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 An electrocardiogram (ECG) machine with a standard 12-lead configuration 

is the primary clinical technique for diagnosing abnormalities in heart 

function. Automated 12-lead ECG machines have the capacity to screen the 

general population and provide second opinions for physicians. However, 

expertise and time are required for manual ECG interpretation. Therefore, 

computer-aided diagnoses are of interest to the medical community. Hence, 

this study aims to build a deep learning (DL) model with an end-to-end 

structure that can categorize 12-lead ECG results into 27 different disorders. 

We use multivariate time-series data to construct a novel end-to-end DL 

model (based on combined convolutional neural networks (CNNs), long 

short-term memory, gated recurrent units, and a deep residual network 

structure) for feature representations and determining spatial relations 

among deep features. In addition, a dataset of 43,101 classified standard 

ECG recordings was collected from six different sources to guarantee the 

model’s ability to generalize and alleviate data divergence. As a result, the 

residual network-based model obtained promising outcomes and an accuracy 

of 0.97. According to the experimental data, it outperforms other methods. 

Keywords: 

Deep learning 

Electrocardiogram signal 

Multi-label classification 

The PhysioNet/Cinc 2020 

challenge dataset 

TheInception-ResNet-v2 model 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Atiaf A. Rawi 

Department of Computer Sciences, Faculty of Mathematical and Computer Sciences, Gezira University 

Wad Madani, Sudan 

Email: atiaf.ayal88@gmail.com 

 

 

1. INTRODUCTION 

According to the World Health Organization (WHO), worldwide, cardiovascular diseases (CVDs) 

are the leading cause of death, killing 18 million people annually. CVDs include coronary heart disease, 

cerebrovascular disease, rheumatic heart disease, and various heart and blood vessel issues. Heart attacks and 

strokes account for more than four in every five CVD deaths, with one-third occurring before age 70. 

However, treatment costs and sudden cardiac deaths can be reduced significantly with the help of accurate 

and early diagnoses [1]. Electrocardiogram (ECG) machines are widely used for CVD diagnosis due to their 

inexpensiveness, high accuracy, and non-invasive nature. They use 12 electrocardiograph leads to record the 

heart's electrical activity. 

The resulting sequence of electrical signals is recorded from different places on the human body [2]. 

However, skilled doctors are required to investigate and identify abnormal inter- and intra-beat patterns 

picked up by an ECG. Moreover, this process is time-consuming and vulnerable to inter-observer variability 

[3], making an automated ECG signal classification system essential, particularly in non-cardiology 

departments and pre-hospital care settings, where an expert may not always be accessible to interpret ECG 

signals [4]. Many of the earlier methods for automated ECG signal analysis were based on signal 

transformation (such as fourier and wavelet), time-frequency, and frequency domain features [5]-[7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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However, in addition to their complexity, they were unable to capture complex features in ECG data. 

Recently, artificial intelligence (AI) and deep learning (DL) algorithms have been developed to process 

large-scale raw data, avoiding hand-crafted feature extraction methods [8]. Convolutional neural networks 

(CNNs) have achieved notable success in many fields, such as natural language processing [9] and computer 

vision [10]. These successes motivated researchers, as in [11], to propose a multi-layer 1-D recurrent neural 

network (RNN) trained on ECG data from a single lead. A CNN-based method has been suggested to 

increase classification accuracy [12]. In addition, two deep network models using short single-lead signals 

have been proposed for classifying pulse-generating and pulse-less rhythmic activities [13]. Another  

single-lead-based method has been presented that features an ensemble DL model for automating ECG signal 

classification [14]. Indexing and abstracting services depend on the accuracy of the title, extracting from it 

keywords useful in cross-referencing and computer searching. An improperly titled paper may never reach 

the audience for which it was intended, so be specific. 

In this method, ten classifiers are fused, and it produced better results than the single, profound 

classifiers. A multi-stage learning model introduced features such as the frequency and rhythm of beats [15]. 

Inspired by the performances achieved by previous neural network-based methods, which proved their ability 

to capture nonlinearity and complex features, our proposed method is also based on a neural network 

approach. In most past approaches, two to nine heart abnormalities have been classified. Furthermore, most 

of the currently available methods handle ECG data from a single lead, even though 12-lead data are more 

widely used in real-life diagnostic settings. Additionally, most of these works treated diagnosis as a  

multi-class classification problem, while multiple abnormalities often appear in the same ECG record. Some 

proposed methods for analyzing 12-lead ECG data efficiently for 27 heart abnormalities treat this problem as 

a multi-label classification problem, allowing them to consider the presence of more than one abnormality 

simultaneously. The main contributions of this work can be summarized as follows: i) it presents an end-to-

end model for classifying 27 heart abnormalities using 12-lead ECG signals, ii) we combined techniques to 

enhance feature extraction and classification accuracy, iii) extensive experiments were conducted on 

combined datasets from six different sources to ensure that the model was generalizable, iv) the performance 

comparison proved that the suggested method outperformed the state-of-the-art methods without the need for 

pre-processing or manual feature engineering, and v) the suggested method treats the classification problem 

as a multi-label classification to handle multiple abnormalities in the same ECG record. 

Data to classify heart abnormalities. Chen et al. [16] used a ResNet [17] structure with 1-D 

convolutional layers for feature extraction; their network outputs a 1×512 vector for each lead. By 

concatenating the 12 resulting vectors, a matrix of size 12×512 is obtained, which is then fed into a long-

short term memory (LSTM) layer and a fully connected layer for final classification. This method classified 

seven heart abnormalities and trained on 7,704 samples. Liu et al. [18] used a biorthogonal wavelet 

transformation to denoise ECG signals. Then the E-ResNet [19] model was used as a baseline model. 

Furthermore, Pan and Tompkin’s algorithm [20] was applied to detect the R-peaks on lead Balogluet al. [21] 

proposed a deep CNN model with ten layers to classify 11 classes of 651 samples each. The suggested model 

was trained for each lead signal individually. Fayyazifaret al. [22] suggested a model of 49 1-D CNN layers, 

one LSTM layer, and 16 skip connections to classify 27 ECG signal types. Leuret al. [8] utilized the  

10-second raw data of 8-lead signals (I, II, and V1–V6), sampled at 500 Hz, as the input for a deep neural 

network with a structure similar to that of the Inception ResNet network by combining convolutional layers 

with skip connections in parallel. 

Gliner et al. [23] proposed two models trained on 41,830 samples. The first model uses the ECG 

signal data, while the second uses ECG plot images. For each model, CNN layers were used with batch 

normalization and dropout for feature extraction, then a fully connected layer and SoftMax activation layer 

were used to classify eight heart abnormalities. Nugent et al. [24] presented a method based on sub-dividing 

the classification space into bi-group classifiers generated through the deployment of neural networks. An 

evidential reasoning framework was combined with this method to accommodate any conflicts among the  

bi-group classifiers. This method was able to classify six ECG signal types using 12-lead data.  

The remainder of this paper is organized as follows: section 2 summarizes significant research on 

ECG classification, while section 3 details the method used in this study. Next, section 4 provides 

experimental details section 5 describes the findings. Finally, in section 6, conclusions are presented. 

 

 

2. METHOD AND MATERIALS 

2.1.  Dataset 

The PhysioNet/Cinc 2020 challenge [25] dataset is used in this work. It is a publicly available, 

multi-class, and multi-labeled ECG signal dataset containing 43,101 labeled ECG records. Furthermore, the 

dataset was collected from different sources, as shown in Table 1, which makes it perfect for ensuring the 

suggested method’s generalization ability. 
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Table 1. The dataset sources and the number of records for each sub-dataset 
Dataset # Records 

The China Physiological Signal Challenge (CPSC) 2018 [26] 10,330 
The St. Petersburg Institute of Cardiological Technics (INCART) database of 12-lead arrhythmias [27] 74 
The PhysikalischTechnischeBundesanstalt (PTB) [28] and the more recent PTB-XL [29] 22,353 
The Georgia 12-lead ECG Challenge (G12EC) database [25] 10,344 

 

 

No distinction is established between the data sources in this experiment and all records are pooled 

into a single repository. Furthermore, the metadata of each record includes the individual's biological 

information and gender. The average age of the participants is 60 years old. Females account for 46.9% of 

the participants, while 53.1% are males. Figure 1 shows an ECG sample from the dataset. Most of the records 

contain more than one diagnosis, and the total number of unique combinations of diagnoses is 1,414. The 

details of the 27 ECG abnormalities are shown in Figure 2, from which we infer a significant dataset class 

imbalance. Sinus rhythm (NSR) is present in more than 20,000 recordings, whereas PVCs were detected in 

less than 200 samples. Such an imbalance could undermine the model performance, as the model is likely to 

learn the diagnostic pattern from categories with many samples while ignoring the minority categories. 

 

 

 
 

Figure 1. Random ECG from the dataset 

 

 

2.2.  Data preparation 

To avoid overfitting and test the model performance efficiently, the data is split into 34,480 samples 

for training and 8,621 samples for testing. Since each record in the dataset consists of 12-lead ECG 

sequences represented as multivariate time series, the correlation between the sequence ordering and the 

leads should be investigated to enhance model performance. While the samples came from different data 

sources, as mentioned earlier, truncating and padding were used to unify the sample lengths, and all the input 

records were fixed at 5,000 data points by padding the signals shorter than 5,000 data points with zeros. The 

input size for the suggested model is a matrix of size 5,000×12. 

 

2.3.  Problem statement 

For 27 classes of 12-lead ECG signals, a pattern classification can be formulated to do the 

classifying. Each signal sample can be presented as a matrix of, so given sequence  

𝑋 = {𝑥[0], 𝑥[1], 𝑥[2], … 𝑥[𝑛]}, a classifier is trained to learn the class as in (1): 

 

𝑌̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝐶 = 𝑐|𝑋))𝑐 = 1, 2, … , 27 (1) 

 

where C represents the labels for the record list, 𝑥[𝑛] ∈  ℝ27𝑥1 is the input matrix for sample 𝑛, and 𝑌̂ is the 

class prediction. 
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Figure 2. Total counts for 27 ECG abnormalities in the original dataset 

 

 

3. THE PROPOSED MODELS 

This study adopted five DL models to achieve high classification performance. The prediction time 

is considered, so all suggested models (except the Inception-based model) are designed with as few layers 

and parameters as possible. The implementations of these proposed models are discussed next. 

 

3.1.  LSTM model 

A DL model based on LSTM is implemented to achieve a high-recognition performance on ECG 

signals derived from 12 leads. There are three gates in the LSTM unit: the input, output, and forgetting gates 

(i, y, and f, respectively). In (2)-(4) are used to calculate the outputs of these gates, while c and h in (5) and 

(7) represent the cell state and the hidden state, respectively. 
 

𝑦𝑡 = tanh (𝑊𝑦𝑥𝑡 + 𝑅𝑦ℎ𝑡−1 + 𝑏𝑦) (2) 
 

𝑖𝑡 = σ (𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 +  𝑏𝑖 + 𝑊𝑖  ⨀ 𝑐𝑡−1) (3) 
 

𝑓𝑡 = σ (𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 +  𝑏𝑓 + 𝑊𝑓  ⨀ 𝑐𝑡−1) (4) 
 

𝑐𝑡 = 𝑖𝑡  ⨀ 𝑦𝑡 + 𝑓𝑡  ⨀ 𝑐𝑡−1 (5) 
 

𝑜𝑡 = σ (𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 +  𝑏𝑜 + 𝑊𝑜 ⨀ 𝑐𝑡) (6) 
 

ℎ𝑡 =  𝑜𝑡  ⨀ tanh(𝑐𝑡) (7) 
 

Where x_t is the input at time t;W, b, and R are the input weight, bias, and recurrent weight matrices of the 

LSTM unit, respectively;σ is the sigmoid function (σ(x)= 1/(1+e^(-x))); and ⨀ represents point-wise 

multiplication. 
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Two LSTM layers with 64 units each and one dense layer with 32 units (using Relu as the activation 

function) are constructed to build a simple optimized model. For a review of this type of model, refer to [30]. 

Bidirectional LSTM is used, so the signal streams forward and backward at each time step, and the outputs of 

both streams are combined to compute the temporal relationship. The dropout technique (with a 30% rate) is 

used during the training process to avoid overfitting. The dropout mechanism turns off 30% of the dense 

layer neurons during training, which regularizes the network. Furthermore, the model is trained just for ten 

epochs to avoid making the model memorize the training data. Figure 3 and Table 2 provide details of the 

layers’ structure and the parameters of each layer to enable the reader to rebuild the proposed model. 
 
 

 
 

Figure 3. LSTM model’s layer structure 
 

 

Table 2. LSTM model's parameters 
Layer Details # Parameters 

LSTM_1 64 units 19,712 

LSTM_2 64 units 33,024 
Dense_1 32 units, Relu 2,080 

Dropout 0.3 0 

Dense_2 27 units, Sigmoid 759 
Total # parameters 55,575  

 

 

3.2.  The hybrid CNN-LSTM model 

The CNN-LSTM design is used to handle the nonlinearity and complexity of the 12-lead data. In 

addition, the CNN-LSTM design is used for specific sequence prediction problems with spatial inputs, such 

as those related to video or audio [31]. Using this method, the CNN can learn the relevant features from the 

ECG signals coming from different leads, while the LSTM bridges a long-time lag between the inputs over 

arbitrary time intervals. Practical features can be obtained because the LSTM can depict temporal patterns at 

different frequencies. One 1-D CNN layer (with 64 filters and a kernel size of 8) and one max-pooling layer 

(used for dimensionality reduction and speeding up the training process) are followed by one LSTM layer 

with 128 units and a dense layer with 27 neurons (with a Sigmoid activation function for multi-label class 

prediction). Figure 4 and Table 3 provide the details of the layers’ structure and the parameters of each layer 

to enable the reader to rebuild the proposed model. 

 

3.3.  The hybrid LSTM-GRU model 

Cho et al. [32] introduced the gated recurrent unit (GRU), which can gather associations across 

timescales in an adaptive manner. As with the LSTM, each GRU employs gating units to control the flow of 

information inside the unit. A GRU is a simplified version of the LSTM, as it has only two gates (the reset r_t 

and update z_t gates in (8) and (9)) in its architecture. It offers outstanding performance and solves the 

vanishing gradient problem [33]. The hidden state at time t can be calculated via (10). 
 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑅𝑟ℎ𝑡−1) (8) 
 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑅𝑧ℎ𝑡−1) (9) 
 

ℎ𝑡 = 𝑓(𝑊𝑥𝑡 + ℎ𝑡−1) (10) 
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The update value of the unit activation at time t is z_t, which can be found using (11): 
 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑅𝑧ℎ𝑡−1) (11) 
 

The candidate activation h ̃_t is calculated as in (12): 
 

ℎ̃𝑡 = tanh(𝑊𝑥𝑡 + 𝑅(𝑟𝑡 ⨁ ℎ𝑡−1)) (12) 
 

where ⨁ is the element-wise multiplication process. 

Combining the LSTM and GRU enables the model to learn the features of the time-space data for the 

ECG signals. The model consists of a 16-unit LSTM layer, a 100-unit GRU layer, a 32-neuron dense layer (with 

a Relu activation function), and a 27-neuron dense layer (with a Sigmoid activation function) for multi-label 

classification. The model architecture is explained in Figure 5, while Table 4 lists the layer parameters. 

 

3.4.  The hybrid CNN-GRU model 

Similar to the hybrid CNN-LSTM model, this next model uses a GRU layer instead of the LSTM. 

The CNN can extract features perfectly, but as a feed-forward neural network, it does not have input memory 

and cannot cycle formed connections in time-based data. The GRU units with their gates can solve this issue 

and the vanishing gradient problem. This model features a 1-D CNN layer with max-pooling for 

dimensionality reduction, followed by the GRU layer. The detailed model architecture is shown in Figure 6 

and Table 5. 

 

3.5.  The Inception-ResNet-v2 model 

In this model, the Inception-ResNet-v2 [17] network is utilized to categorize ECG signals. The 

network's architecture is depicted in Figure 7. It comprises three parts. In the first part, the stem has nine 

convolutional layers, and two max-pooling layers are used to pre-process the original input before it enters 

the Inception-ResNet blocks. The second part is illustrated in Figure 8. Figure 8(a) illustrates the  

Inception-ResNet-A with two 3×3 inception kernels. Figure 8(b) for dimentionalty improvement, and  

Figure 8(c) illustrates the Inception-ResNet-B with an asymmetric filter combination of one 1x7 filter and 

one 7×1 filter in the inception module. Figure 8(e) illustrates the Inception-ResNet-C with a small and 

asymmetric filter combination of one 1×3 filter and one 3×1 filter; 1×1 convolutions are utilized prior to the 

large filters in these blocks. Through asymmetric convolution splitting, the network increases the diversity of 

the filter patterns. In addition, the reductions in Figures A and C shown in Figure 8(d) are performed to 

enhance the dimension, which must balance for the Inception block's dimensionality reduction. The final part 

is the classification layer, which includes the pooling and Sigmoid algorithm. 
 
 

 
 

Figure 4. CNN-LSTM model’s layer structure 
 

 

Table 3. CNN-LSTM model's parameters 
Layer Details # Parameters 

CNN_1 64 units, kernel_size=8, strides=1, Relu 6.208 
MaxPooling Pool_size=4 0 
LSTM_1 128 units 98,816 
Dense_1 27 units, Sigmoid 2,967 
Total # parameters 107,991  
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Figure 5. LSTM-GRU model’s layer structure 
 

 

Table 4. LSTM-GRU model's parameters 
Layer Details # Parameters 

LSTM_1 16 units 1,856 

GRU 100 units 35,100 

Dense_1 32 units, Relu 3,232 
Dropout 0.3 0 

Dense_2 27 units, Sigmoid 759 

Total # parameters 40,947  
 

 

 
 

Figure 6. CNN-GRU model’s layer structure 
 

 

Table 5. CNN-GRU model's parameters 
Layer Details # Parameters 

CNN 64 units, kernel_size=8, strides=1, Relu 592 

MaxPolling Pool_size=2 0 

Dense_1 32 units, Relu 544 
GRU 100 units 39,900 

Dense_2 32 units, Relu 3,232 

Dropout 0.3 0 
Dense_3 27 units, Sigmoid 759 

Total # parameters 45,027 
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Figure 7. The architecture of the Inception-ResNet 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

 
(e) 

 

Figure 8. The architecture of the Inception-ResNet (a) inception-ResNet A, (b) reduction A, (c) inception-

ResNet B, (d) reduction B, and (e) inception-ResNet C 
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4. RESULTS AND DISCUSSION 

4.1.  Computing environment 

The training was conducted on a 1.7 GHz Intel Core i5 processor, 8 GB of RAM, a 64-bit 

instruction set on Windows 10 Pro, and a display card with a memory capacity of 2 GB from NVIDIA. 

Python was utilized as the primary programming language, and the TensorFlow package was leveraged to 

build the CNN model. 

 

4.2.  Loss function 

In this work, the binary cross-entropy loss function is used. There are many classes in most samples, 

and it calculates the probability of each class in each sample. In (13) shows how the binary cross-entropy loss 

is calculated: 

 

𝐿𝐵𝐶𝐸 = − 
1

𝑁
∑ ∑ (𝑝(𝑥𝑖𝑗). log 𝑞(𝑥𝑖𝑗) + (1 − 𝑝(𝑥𝑖𝑗). 𝑙𝑜𝑔 (1 − 𝑞(𝑥𝑖𝑗)))𝑀

𝑗
𝑁
𝑖  (13) 

 

Where: 

p(x) is the probability of class x in the target 

q(x) is the probability of class x in the prediction 

N is the number of samples, and M is the number of classes 

 

4.3.  Experimental setup 

The parameters of all the models examined in this study are initialized randomly, and for 

optimization, the Adam optimization function is used with a 0.001 initial learning rate. For callbacks, 

reduced learning is used with one patience so that the learning rate will be reduced by a factor of 0.1 when 

there is no improvement in the loss of the validation data after one epoch. Furthermore, to avoid overfitting, 

the early stopping technique is used with patience of 2 to curtail training when there is no improvement in the 

validation data loss after two epochs. Table 6 shows the training time for one epoch for each model. 

 

 

Table 6. The training time (in seconds) for one epoch for each model 
Model The training time for one epoch (in sec) 
LSTM 1,241 

CNN-LSTM 153 
GRU-LSTM 9,625 
CNN-GRU 3,814 
Inception 985 

 

 

4.4.  Evaluation metrics 

For evaluating the performance of these methods, four commonly used performance metrics are 

used in this study, namely, accuracy (14), recall (15), and precision (16), and the area under the curve  

(AUC) [34]. 

 

𝐴𝑐𝑐 =  
𝑇𝑟𝑢𝑒𝑝+ 𝑇𝑟𝑢𝑒𝑛

𝑇𝑟𝑢𝑒𝑝+ 𝐹𝑎𝑙𝑠𝑒𝑝+ 𝑇𝑟𝑢𝑒𝑛+ 𝐹𝑎𝑙𝑠𝑒𝑛
 (14) 

 

𝑅𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒𝑝

𝑇𝑟𝑢𝑒𝑝+ 𝐹𝑎𝑙𝑠𝑒𝑛
 (15) 

 

Pre =  
𝑇𝑟𝑢𝑒𝑝

𝑇𝑟𝑢𝑒𝑝+ 𝐹𝑎𝑙𝑠𝑒𝑝
 (16) 

 

Here, 𝑇𝑟𝑢𝑒𝑝 denotes a true positive, 𝑇𝑟𝑢𝑒𝑛 denotes a true negative, 𝐹𝑎𝑙𝑠𝑒𝑝 indicates a false 

positive, and 𝐹𝑎𝑙𝑠𝑒𝑛 indicates a false negative. The AUC is the performance aggregation measure across all e 

possible thresholds for classification. The AUC value is contained in [0,1], and a higher value means better 

model performance. 

 

 

5. RESULTS  

As mentioned earlier, the dataset is split into 34,480 samples for training and 8,621 samples for 

testing. The loss function graphs for all the suggested models are shown in Figure 9 (in Appendix). Note the 
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stability of all models (convergence) and the low variability between the training and validation data. 

However, except for the CNN-LSTM model, the loss graphs indicate some instability and high variability, a 

sign of overfitting. Figure 10 (in Appendix) shows the accuracy and precision graphs for the training and 

validation data over the entire dataset; note that the models mostly converge after six to eight epochs. 

The performances of all the proposed models are measured using the test data (8,621 samples that 

the models have not trained on before). Table 7 shows the performance of each model across the entire 

dataset. The results are further analyzed in the discussion section. 

 

 

Table 7. The performance metrics for the proposed models across the entire dataset 
Model Accuracy Recall Precision AUC Loss 
LSTM 0.96 0.27 0.71 0.62 0.15 

CNN-LSTM 0.95 0.17 0.58 0.53 0.16 
LSTM-GRU 0.96 0.30 0.80 0.70 0.14 
CNN-GRU 0.96 0.30 0.82 0.67 0.14 
Inception 0.97 0.38 0.84 0.77 0.11 

 

 

6. DISCUSSION 

This study is one of the first studies to use DL to diagnose 27 cardiac abnormalities automatically 

based on a large volume of data on 12-lead ECGs. We have shown that a DL technique is capable of 

accurately categorizing 12-lead ECG results. Additionally, the Inception model had a high accuracy of 0.97, 

while the other models had accuracies of 0.96. These findings suggest that a DL method will be useful for 

ECG triage and able to minimize the clinical workload through enhanced prioritizing of ECGs for 

interpretation by a cardiologist. Note that non-cardiologists accurately diagnose 35% to 95% of cardiac 

issues, with considerable variance among physicians and increases in performance with experience [35]–[37].  

The dataset used in this study is challenging because it came from different sources and the classes 

are imbalanced. Furthermore, solving multi-label classification problems is more complicated than solving 

multi-class problems [38]. Nevertheless, Table 7 shows the high precision-low recall obtained results for all 

the models, indicating that when it was difficult to label a sample, the models chose not to predict an 

incorrect label, increasing the false-negative error. According to Figures 11 and 12 (in Appendix), most 

models converged after a few epochs (six to eight epochs in most cases). The Inception model, which uses 

residual networks and CNN, obtained the best performance.  

In addition, the other models achieved close results despite their simple structures. Of the models 

that used CNN for feature extraction (CNN-LSTM and CNN-GRU), the results obtained by the GRU-based 

model were significantly better in terms of precision, recall, and the AUC. On the other hand, the  

GRU-LSTM obtained results close to those of the CNN-GRU model but with a higher training time  

(see Table 6), as the max-pooling layer in the CNN-GRU model provides dimensionality reduction. The 

diversity of the dataset’s sources is an advantage for testing the generalization abilities of the models. 

Furthermore, we trained the models using the PTB-XL dataset to test the proposed models on a single-source 

dataset. The results in Table 8 and Figures 11 and 12 (in Appendix) show significant increases in recall value 

(lower false negative) and the AUC. 

 

 

Table 8. The performance metrics for the proposed models on the PTB-XL dataset 
Model Accuracy Recall Precision AUC Loss 
LSTM 0.95 0.48 0.83 0.59 0.16 

CNN-LSTM 0.95 0.48 0.83 0.55 0.16 
LSTM-GRU 0.95 0.49 0.84 0.69 0.15 
CNN-GRU 0.95 0.49 0.84 0.63 0.15 
Inception 0.97 0.64 0.87 0.84 0.10 

 

 

6.1.  Comparison with other models 

Many methods have been suggested in the literature for ECG signal classification. Nevertheless, the 

number of classes and leads used differ across these studies, which should be considered when comparing 

their performances. Table 9 compares this paper’s methods and some related approaches (N and MI stand for 

normal class and myocardial infarction, respectively). The comparison shows that our Inception method 

outperformed all other methods, although it classifies 27 multi-label classes and uses a dataset based on 

different sources. Total counts for 27 ECG abnormalities in the original dataset and their corresponding 

abbreviations are explained in Table 10. 
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Table 9. Comparison of the methods with related methods 
Study # Leads # Classes Dataset Method Accuracy 

[39] 12 2 
N 31,722 
MI 49,930 

CNN 0.935 

[40] 3 2 
N 5,000 

MI 15,000 
Fourier/logistic regression 0.956 

[41] 12 3 
PTB and AF-

challenge 
CNN-LSTM 0.946 

[16] 12 7 7,704 samples ResNet-LSTM 0.81 
This study 12 27 [25] Inception 0.97 

 

 

Table 10. ECG abnormalities and their corresponding abbreviations 
ECG abnormality Abbreviation 

1st degree AV block 
Atrial fibrillation 

Atrial flutter 

Bradycardia 
Complete right bundle branch block 

Incomplete right bundle branch block 

Left anterior fascicular block 
Left axis deviation 

Left bundle branch block 

Low QRS voltages 
Nonspecific intraventricular conduction disorder 

Pacing rhythm 

Premature atrial contraction 
Premature ventricular contractions 

Prolonged PR interval 

Prolonged QT interval 
Q wave abnormal 

Right axis deviation 

Right bundle branch block 
Sinus arrhythmia 

Sinus bradycardia 

Sinus rhythm 
Sinus tachycardia 

Supraventricular premature beats 

T wave abnormal 
T wave inversion 

Ventricular premature beats 

IAVB 
AF 

AFL 

Brady 
CRBBB 

IRBBB 

LAnFB 
LAD 

LBBB 

LQRSV 
NSIVCB 

PR 

PAC 
PVC 

LPR 

LQT 
QAb 

RAD 

RBBB 
SA 

SB 

NSR 
STach 

SVPB 

Tab 
TInv 

VPB 

 

 

7. CONCLUSION 

This work presents an end-to-end method for automatic 12-lead ECG classification. Among five 

suggested models, the Inception network-based model achieved the best performance, with an accuracy of 

0.97. The suggested model classifies 27 multi-label abnormalities indicated by 12-lead ECG signals, while 

the related methods classify nine types, at most. Experiments show that our suggested model outperforms the 

other related models on a large dataset based on different sources and a single dataset from the same source. 

Additionally, because all of the datasets utilized are real-world data, we feel that this approach can be 

developed and applied in the medical field or used as a screening tool in conditions/locations where access to 

a 12-lead ECG is limited. We suggest solving the imbalanced dataset problem in future works, which can be 

done by collecting more samples or through various techniques, such as data generation, to improve the 

classification of rare heart abnormalities. 
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APPENDIX 
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LSTM-GRU CNN-GRU 

 
Inception 

 

Figure 9. Loss per epoch for the models trained on the entire dataset 

 

 

  
LSTM CNN-LSTM 

  

Figure 10. Accuracy per epoch for the models trained on the entire dataset 
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LSTM-GRU CNN-GRU 

 
Inception 

 

Figure 10. Accuracy per epoch for the models trained on the entire dataset (continue) 
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Figure 11. Loss per epoch for the models trained on the PTB-XL dataset 
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Inception 

 

Figure 11. Loss per epoch for the models trained on the PTB-XL dataset (continue) 
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LSTM-GRU CNN-GRU 

 
Inception 

 

Figure 12 . Accuracy per epoch for the models trained on the PTB-XL dataset 
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