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ABSTRACT

In this paper, a deep learning-based multi-stage polynomial driven glaucoma
classification-net (PDGC-Net) has been proposed for glaucoma identification
through retinal images. The proposed approach begins with retinal image pu-
rification by noise estimation and reduction. Noise has been estimated using a
polynomial coefficient-based approach. Images are classified using PDGC-Net,
whose polynomial indeterminate representative blocks are designed using new
convolutional neural networks (CNN) architectures. The performance of PDGC-
Net has been observed on the ACRIMA, ORIGA, and retinal image database for
optic nerve evaluation (RIM-ONE) datasets. The experimentation is carried out
on noisy and denoised images separately, and PDGC-Net has achieved 96% to
98% and 98% to 100% accuracy ranges, respectively. The model’s elasticity
is tested with various stages of PDGC-Net. The quantitative PDGC-Net perfor-
mance analysis is done with state-of-the-art CNN models. The proposed model’s
performance has been proven and could be an effective aid to ophthalmologists
for glaucoma screening (GS).
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1. INTRODUCTION
Glaucoma is the leading cause of optic disorders in the majority of people worldwide [1]. Glaucoma

progression is asymptomatic, and a delay in its detection leads to interminable vision deterioration. Currently,
there is no medical practice to restore the outright vision of the glaucomatous eye. The only way to save a pa-
tient’s vision from glaucoma is to diagnose it early on [2]. Ophthalmologists usually diagnose glaucoma in its
early stages by clinically examining the retinal region-of-interest (ROI) such as the optic disc (OD), optic cup
(OC), and retinal nerves through fundus (retinal) images in terms of cup/disc (C/D) ratio and the OD rim alter-
ations in terms of inferior superior nasal temporal (ISNT)-order [3]. Physical examination of retinal structures
is a time-consuming and error-prone operation. Computer-aided diagnosis (CAD) can assist ophthalmologist in
the quick and accurate identification of retinal structures as well as measuring their proportions to find aberrant
symptoms [4]. The CAD-based approach performs retinal image analysis in various phases: pre-processing to
improve image texture, feature extraction to capture the patterns, and classification to assign a class label to
the given instance. In this paper, a unique deep learning (DL)-based CAD approach has been proposed for the
automatic screening of glaucomatous retinal images. This approach has included the major CAD phases, such
as images being pre-processed with the proposed denoising method, and features being extracted and classified
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using the proposed DL model: polynomial driven glaucoma classification-Net (PDGC-Net).
− Related works

DL-based glaucoma screening (GS) state-of-the-art practices usually follow a three-phase pattern.
Most of the pre-processing approaches deals with image denoising that manipulate individual pixels w.r.t.
neighboring pixels using various kernels. He et al. [5] utilized bilateral filters for denoising. Elseid et al.
[6] applied Gaussian, mean, guided, and adaptive mean filters for noise suppression. Subsequently, an nth-
order non-linear Wiener filter was applied in [7] for image purification. Erwin et al. [8] applied various
filters on the green channel of noisy images. Afterwards, soft thresholding is applied to retinal images using
shearlet transformation by [9]. Juneja et al. [10] employed a window-based approach using an adaptive median
kernel on grayscale pixel intensities. Hu et al. [11] recently applied shearlet filters to retinal images after noise
redistribution. Following purification, retinal images can be used for auto-screening in subsequent CAD phases.
The majority of DL techniques in the literature often perform the feature extraction and classification phases
simultaneously. A six-layered convolutional neural network (CNN) was introduced by [12], but its performance
is quite low due to its simple architecture. Later, the OD area was extracted and processed using a two-way
CNN by [13] for GS. However, both CNN branches were similar in architecture. Thereafter, a multi-parallel
branched (MB) CNN was introduced by [14] to capture various retinal image features. In this approach, one of
the MB CNN’s branch is employed for non-ROI’s features extraction, which are less significant for GS. Pinto
et al. [15] utilized transfer learning (TL) on ROI of public datasets with VGG, Xception, Inception V3, and
ResNet50. Afterwards, Juneja et al. [10] introduced a 76-layered glaucoma classification-Net (GC-Net) CNN
for the classification of filter-based denoised retinal input. However, only Conv2D layers were employed, and
its variants were not tested. Subsequently, Juneja et al. [16] utilized filter-based retinal image denoising and
ROI was segmented by the proposed G-Net for GS. Though the proposed CNN is deep, residual connections
were not utilized to avoid gradient vanishing problem. Next an ensemble AlexNet model is employed by [17]
for GS using threshold-based denoising images. In this study, a single CNN is employed for entire ensembling.
Shinde [18] captured the ROI of the input with the bright-spot approach and segmented by the U-Net for
structural features. Recently, a two-branched DL network (TWEEC) is proposed by [19] for the classification
of denoised retinal images in wavelet domain. In this study, both CNN branches were designed with similar
architecture.

The survey made on state-of-the-art GS practices revealed that there are two major choices for employ-
ing DL-based diagnosis. The primary one is to utilize existing CNN models (visual geometry group (VGG),
AlexNet, and ResNet) by using transfer learning (fine-tuning). The other one is designing and training new
CNN architectures (GC-Net, TWEEC-CNN, and MB-CNN) for optimal GS. This study has identified exist-
ing approaches’ limitations such as; i) most of the approaches reduce the noise without estimating it properly,
which can eradicate significant textural patterns, ii) although using CNN models via TL minimizes experimen-
tal overhead, it does not address the input-model complexity trade-off, iii) only Conv2D layers are utilized by
the current approaches to develop CNN architectures; further variations like depth-wise and separable convo-
lutions are not taken into account.
− Research contribution

To address these identified research gaps, we have proposed a new polynomial-driven CAD-based
approach for optimal glaucoma diagnosis. This approach includes the following contributions: i) the retinal
image purification has been done with a denoising approach that applies legitimate noise estimation using a
polynomial coefficient-based technique, ii) a multi-staged PDGC-Net DL approach has been designed based
on indeterminates (variables) of a polynomial expression to capture the image patterns using depth-wise and
separable convolutions, and iii) the proposed PDGC-Net has a provision for size and shape elasticity w.r.t. the
input complexity. The rest of the paper is organized as follows: section 2 describes the phase-wise proposed
CAD approach, section 3 performs a deep investigation of the obtained results, and section 4 concludes the
article with future scope.

2. METHOD
In this study, ACRIMA (normal: 309 and glaucoma: 396), ORIGA (normal: 482 and glaucoma:

168), and retinal image database for optic nerve evaluation (RIM-ONE) (normal: 458 and glaucoma: 325)
datasets’ ROIs are considered individually as well as jointly (ACRIMA+ORIGA+RIM-ONE (AOR)) for glau-
coma classification. The overall architectural view of the proposed method is given in Figure 1, and each phase
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is described in detail in the following sub-sections.

Figure 1. The overall architectural view of the proposed CAD approach

2.1. Pre-processing
Retinal imaging is a live procedure that requires adequate lighting, accurate positioning, and quick

acquisition. These are highly sensitive to external factors (e.g., sensor quality and external light), which results
in the capture of noisy images. The existence of noise seriously affects the automatic processing of images.
Fundus image structures, in particular, such as OD and OC, are not in a fixed shape and do not have strong
edges. Thus, the presence of noise becomes a severe hurdle for convolutions to discriminate edge, texture, and
noise components [20]. This results in unwanted pattern learning. Thus, in this approach, the fundus image’s
denoising is considered for pre-processing. This phase consists of two sub-phases: noise estimation (Algorithm
1) and reduction (Algorithm 2), which are discussed w.r.t. the corresponding algorithm steps (S: no).
− Noise estimation: the process begins by dividing colour channels (Ch) of input (IMGIN ) into NB

blocks (BlkC) of size n (S: 2). Discrete wavelet transformation (DWT) sub-bands (SB) We of each
BlkC are utilized to construct a coefficient matrix DwtMatcoeff of size We × NB (S: 3). Row-wise
energy (Erow ) of DwtMatcoeff is measured (S: 5) to generate Gmat (S: 6). Initial noise deviation
(NSD) is obtained from ithL row of Gmat corresponding to the minimum Erow (S: 8). Column-wise
variation (Cvar) of Gmat is measured (S: 9) to discard non-homogeneous columns (Gmat−rec) using
a threshold (S: 10-13). This estimates the initial noise (NIE) (S: 14). Then, the final noise (NFE) is
estimated using polynomial coefficients (Pcoeff ) obtained from Xvec , Yvec, and, Wvec (S: 19). Xvec

represents known noise levels (S: 15). Non-edge areas (Cne) of retinal datasets are calculated using [21]
and enhanced by the procedure introduced in our previous contribution [22]. These are considered a
standard for noise estimation. Yvec (S: 17) is formed using these standard retinal images’ non-edge area
average (AVG) values. The weight vector (Wvec) is diagonal (Diag) values of the Xvec function (S: 18).
Using Pcoeff , the final noise (NFEch

) is estimated (S: 20).
− Noise reduction: an image-specific threshold (ThL) is determined (S: 4) using a scaling factor (FS) (S:

2) and estimated NFEch
. Using ThL, DWT coefficients of Ch are depreciated to remove the noise (S:

7). Finally, denoised images (RECIMG) are reconstructed using fine-tuned SBs (dwtnewCh ) (S: 9).

2.2. Feature extraction and classification
Glaucoma classification is carried out using the polynomial driven glaucoma classification-Net (PDGC-

Net). Its architecture is composed of 85 layers ( both sequential and parallel) based on the two indeterminates
(i.e., X and Y) of an nth order (degree) polynomial expression (constant coefficients are omitted). The idea of
PDGC-Net originated from the PolyNet [23]. The proposed PDGC-Net’s X: block and Y: block are constructed
using new approaches in three different stages, as follows:
− Stage-1: this stage is configured based on a linear polynomial that accepts preprocessed input (INPre)

and processed using X and Y blocks. Algebraically, the stage-1 operation can be reflected as in (1).
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Stage : 1OUT = (I +X + Y ) · INPre = INPr e +X(INPr e) + Y (INPr e) (1)

− Stage-2: this stage is configured based on a quadratic polynomial that accepts the Stage : 1OUT . Alge-
braically, the stage-2 operation can be expressed as in (2).

Stage : 2OUT =
(
I + (X + Y )

2
)
· Stage : 1OUT = Stage : 1OUT +X(X(Stage : 1OUT ))

+Y (Y (Stage : 1OUT )) + Y (X(Stage : 1OUT ))
(2)

− Stage-3: this stage is configured based on cubic polynomial that accepts the Stage : 2OUT . Alge-
braically, the stage-3 operation can be characterized as in (3).

Stage : 3OUT =
(
I + (X + Y )

3
)
· Stage : 2OUT = Stage : 2OUT +X(X(X(Stage : 2OUT )))

+Y (Y (Y (Stage : 2OUT ))) + Y (X (X (Stage : 2OUT ))) +X (Y (Y (Stage : 2OUT )))
(3)

The entire functioning of the PDGC-Net is characterised by X and Y blocks, whose structural layout is given
in Figure 2 and described in the following sub-sections.

Algorithm 1 Retinal images’ noise estimation

Require: ROIs of retinal datasets
Ensure: RGB channels’ final estimated noise NFECh

1: for IMGCh ∈ IMGIN do
2: BlkC ← Split(IMGCh); {SB} ← DWT (BlkC), whereC = 1 toNB

3: [DwtMatcoeff ] We×NB
← appendrow−wise (SB(:))

4: for q = 1 to We do

5: Erow (q)←
NB∑
p=1

DwtMatcoeff (p, q) ▷ Row-wise energy calculation

6: Gmat ← Extract1 : L(Sort(Erow (q)), L < q ▷ Gmat calculation
7: end for
8: NSD ← K ∗ Vmed (Gmat (iL, c)−Rm) c=1,2,..,NB,0 < K < 9 ▷ Initial noise deviation

9: Cvar (n)← 1
L

L∑
l=1

Gmat(l, n)
2
, n ∈ NB

▷ Gmat column-wise variation
10: TNSD

← NSD
2
(
1 +

√
K−1
L

)
▷ Threshold for homogeneous columns

11: if Cvar (n) > TNSD
then

12: Gmat−rec ← Discardnthcolumn (Gmat)
13: end if
14: NIE ← (K ∗ Vmed (Gmat−rec (iL, r)−Rm))

2
▷ Initial noise estimation

15: Xvec ← [10, 20, 30, 40, 50] ▷ Xvec, Yvec construction

16: SqMean =

√√√√Mean

[( ∑
u,v∈SB

C2
ne (u, v)

)]
, SB ∈ HH,LH,HL

17: Yvec ← AV GXvec

(
2
CS
∗ SqMean

)
Cs : Constant

18: Wvec ← Diag
[
exp

(
Xvec − Xvec

2

2∗SD(Xvec)

)]
▷ Weights generation

19: Pcoeff ← polyfitweighted (Xvec, Yvec,Wvec, Dn) ▷ Polynomial coefficients generation

20: NFECh
←

0∑
d=Dn

Pcoeffd ∗ (NIE)
d

▷ Final noise estimation

21: end for
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Algorithm 2 Retinal images’ noise reduction

Require: Estimated retinal RGB channel-wise noise (NFECh
)

Ensure: Denoised retinal images (RECIMG)
1: for IMGCh ∈ IMGIN do

2: FSCh
←
√

log(MedHL(r,c))
2
SkwHL(r,c)

/SDHL(r,c) ▷ Threshold calculation

3: NFECh
∈ IMGCh, HL ∈ dwt2D (IMGCh)

4: ThLCh(r, c)← FSCh
∗NFECh

5: //Median (Med), Skewness(Skw), and SD are generated on local
neighbourhood(nL) of corresponding DWT’s sub-bands.

6: ▷ DWT sub-band tuning
7: dwtnewCh(r,c) ← dwt2D

(
IMGCh(r,c)

)
∗ ThLCh(r, c)

8: end for ▷ Denoised image reconstruction
9: RECIMG ← DWTInverse

(
dwtnewCh(r,c)

)

2.2.1. Input preparation
The objective is to prioritize input channels using a content-aware approach. Initially, each channel is

processed using a convolutional (Conv2D) layer of sixteen 3× 3 filters and squeezed with a 2D global-average
(GA) pooling. Two channel complexity reduction (CCR) ratios R1 and R2 have been chosen based on the
50% and 25% of existing filters, i.e., R1 is 8 and R2 is 4. The channels are then smoothed using parallel,
fully connected (FC) layers for a soft channel gating function. The average of these results is used to prioritize
(weight) each feature map before being passed to the X: block and Y: block.

2.2.2. X:block
The X: block has been constructed using Conv2D, depth-wise (DwConv2D), and separable convolu-

tions (SpConv2D). The operation begins with a sequence of Conv2D and DwConv2D layers of eight, 3 × 3
filters with relu activation. It is connected to an inverted residual (IR) block that has a sequence (Lseq : X1)
of three sub-blocks: expansion, depth-wise, and projection. The expansion block contains a Conv2D layer,
batch-normalization (BN), and relu activation. Filters are defined using input shape and a scalar value sv . In
depth-wise block, DwConv2D operations are carried out using 6 × 6 filters with Selu activation. The pro-
jection block carried out Conv2D operations with 24 filters and BN. The outcome is added to the IR block’s
input using residual connections (dashed lines in Figure 2). The purpose of Lseq : X1 is to expanded initial
dimension features and then compress output features to get back to their initial dimensions. The tensor output
is then processed by a sequence of Conv2D layer, DwConv2D, and SpConv2D layer with selu and sigmoid
activations. Now the result is again processed with the sequence Lseq : X1 with 32 channels. The flow is then
passed through a flipped sequence (Fseq) formed by DwConv2D-SpConv2D-DwConv2D (D-S-D) layers with
32 and 64 filters. The result is then added to the input using ResNet-of-ResNet (RoR) [24] connections. The
final output is produced by a Conv2D layer with thirty two, 3 × 3 filters with relu activation. In stage-2, the
Lseq : X1 is attached to Lseq : X2, which includes all blocks with 32 channels, and the Fseq is stretched with
the D-S-D-S-D sequence. In stage-3, both Lseq : X1 and Lseq : X2 are attached to Lseq : X3 sequence with 64
channels, and the Fseq is improved with the D-S-D-S-D-S-D sequence. All the residual and RoR connections
are maintained accordingly.

2.2.3. Y: block
In addition to convolutions, the output channels weightage is utilized in Y: block that has been parti-

tioned into 8 sub-blocks: Y11, Y12, Y21, Y22, Y31, Y32, Y41, and Y42. Each Yij performs Conv2D, DwConv2D,
or SpConv2D on the input with varying channels (ch) and kernel sizes. Then GA pooling is applied to the
output and passed it to two branches for their complexity scale down using complexity-reduction (CR) ratios:
ratio1 and ratio2. It is followed by the application of non-linearity using Actf : relu, selu, or sigmoid activa-
tions, which are then passed to the next FC layers. The products of Copr feature maps and outputs are combined
to form a weighted sub-branch output (Yij−Out). Though these sub-blocks (Yij) are structurally similar, their
operation differs depending on the parameters Copr, ch, and Actf , which are defined as:
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− Y11 : Conv2D, 8, relu

− Y21 : DwConv2D, 16, selu

− Y31 : SpConv2D, 32, sigmoid

− Y41 : Conv2D, 64, relu

− Y12 : Conv2D, 64, relu

− Y22 : SpConv2D, 32, sigmoid

− Y32 : DwConv2D, 16, selu

− Y42 : Conv2D, 8, relu

The Yi1 sub-blocks’ parameter order is reversed for Yi2 to make the Y: Block robust. Parallel connec-
tions are also implemented for sub-block inter-dependency by averaging Yi,1 and Yi,2 and adding them to the
Yi+1,1 and Yi+1,2 resultants. The output feature maps are added with the input using residual connections to
generate the final Y: block’s output. The performance of PDGC-Net is deeply investigated in the next section.

Figure 2. In-depth architectural view of the proposed PDGC-Net’s X and Y blocks
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2.3. The novelty of the proposed approach
The proposed DL model for glaucoma classification is constructed by considering polynomials of

various degrees which has the following unique characteristics:

− Each retinal image’s channel-wise noise has been estimated using a weighted polynomial coefficients-
based approach before being reduced. This avoids the significant image texture patterns’ erosion

− New independent architectures are used for the construction of PDGC-Net blocks corresponding to poly-
nomial indeterminates. The X: Block mainly concentrated on pattern extraction using various convolu-
tional operations along with residual connections. The Y: Block extracts the image texture information
through channel prioritization and complexity reduction

− The RoR connections in X: block provide a vanishing gradient-free model. The feed-forward connections
among sub-blocks of Y: block cause the model to receive mixed output channels

− The PDGC-Net is built with a flexible (i.e., elastic) architecture. Thus, it can be extended to the next
stages (i.e., stages 4 and 5) by considering the higher degree (4th, and 5th) polynomials based on the
input complexity

3. RESULT AND DISCUSSION
The performance of the PDGC-Net has been evaluated before and after image denoising. The noise

estimation begins by using 5th (Dn) order polynomial coefficients and some sample images’ (15 images)
channel-wise (Rc, Gc, and Bc) estimated noises are shown in Table 1. While doing this, each ROI’s colour
channel is resized into 256 × 256 dimensions and divided into 8 × 8 (i.e., n = 8) blocks. This results in 1024
(NB) square blocks. The corresponding identified channel-wise noise levels (for 50 retinal ROIs) from the
ACRIMA, ORIGA, and RIM-ONE datasets are shown in Figure 3. In the ACRIMA dataset, higher noise levels
are estimated in the images’ red channels, as shown in Figure 3(a). In a few cases, more noise is detected in the
blue and green channels. However, blue and green color channels are almost noise-free. For the ORIGA retinal
dataset, higher noise levels are identified in both the red and green colour channels, as shown in Figure 3(b). In
some cases, the images’ blue colour channel is associated with higher noise levels than the other channels. All
channels of ORIGA retinal images are not completely noise-free. In the case of RIM-ONE, most of the noise
exists in the red channels of images, as shown in Figure 3(c). Both the green and blue channels are completely
noise-free for most of the images. In very limited cases, all three colour channels are noise-free.

Table 1. Retinal ROI’s noise estimation by the proposed method

Img. No.
ACRIMA ORIGA RIM-ONE

Rc Gc Bc Rc Gc Bc Rc Gc Bc
Normal retinal images (NI)

1 0.0229 1.1768 1.5812 0.0102 3.5039 4.1788 0.9790 0.0110 0.0111
2 0.1742 0.0029 0.0042 15.949 1.9611 11.565 0.0051 0.0000 0.0011
3 15.357 2.3128 3.1631 1.8014 1.7866 10.171 4.2092 0.1576 0.1025
4 4.4754 1.4268 1.9272 13.037 5.4454 4.8626 6.1212 0.0107 0.0107
5 9.0567 1.8134 2.4649 2.3836 0.8161 3.5031 16.639 0.0587 0.0409
6 9.0562 0.3716 0.4825 16.976 0.8161 3.5031 5.3857 0.0323 0.0230
7 9.0400 6.1832 8.6450 16.976 0.1356 0.3389 1.6805 0.0114 0.0114

Glaucomatous retinal images (GI)
8 7.6451 0.4647 0.6076 3.8208 9.9385 6.0135 2.0816 0.1617 0.1050
9 6.5094 3.8440 5.3202 3.1049 0.1928 0.5279 1.3271 0.0017 0.0025
10 3.8186 0.0814 0.1011 5.9865 1.5509 8.3757 2.5142 0.0141 0.0098
11 0.7682 0.0113 0.0113 17.387 4.3002 4.4818 0.9714 0.2766 0.1711
12 0.9865 0.9051 1.2071 8.1655 0.2764 0.8384 1.0384 0.1034 0.0695
13 5.5943 9.8602 13.910 3.0045 0.4260 1.4749 15.914 0.4023 0.2399
14 12.480 1.7425 2.3661 0.8117 1.8896 10.988 11.306 0.3710 0.2230
15 0.5267 12.393 17.555 1.0290 0.0708 0.1531 5.1172 1.9995 1.0123

The qualitative sample original and denoised fundus images from ACRIMA, ORIGA, and RIM-ONE
datasets are shown in Figures 4(a)–(c). In this approach, no external noise has been added to fundus images
prior to the noise estimation. Fundus images are denoised without affecting the texture, based on the existing
noise estimation. By careful observation, one can identify the clear appearance of retinal structures such as
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the OD, OC, and blood vessels in denoised fundus images. Especially, the boundaries of OD and OC and the
retinal area in between blood vessels are now clearly discernible.

(a) (b)

(c)

Figure 3. Sample noise estimation plots (a) ACRIMA, (b) ORIGA, and (c) RIM-ONE

Figure 4. Sample qualitative denoised retinal images from (a) ACRIMA, (b) ORIGA, and (c) RIM-ONE
datasets
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The performance of the proposed image purification is measured quantitatively using mean squared
error (MSE) and peak signal-to-noise ratio (PSNR) metrics. Sample (for the same 50 retinal ROIs from Figure
3) MSE value plots for ACRIMA, ORIGA, and RIM-ONE datasets are shown in Figures 5(a)–(c). The corre-
sponding PSNR plots are shown in Figure 5(d)–(f). The lower MSEs indicate that the reconstructed images are
very close to the original images. That means the image purification approach preserves the retinal structures.
A higher PSNR value implies a higher-quality reconstructed image. In Figure 5, both MSE and PSNR plots
have been included with and without applying noise estimation to fundus images. The proposed polynomial
coefficient-based noise estimation improved both plots by minimising MSE values and maximising PSNR val-
ues. In very limited cases, denoised images’ noise estimation-based MSE and PSNR values are close to the
values obtained without noise estimation. Overall, the quality of denoised images has been improved with the
proposed polynomial coefficient-based noise estimation and reduction.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Sample denoised images MSE and PSNR value plots by the proposed approach; (a) ACRIMA data,
(b) ORIGA dataset, (c) RIM-ONE dataset, (d) ACRIMA data, (e) ORIGA dataset, and (f) RIM-ONE dataset

The proposed image denoising strategy is quantitatively compared with the well known denoising
techniques such as: approaches by [25], [26], DnCNN [27], WNNM [28], and PGPD [29]. Table 2 presents the
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corresponding average MSE and PSNR values obtained from the entire fundus datasets. The values obtained
by the polynomial coefficient-based denoising approach are more optimal than those obtained by the DnCNN
and PGPD approaches. The WNNM approach reconstructed the denoised images better than the [25], [26]
approaches. However, in the proposed denoising approach, there is a considerable improvement in both the
MSE and PSNR value ranges with the presence of noise estimation. The ACRIMA, ORIGA, and RIM-ONE
retinal images have been qualitatively purified and restored with average MSEs of 0.5524, 0.5406, and 0.4333
and PSNRs of 53.4178, 53.5709, and 53.4320, respectively. Instead of adding external noise, retinal images’
pixel intensities are carefully analysed in terms of DWT SB’s energies with weighted polynomial coefficients
for proper noise estimation. As a result, the original intrinsic noises (if they exist) are correctly identified
and eliminated without affecting the significant texture patterns. This enables the reconstruction of denoised
images that are closer to the original retinal images, which is a highly significant characteristic for medical
images. Thus, optimal MSE and PSNR values are obtained on all considered retinal datasets. This emphasises
the significance of accurate noise estimation in retinal (medical) image denoising.

The proposed PDGC-Net’s training is performed by randomly selecting 70% of the retinal dataset
images (ACRIMA, ORIGA, RIM-ONE, and AOR), and remaining 30% of images were utilized for testing and
validation purposes. The PDGC-Net has been evaluated with several hyper-parameter combinations before set-
tling on a learning rate (LR) of 0.01 and batch size (BS) of 32 with 30 epochs. Table 3 shows the PDGC-Net’s
stage-wise classification performance (in terms of percentages) before and after image preprocessing. In the
case of the ACRIMA dataset, the PDGC-Net has attained 100% accuracy in stage-3 (i.e., w.r.t. cubic poly-
nomials) with the denoised images and 96% accuracy, 97% sensitivity, and 93% specificity with the original
(noisy) images. When the model is shrunk vertically w.r.t. quadratic polynomials (i.e., stage-2), it attains 98%
accuracy, 100% sensitivity, and 92% specificity with purified images, and 96% accuracy, 95% sensitivity, and
100% specificity with original images.

Furthermore, the PDGC-Net has classified the purified and original retinal images with 96%, 94%
accuracy, 95%, 92% sensitivity, and 100% specificity, respectively. While classifying the ACRIMA dataset,
the PDGC-Net has reached its highest accuracy only in stage-3 with purified images. Its performance is almost
similar in both stage-3 and stage-2 in the case of the original ACRIMA images. In stage-1, the PDGC-Net
classification performance is consistent with purified images and slightly lower with noisy images. When it
comes to true and false predictions, the PDGC-Net has attained an extremely low false-positive prediction
rate, i.e., 0% to 2% for all experimentation instances. Thus, PDGC-Net has optimally identified glaucomatous
retinal images from the dataset.

The false-negative prediction rates are gradually decreased, i.e., healthy retinal image identification
is optimal when PDGC-Net is stretched vertically w.r.t. higher-order polynomials. Using the structure cor-
responding to cubic polynomials, the PDGC-Net has classified the ORIGA dataset with a maximum of 98%
accuracy, 89% sensitivity, and 100% specificity. With purified ORIGA retinal images, the performance of
the PDGC-Net with the structure corresponding to a second-order polynomial is similar to that of the third-
order polynomial equivalent structure. In these cases, the ORIGA dataset has been classified with 96% ac-
curacy, 78%-80% sensitivity, and 100% specificity. In the case of lower-order polynomial-based PDGC-Net,
the ORIGA dataset’s retinal images were classified with a range of 92%-94% accuracy, 78%-88% sensitivity,
and 95% specificity for both the original and denoised cases, respectively. In all test cases, the PDGC-Net’s
predictions attained a very low percentage of false-negatives, i.e., 2%-4%, which indicates that the proposed
model recognizes the non-glaucomatous ORIGA dataset’s images perfectly.

However, with the PDGC-Net corresponding to higher-order polynomials, the false-positive prediction
rates are dramatically reduced. In the case of the RIM-ONE dataset, the PDGC-Net has exhibited optimal
classification performances corresponding to first-, second-, and third-order polynomial-based structures. The
proposed DL model performed an optimal screening of RIM-ONE retinal images with ranges of 98%-100%,
92%-100%, and 97%-100% of accuracy, sensitivity, and specificity, respectively. On the RIM-ONE dataset,
the false-positive prediction rate is less than 2% and the false-negative prediction rate is less than 5%. This
indicates that both glaucomatous and non-glaucomatous retinal images from RIM-ONE are almost accurately
identified. In the case of the combined dataset, i.e., the AOR dataset, the PDGC-Net’s performance is highly
satisfactory in all its stages corresponding to various polynomial orders. Only for the one input case, both
sensitivity and specificity measures reached 94% and 92% by the PDGC-Net’s classification. In all other cases,
the classification measures reached their maximum possible range. With this combined dataset, both false-
positive and negative predictions are almost nullified for all stages corresponding to various polynomial orders.

Bulletin of Electr Eng & Inf, Vol. 12, No. 4, August 2023: 2245–2261



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 2255

Table 2. Quantitative analysis of the proposed image denoising approach
Input ACRIMA ORIGA RIM-ONE

The proposed denoising with noise estimation
Avg. MSE 0.8130 0.7901 0.6934
Avg. PSNR 50.0227 50.1418 49.039

The proposed denoising without noise estimation
Avg. MSE 0.5524 0.5406 0.4333
Avg. PSNR 53.4178 53.5709 53.4320

Approach by [25]
Avg. MSE 2.8266 2.8094 2.8711
Avg. PSNR 43.6326 43.6575 43.5580

Noise estimation is done by [26] and reduction is Avg. MSE 6.2329 6.1713 5.7733
done by the proposed approach Avg. PSNR 40.8991 40.9399 42.6075

DnCNN
Avg. MSE 29.4771 30.1076 19.6199
Avg. PSNR 33.6318 33.0098 35.2947

WNNM
Avg. MSE 1.9712 2.1575 1.9696
Avg. PSNR 45.1882 44.7953 45.2045

PGPD
Avg. MSE 10.2399 15.8817 8.5605
Avg. PSNR 36.0789 35.7797 38.8176

Table 3. The PDGC-Net’s glaucoma classification performance
Input Noise-

stage:3
DeNoise-
stage:3

Noise-
stage:2

DeNoise-
stage:2

Noise-
stage:1

DeNoise-
stage:1

ACRIMA

Acc 96 100 96 98 94 96
Sen 97 100 95 100 92 95
Spe 93 100 100 92 100 100
Tp 0.97 1.0 1.0 0.97 1.0 1.0
Fn 0.07 0.0 0.13 0.0 0.17 0.13
Fp 0.02 0.0 0.13 0.0 0.17 0.13
Tn 0.92 1.0 0.86 1.0 0.82 0. 86

ORIGA

Acc 96 98 94 96 92 94
Sen 80 89 83 78 78 88
Spe 100 100 98 100 95 95
Tp 1.0 1.0 0.90 1.0 0.77 0.77
Fn 0.04 0.02 0.04 0.04 0.04 0.02
Fp 0.0 0.0 0.9 0.0 0.22 0.22
Tn 0.95 0.97 0.95 0.95 0.95 0.97

RIM-ONE

Acc 98 100 98 100 98 98
Sen 92 100 100 100 100 94
Spe 100 100 97 100 97 100
Tp 1.0 1.0 0.94 1.0 0.94 1.0
Fn 0.02 0.0 0.0 0.0 0.0 0.02
Fp 0.0 0.0 0.05 0.0 0.05 0.0
Tn 0.97 1.0 1.0 1.0 1.0 0.97

ACRIMA+ORIGA+RIM-ONE (AOR)

Acc 100 100 98 100 98 100
Sen 100 100 100 100 94 100
Spe 100 100 92 100 100 100
Tp 1.0 1.0 0.97 1.0 1.0 1.0
Fn 0.0 0.0 0.0 0.0 0.02 0.0
Fp 0.0 0.0 0.02 0.0 0.0 0.0
Tn 1.0 1.0 1.0 1.0 0.97 1.0

Note: accuracy (Acc), sensitivity (Sen), specificity (Spe), true positive (Tp), false positive (Fp), true negative (Tn), and false negative (Fn)

Through these four input datasets, the significance of PDGC-Net’s flexibility (i.e., its elastic nature)
has been clearly verified. Regardless of dataset size, the PDGC-Net, with its structure corresponding to higher-
order polynomials, performed optimally in retinal image classification. The PDGC-Net’s performance on in-
dividual datasets is suffering from a few false predictions with the architecture corresponding to lower-order
polynomials (i.e., linear and quadratic). This problem is gradually mitigated and has almost vanished with the
PDGC-Net architecture’s corresponding cubic polynomials. However, in the case of a large dataset (i.e., the
AOR dataset), its performance is optimal even with stage-1. Thus, the proposed PDGC-Net’s stages (i.e., poly-
nomial orders) can be extended or reduced vertically based on the retinal dataset size for optimal classification.
This exclusive property makes the PDGC-Net more robust in retinal (medical) image classification.

The performance of PDGC-Net is quantitatively compared to that of existing CNN models: VGG16,
ResNet50, InceptionV3, EfficientnetB0, MobilenetV2, and SqueezeNet. Various hyper-parameter combina-
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tions have been applied to individual DL models as shown in Table 4. These well-known CNNs are designed
with various characteristics, such as deep (depth) architectures (VGG16), preservation of gradients (ResNet),
optimization (InceptionV3), adaptability (MobilenetV2), advanced convolutions (EfficientnetB0), and com-
pression (SqueezeNet). The PDGC-Net has been designed by considering all these significant properties. Thus,
PDGC-Net’s performance is compared with the existing CNNs to prove its ability as shown in Table 5.

Table 4. Hyper parameters used by the various DL models for glaucoma classification
DL model Layers LR Optimizer Inner layer activation Outer layer activation
VGG16 23 0.01 Adadelta Relu Sigmoid
ResNet50 178 0.05 SGD Relu Sigmoid
InceptionV3 314 0.1 Adadelta Relu Sigmoid
EfficientnetB0 237 0.01 Adam Relu Swish
MobilenetV2 53 0.01 Adam Relu Sigmoid
SqueezeNet 18 0.01 Adam Relu Sigmoid
PDGC-Net 85 0.001 Adam Relu, Selu Sigmoid

Table 5. Existing CNN models’ glaucoma classification performances
Input ACRIMA-

noise
ACRIMA-
DeNoise

ORIGA-
noise

ORIGA-
DeNoise

RIM-
ONE-
noise

RIM-
ONE-
DeNoise

AOR-
noise

AOR-
DeNoise

VGG16

Acc 94 94 88 94 84 84 94 96
Sen 93 93 67 78 90 76 94 100
Spe 100 100 93 98 80 88 93 85
Tp 1.0 1.0 0.66 0.87 0.75 0.76 0.97 0.94
Fn 0.23 0.23 0.07 0.04 0.07 0.12 0.12 0.0
Fp 0.0 0.0 0.33 0.12 0.25 0.23 0.02 0.05
Tn 0.76 0.76 0.92 0.95 0.92 0.87 0.87 1.0

ResNet50

Acc 92 96 92 94 90 94 94 98
Sen 92 95 57 73 90 93 94 97
Spe 93 100 98 100 90 94 93 100
Tp 0.97 1.0 0.80 1.0 0.69 0.86 0.97 1.0
Fn 0.18 0.16 0.06 0.07 0.02 0.02 0.12 0.07
Fp 0.02 0.0 0.02 0.0 0.30 0.13 0.02 0.0
Tn 0.81 0.83 0.93 0.92 0.97 0.97 0.87 0.92

InceptionV3

Acc 96 98 78 78 92 94 96 98
Sen 95 97 71 73 100 82 94 100
Spe 100 100 83 83 89 100 100 92
Tp 1.0 1.0 0.75 0.82 0.78 1.0 1.0 0.97
Fn 0.13 0.07 0.20 0.25 0.0 0.08 0.11 0.0
Fp 0.0 0.0 0.25 0.17 0.21 0.0 0.0 0.02
Tn 0.86 0.92 0.80 0.74 1.0 0.91 0.88 1.0

Efficientnet B0

Acc 92 96 84 88 90 94 94 96
Sen 100 100 80 88 100 100 92 95
Spe 64 85 86 98 87 91 100 100
Tp 0.90 0.94 0.70 0.75 0.70 0.83 1.0 1.0
Fn 0.0 0.0 0.09 0.10 0.0 0.0 0.17 0.13
Fp 0.09 0.05 0.29 0.25 0.29 0.16 0.0 0.0
Tn 1.0 1.0 0.90 0.89 1.0 1.0 0.82 0.86

MobilenetV2

Acc 94 96 86 88 84 84 94 94
Sen 94 94 83 85 80 75 92 93
Spe 93 100 100 100 86 88 100 100
Tp 0.97 1.0 1.0 1.0 0.70 0.75 1.0 1.0
Fn 0.12 0.11 0.14 0.12 0.10 0.11 0.23 0.17
Fp 0.02 0.0 0.0 0.0 0.29 0.25 0.0 0.0
Tn 0.87 0.88 0.89 0.87 0.90 0.88 0.76 0.82

SqueezeNet

Acc 90 92 84 86 90 90 92 94
Sen 86 89 89 83 93 75 92 82
Spe 100 100 83 100 89 97 93 100
Tp 1.0 1.0 0.53 1.0 0.77 0.92 0.97 1.0
Fn 0.26 0.26 0.02 0.14 0.03 0.10 0.18 0.08
Fp 0.0 0.0 0.46 0.0 0.23 0.07 0.02 0.0
Tn 0.73 0.73 0.97 0.85 0.96 0.89 0.81 0.89
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The existing CNNs performance has been tested both on original and denoised retinal images. In the
case of the AOR dataset, VGG16 classification performance is optimal, with an accuracy of 96%, a sensitivity
of 100%, and 85% specificity. Its performance is unsatisfactory with the ORIGA dataset without denoising.
In this case, classification was done with 88% accuracy, 67% sensitivity, and 93% specificity. In most cases,
VGG16 suffers from false-negative and positive prediction rates of 12% to 23% and 12% to 33%, respec-
tively. The proposed polynomial coefficient-based denoising approach boosts the performance of ResNet50
on the AOR dataset with an accuracy of 98%, a sensitivity of 97%, and a specificity of 100%. In the absence
of denoising, ResNet50 underperformed, with 90% accuracy, sensitivity, and specificity. However, for the
majority of the experimental cases, ResNet50 suffers from erroneous predictions, with a maximum of 18%
false-positives and 30% false-negatives. In the case of smaller-sized input, i.e., the ORIGA dataset, Incep-
tionV3’s classification performance is dramatically reduced to 78% accuracy, even with the denoised images.
The false-prediction rates of InceptionV3 decreased only with the larger datasets. The GS performance of
EfficientnetB0 is improved by 3%–4% in accuracy, 4% in sensitivity, and 12%–13% in specificity with the
proposed denoising technique. EfficientnetB0 performed better with larger datasets than with smaller datasets.
Throughout the experiment, MobilenetV2 suffers from more false negative predictions than false positive pre-
dictions. However, the presence of the proposed denoising approach reduces false-prediction rates by 2%–3%
on average. The SqueezeNet’s performance is reached at its maximum level only with the larger datasets (i.e.,
the AOR dataset). However, SqueezeNet’s glaucoma classification measures are weaker than those of other
existing CNN models. Image denoising has improved its auto-screening ability on individual datasets, with an
average of 2% accuracy, 3% sensitivity, and 9% specificity.

The majority of existing CNN models’ classification performance is not optimal on individual retinal
datasets. Their performance is best with the larger dataset, i.e., the combined retinal dataset. In the case
of individual datasets, these models either suffer from false-positive predictions or false-negative predictions.
This demonstrates that their architectures are inflexible in terms of dataset size and complexity. However, in the
majority of cases, the CNN models GS ability is considerably improved with the proposed denoising approach.
When compared to existing models’ results, the PDGC-Net’s classification measures are more stable and ideal,
as shown in Figure 6. The PDGC-Net’s glaucoma classification accuracy is consistent, ranging from 95% to
100%, whereas the accuracy of other CNN models is partly consistent and has fallen below 80% for some cases.
The PDGC-Net’s performance is more consistent in the identification of positive cases, i.e., glaucomatous
retinal images, than the other existing CNN models. However, in terms of classification sensitivity, there is a
huge performance gap between PDGC-Net and other CNN models. Except for a very few cases, the PDGC-
Net’s sensitivity is consistently above 92%. Existing CNN models’ classification performance suffers from
heavy fluctuations and attains optimal values in very few instances. It shows strong evidence for the PDGC-
Net’s outperformance over the other CNN models in the identification of glaucomatous retinal images.

Figure 6. Performance comparison of the PDGC-Net with the other CNN models
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The proposed PDGC-Net architecture is carefully designed to avoid overfitting situations using pre-
cautionary techniques such as; i) lowering the model’s capacity: the model becomes more general with a lower
number of trainable parameters. However, too much reduction in the model’s complexity results in underfit-
ting. Thus, the model’s capacity has been optimized by choosing the number of parameters, i.e., 0.15 million
approximately, which is less than the parameters of other DL models: ResNet (23 million), VGG16 (138
million), InceptionV3 (24 million), EfficientneB0 (5.29 million), and MobilenetV2 (3.4 million); ii) applying
regularization and dropout layers: L2 regularizer is applied to dense layers, and the L1 regularizer is applied
to convolutional layers along with the dropout layers at various stages at a rate of 0.2 (i.e., 20% of inputs are
nullified); and iii) data augmentation: it is applied to improve the input size with various transformations. Im-
ages are randomly rotated within a range of 30. ROIs are shifted by 0.1 percentage vertically and horizontally.
Shearing is applied on input with an intensity of 0.15. Horizontal flipping, along with zooming, is also applied
to the input.

The impact of these precautionary techniques is clearly demonstrated in Figure 7 using the accuracy
graphs (for some optimal cases). It is observed from the VGG16 plot (Figure 7(a)) that there is no consistency
in the validation accuracy. In most of the epochs, the gap between training and validation accuracy is greater,
and peaks are inconsistent. In the case of the ResNet plot (Figure 7(b)), the gap between the two plots has
gradually increased over the epochs. This could cause model overfitting. Further, plots of InceptonV3 (Figure
7(c)) are initially correlated, but there is a large gap between them for most of the epochs, which is undesirable.
While in the plot (Figure 7(d)) of EfficientNetB0, the validation accuracy is constant for the maximum training
epochs and suddenly reaches higher values. These rapid changes could not lead to a generic model. In the case
of MobileNetV2 (Figure 7(e)), the validation accuracy was steady initially but dropped to its lowest value in
the middle of the training. Even after several epochs, there is a large gap between two plots, which could lead
to overfitting. SqueezeNet’s validation accuracy (Figure 7(f)) is always lower than its training accuracy, which
is not suitable for optimal classification. A systematic and gradual increase in accuracy could be identified in
the PDGC-Net plots. In the case of ACRIMA (Figure 7(g)), there are minor fluctuations in validation accuracy,
but throughout training, a lower gap is maintained between training and validation plots. In the case of the
ORIGA DS (Figure 7(h)), initially there is a large gap between two plots since the DS size is moderately low.
However, this gap has gradually minimized and both plots are nearly merged after the 20th epoch. The PDGC-
Net accuracy plot with the RIM-ONE DS (Figure 7(i)) shows an optimal performance. Both plots exhibit
steady progression with minimal gaps between them. Thus, it has been proved that the proposed PDGC-Net is
well designed and trained for GS.

The performance comparison of the proposed PDGC-Net with state-of-the-art GS approaches is shown
in Table 6. In this comparison, various recent CAD-based GS approaches have been considered that are applied
to the ACRIMA, ORIGA, and RIM-ONE retinal datasets. All these approaches split the retinal dataset into a
70:30 ratio for training and testing/validation purposes. Among the considered state-of-the-art approaches,
most of them introduced new DL architectures.

The remaining techniques used pre-trained CNN models for glaucoma identification. Several ap-
proaches’ [30]-[32] classifications on the ACRIMA dataset suffer from either false positives or negative predic-
tions. The PDGC-Net’s accuracy on the ORIGA dataset is 98%, which is significantly better than other existing
approaches [31], [33]. The performance of TL-based approaches [32], [34] on the ORIGA dataset is affected by
false predictions. Though the approaches’ [35]-[37] accuracy is above 93% to 98% on the RIM-ONE dataset,
they are suffering from either false positives or negative predictions. On the other side, the PDGC-Net out-
performs the currently existing methods. The significant observation was that, rather than pre-trained CNNs,
newly built, customised CNN architectures performed better in glaucoma classification. Thus, the proposed
PDGC-Net has been designed with a flexible architecture for various retinal datasets. The above investigation
yields valid inferences such as: i) image channels noise exposure is non-uniform across datasets, and hence,
channel-wise noise estimation makes the method more resilient, ii) though the PDGC-Net’s architecture is less
complex, its performance is on par with the current CNN models, iii) the PDGC-Net’s positive and negative
predictions are more consistent and robust than the existing CNN predictions, iv) the PDGC-Net’s architecture
is elastic in nature, i.e., it can be extended to the next stages (i.e., stage-4, and stage-5) by considering the
higher degree polynomials, and this has been proved with the experimental results, and v) the feed-forward and
RoR connections provide a vanishing gradient-free model.
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Figure 7. Classification accuracy graphs of (a) VGG16(on ACRIMA), (b) ResNet50 (on ACRIMA), (c)
InceptionV3 (on RIM-ONE), (d) EfficientnetB0 (on RIM-ONE), (e) MobileNetV2 (on ACRIMA), (f)

SqueezeNet (on ACRIMA), (g) PDGC-Net (on ACRIMA), (h) PDGC-Net (on ORIGA), and (i) PDGC-Net
(on RIM-ONE)

Table 6. Performance analysis of the PDGC-Net with the state-of-the-art approaches

Reference Year Approach Train-test data split
Performance

Acc Sen Spe
ACRIMA

[30] 2019 TL by ResNet and GoogLeNet 70:30 70 - 87
[31] 2021 An 18-layered CNN is introduced 70:30 96.64 96.07 97.39
[32] 2022 TL by VGG and ImageNet with the optimization 70:30 98.86 100 98.2
PDGC-Net A three-stage CNN has been introduced 70:30 100 100 100

ORIGA
[31] 2021 An 18-layered CNN is introduced 70:30 78.32 58.06 92.44
[32] 2022 TL by VGG and ImageNet with the optimization 70:30 96.55 97.5 100
[33] 2018 Synthetic minority over-sampling technique (SMOTE) 70:30 76.90 79.90 73.8
[34] 2020 TL by AlexNet 70:30 91.21 92.1 90.56
[38] 2019 ROIs were identified using RCNN and classified by a

new CNN model
70:30 95.4 71.17 85

PDGC-Net A three-stage CNN has been introduced 70:30 98 89 100
RIM-ONE

[31] 2021 An 18-layered CNN is introduced 70:30 85.97 81.75 89.3
[35] 2020 Pre-trained CNN models were utilized 70:30 93.15 100 85
[36] 2018 DenseNet with fully convolutions 70:30 98.63 65.85 99.66
[37] 2020 AlexNet with local binary patterns 70:30 98.90 100 97.50
PDGC-Net A three-stage CNN has been introduced 70:30 100 100 100

ACRIMA+ORIGA+RIM-ONE (AOR)
[39] 2022 DCGANs with the hybrid VGG-CapsNet 70:30 90.12 89 86
PDGC-Net A three-stage CNN has been introduced 70:30 100 100 100

4. CONCLUSION
The proposed CAD-based glaucoma detection technique has been designed by considering polyno-

mials as its basis. Three public retinal datasets were tested independently and in combination in this study.
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Retinal images are purified using proper noise estimation during the pre-processing phase. The obtained aver-
age MSE and PSNR values were compared to the results obtained using popular image denoising techniques to
demonstrate the importance of noise estimation prior to its elimination. Feature extraction and classification are
carried out using the proposed PDGC-Net, whose architecture is based on polynomials of various degrees. The
architecture of the PDGC-Net is adaptable to the input specifications for optimal classification. The PDGC-Net
has been built stage-wise, corresponding to higher-degree polynomials. The PDGC-Net attained 100% classi-
fication accuracy, sensitivity, and specificity on the ACRIMA, RIM-ONE, and AOR datasets. On the ORIGA
dataset, the proposed model secured 98% accuracy, 89% sensitivity, and 100% specificity. The flexibility
(elasticity) of PDGC-Net has been verified stage-wise on individual datasets using various combinations. The
PDGC-Net’s complexity can be minimised or maximised depending on the size of the dataset, corresponding to
lower or higher degree polynomials, without resulting in under- or over-fitting, as demonstrated experimentally.
In terms of true and false prediction rates, the role of noise estimation and reduction is validated. The PDGC-
Net’s performance is compared analytically with the well-known CNN models. The PDGC-Net architecture
corresponding to higher degree polynomials mitigate existing CNNs’ performance limitations. In future work,
we plan to use a variety of CNN model topologies to extend the PDGC-Net’s model architecture laterally (more
indeterminates) and vertically (more stages) in the context of glaucoma diagnosis.
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