in a better, easy and accurate way. This same method is implied to the neural
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networks first by [30]. Replacing the conventional training strategy gradient descent random batch sampling
with the easy-to-hard sampling is called as curriculum learning. The intuition behind this strategy is that
learning becomes more fruitful if the inputs are organized in the order of complexities and fed to the network.
The benefits of this learning strategy includes; i) speed in convergence, ii) better accuracy, and iii) even small
networks can obtain decent performance. The thumb rule to implement curriculum learning is the data must
contain a range of incrementally easy to difficult examples. We believe a range of difficulty exists within the
liver tumor segmentation tasks. It is because liver tumors progress over time and it will appear at different
places within the liver, shapes and even sizes. So, we have divided our input data into three levels and followed
a curriculum learning training schema to train the designed segmentation network. The samples from three
levels of data are shown in Figure[2]

— Stage 1: easy images (collected images that contain single and large tumors).

— Stage 2: easy images+hard images (collected images that contain maximum two tumors of variable
sizes).

— Stage 3: easy images+hard images+very hard images (collected images that contain minimum three
tumors of variable sizes).

== 2D Conv + Max Pooling === 2D Conv + Upsampling

(a) (b)

Figure 1. The amount of field of view considered by the networks based on their respective receptive fields (a)
receptive field simulation in undercomplete network and (b) receptive field simulation in overcomplete
network

o ...
o . . .
o . - .

Figure 2. Example images for each difficulty level
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3.3. Architecture

The curriculum learning based neural network (CLU-Net) is depicted in Figure [3] This architecture
contains two branches: an overcomplete branch and an undercomplete branch. Overcomplete branch consists
of Conv2D followed by a upsampling layer and ReLU. Undercomplete branch is similar to the encoder of U-
Net. It contains Conv2D followed by maxpooling layer and ReLu. The decoder of the overcomplete network
is the encoder of the undercomplete network and viceversa. The features maps from each block is fused (i.e.
added) in the feature fusion block and sent as input to the two branches. The skip connections follow the same
U-Net strategy that is the encoder and decoder share the information to have better predictions. At the final
layer, the outputs from the two branches are concatenated and sent to 1x1 Conv2D output layer to generate
the predictions. The overcomplete branches are good at segmenting small structures and the undercomplete
branches are good at segmenting large structures. Combining the two structures yield a good performance. The
learning paradigm used here is stage-wise learning where the network trains slowly from images in the order
of complexity. At every stage, previous levels are added to avoid catastrophic forgetting [31].

Prediction

Feature Fusion Block

|
T Hp M%ﬂ#

P
Overcomplete N
Branch, Undercomplete Branch D 1X1 Conv2D

Figure 3. The CLU-Net architecture

4. RESULT AND DISCUSSION

The network architecture is based on the original UNET [4]. But due to architectural changes in the
encoder and decoder branches. The network was designed from scartch and all the steps followed are explained
in detail.

Dataset statistics: the 3Dircadbl [32]], a public dataset is selected. It contains the data of 20 patients
with 75% of tumors. The reason behind the selection of this dataset is the number of tumors it has and the
challenging complexities in terms of tumor contrasts, multiple tumors within a patient and size of some tumors
which are not even visible to the naked eye. Each image is of size 512x512 with the slice range between
74 to 260. The inter-slice thickness lies within 1.25 mm to 4 mm. The medical images are raw images and
should be prepared before giving input to the network. This step is known as data preprocessing. Generally, the
preprocessing includes a series of substeps and these are dependent on the task the network is going to perform.
So, the preprocessing steps followed in this paper are:

— Every organ present in the CT image has a set of grayscale pixels known as HU range. We can enhance
the contrast or highlight our target organ by tuning the image into our desired window range. This process
is called as HU windowing. Since our target is liver we have selected the window range (-100, 400) as
suggested by [33]. The effect of windowing on the raw CT slice is shown in Figure 4, where Figure
4(a) contains the original CT slice where liver is not visible and Figure 4(b) contains the same slice after
windowing and it is clearly evident that after windowing the liver is more visible.

— Even after windowing, the medical image has to be normalized and equalized to enhance the contrast of
the liver and its tumor. It is because they both share almost same contrasts in this dataset. So to improve
the visual clarity all the CT images are normalized and contrast limited adaptive histogram equalization
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(CLAHE) method [34] is applied. This method enhances the local contrast and amplifies the noise.

— Every CT image has a corresponding liver mask but the tumor masks are distributed over different folders.
So for ease in computation, all the tumor folders of a single patient are combined and then merged with
the corresponding liver mask. The liver and the tumors are designated with grey and white color notations
respectively. In Figure 5(a) contains the preprocessed CT images with more clarity than the original CT
images and 5(b) contains their corresponding masks. The final preprocessed input images and its masks
are shown for reference.

— All the images and corresponding masks are checked to remove the images that don’t contain liver to
make the network more close to the target.

Figure 4. HU windowing of range (100,400) is applied to make the liver more visible (a) an example of a raw
CT slice before windowing and (b) the same slice after windowing effect

(b)

Figure 5. After the preprocessing steps the appearance of two sample images along with their respective
masks or ground truths (a) the prerocessed medical images and (b) their corresponding masks

Network parameters: binary cross entropy (BCE) is used as a loss function and DICE and volumetric
overlap error (VOE) are the evaluation metrics to verify the network. The notations along with definitions are
as follows. BCE: it compares the predicted probabilities with the original ones and caluclates the penality score
based on the distance to be achieved to reach the output value as (3):

BCE = 4 52, yidog(p(y)) + (1 = yi)-log(1 — p(y)) 3)
Where P is the total number of pixels, y; is the prediction for pixel i and p(y;) is the probability of predicted
pixel in either foreground or background. DICE coefficient: it is the most popular technique used to measure
the overlap between the automatic and actual predictions. Its value lies within [0,1]. It is measured as (4):

VOE: it is the error metric calculated between the intersection and union of the two prediction sets. It is
measured as (5):

VOE(S,G) = 1 — 7prtoirn ®)
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Where ’S’ is the segmented image, G’ is the ground-tuth image, TP’ means true positives that denotes the
pixels that are foreground and are also classified as foreground, ’FN’ means false negatives that incorrectly
denotes the foreground pixels as background by the classifier, and "FP’ means false positives that incorrectly
denotes the background pixels as foreground by the classifier.

The complete work is done on i7 computer with 16 GB RAM and NVIDIA TITAN X, 12 GB with
Keras and Tensorflow backend. During training, many tuning experiments were done and the final network
parameters used are. Adam is used as a optimizer with learning rate 0.0001 and the number of epochs is 75
with batch size 8 where for every 25 epochs the input images changes its stage to increase the difficulty and the
« and [ values are set to 0.5 and 0.8 respectively.

Training and testing: the total number of CT images in the set are 2,823 and from them the images
without liver and tumor are discared and lastly the medical data with tumor (2,083 images) are saved sequen-
tially along with their corresponding masks. The training and test set is divided into 2,000 and 83 images
respectively. Again, the training data is splitted into training and validation sets in 80:20 ratio. Due to less
training data available, a real time data augmentation technique with rotation 90 and tranpose methods are
applied at each epoch to increase the amount of data and even the generalizability of the proposed model. No
augmentation is applied on the test set. The curriculum learning categorization is done only on the training data
before augmentation.

4.1. Results

The proposed CLU-network efficiently segments the liver tumor. First, the accuracy is increased
by following curriculum learning strategy which increases the learning capacity of the network without the
increase in network complexity. This input schema feeds the network with the images in the order of thier
complexity: from easy to hard. Second, the network effectively reduced the small tumor segmentation problem
by using overcomplete representation which has low receptive field and allows the network to concentrate more
on minute details. Third, the network performs the segmentation of tumor directly from the CT images unlike
the other networks which followed two methods to segment the tumor. The experimentation is done on U-Net
[4], U-Net++ [7], CU-Net [35] a cascaded UNet, MRDU-Net [36] residual dilated encoder decoder network
which segments the image by considering the inputs at different scales and our proposed network with random
sampling and curriculum sampling. Both the compared architectures also segmented the tumor directly without
the help of liver ROIs. The score chart is shown in Table[2]and some of the predictions are shown in Figure 6,
where Figure 6(a) shows the ground-truths and Figure 6(b) contains the corresponding predictions done by the
proposed network. It is evident from the figure that the predictions of the liver are predicted perfectly and the
tumor predictions have some over-segmentation and under-segmentation errors.

Table 2. Comparision result of CLU-Net on liver tumor segmentation

Method DICE (%) VOE (%)
U-Net 60.41 37.23
U-Net++ 62.28 27.24
CU-Net 64.73 26.14
MRDU-Net 65.34 26.73
CL-Net 66.78 24.38
CL-Net with curriculum 74.58 19.28

(a) (b)

Figure 6. The sample outputs of the proposed network are shown consider column-wise (a) the original
ground-truths and (b) the corresponding segmentation results
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5. CONCLUSION

To perform liver tumor segmentation directly from the CT images, we have presented a curriculum
learning-based U-Net with two branches: overcomplete and undercomplete. The overcomplete branch refines
the small structures and the undercomplete branch refines the large structures. These branch structures allow
the network to accurately learn the various sizes of tumors and produce a good segmentation result. The
learning schema of the proposed network is curriculum learning-based where the input images are divided into
categories based on their complexity and fed to the network category-wise. The difficulty level is decided by
manual examination of tumor masks by considering their size shape and quantity. This stage-wise learning
introduces complexity to the network without additional computational cost. The network learned in this way
rather than random sampling yields a better accuracy over the other as shown in the result section. In the future
to improve the generalizability, we will implement the network along with the schema to a multimodality
dataset and perform multi-organ segmentation. The input categorization will also be automized so that the
division can be done to any dataset easily without any hassle on manual preprocessing.
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