
Bulletin of Electrical Engineering and Informatics 

Vol. 12, No. 3, June 2023, pp. 1237~1247 

ISSN: 2302-9285, DOI: 10.11591/eei.v12i3.4559      1237  

 

Journal homepage: http://beei.org 

Loss reduction of transmission lines using PSO-based optimum 

performance of UPFC 
 

 

Shaimaa A. Hussein1, Dhari Yousif Mahmood1, Ali Hussein Numan2 

1Department of Electrical Engineering, University of Technology, Baghdad, Iraq 
2Department of Electromechanical Engineering, University of Technology, Baghdad, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Aug 14, 2022 

Revised Oct 10, 2022 

Accepted Nov 12, 2022 

 

 Transmission line losses are one of the essential topics and issues in power 

systems research. Several methods and techniques have been used to reduce 

these losses, and one of these modern techniques is flexible alternating 

current transmission systems (FACTS). In this paper, one of the most 

important types of this technology, the unified power flow controller 

(UPFC), was used to reduce losses in the Iraqi national grid (ING) 400 kV. 

This paper presents an efficient method for minimizing losses of 

transmission lines in the ING system (400 kV) 46-bus approach. A particle 

swarm optimization (PSO)-based optimum proportional-integral (PI) 

controller with UPFC was proposed to obtain the optimal location of UPFC 

and optimum parameters of the PI controller to achieve the objective 

function of the research. MATLAB coded the algorithm. The Newton-

Raphson method was employed to perform load flow analysis. The results 

showed that the best place for UPFC is buses (14-17) named BGE4 

(Baghdad)-AMN4 (Baghdad), and the total active power and reactive power 

losses decreased from 727.4593 to 579.3874 MW and from 5155.9 to 3971.1 

MVAR, respectively and also led to voltage regulation. 
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1. INTRODUCTION 

Transmission lines are now under more pressure than ever and thus have a greater chance of line 

failure due to increased demand for electricity and an inability to keep pace due to resource and 

environmental constraints. Improving system reliability and safety can be as simple as installing new 

transmission lines. But due to political and environmental factors, this becomes a long process. New 

technology is being developed to make the electric grid more reliable and safe, such as flexible alternating 

current transmission systems (FACTS) [1]. The FACTS technology is astonishingly and swiftly integrated 

with power transmission networks. It can give power transmission lines the boost they need, especially the 

unified power flow controller (UPFC) type; two converters and two transformers are included, one connected 

in series with the transmission line and the other in parallel. UPFC controls the flow of actual and reactive 

power through the transmission line independently by inserting voltage into the transmission line [2]–[4]. 

Minimizing power losses is one of the primary goals of installing FACTS devices in power grids; 

therefore, almost all articles dealing with these devices have addressed this issue [5]–[9]. Numerous authors 

have looked into the advantages of UPFC placement on system performance. However, the best placements 

for UPFC devices are essential due to their high price. Several strategies, including classical, heuristic, and 

mixed techniques, are available in the literature for resolving these FACTS optimisation problems. However, 

https://creativecommons.org/licenses/by-sa/4.0/
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all of these methods have disadvantages in addition to their advantages. Heuristics techniques such as genetic 

algorithms (GA), differential evolution, particle swarm optimisation (PSO), evolutionary programming, and 

evolution strategies are commonly employed for optimisation problems. These techniques can calibrate 

optimal outcomes with less complexity [10]. 

Research by Kashyap and Rahangdale [11], PSO is used to fix many problems with electrical power 

transmission networks. It can reduce system losses, improve line voltages, and increase transmission 

capacity. Salman et al. [12] employed GA to identify the best location for UPFC devices to optimize voltage 

profiles, reduce power losses, control power flow in overloaded transmission lines, and decrease power 

generation in the local Iraqi network (Diyala 132 kV). Two types of artificial algorithms, imperialist 

competitive algorithm (ICA) and PSO, were compared in [13], and FACTS devices effects are displayed to 

minimize network losses. It has been shown that the PSO algorithm with UPFC reduces both active and 

reactive power losses more than other FACTS device types and intelligent algorithms. Although UPFC has 

several advantages, its controller design remains a problem because it is a multi-variable controller. 

Numerous control strategies have been implemented to control UPFC for various power system applications. 

Qader [14] proposed a systematic technique based on optimal control and tracking with a proportional-

integral (PI) controller for the UPFC, desired steady-state behaviour, and a linear quadratic tracker, 

MATLAB/Simulink model. Deka et al. [15] presents the MATLAB/Simulink fuzzy UPFC model based on 

PI to improve the power quality by correcting the load voltage and changing the active and reactive power. 

El-Emari et al. [16] proposed an optimized PI–derivative (PID) controller for the UPFC; the suggested 

system uses the algorithm (ICA) to determine the optimal PID free gain values. After optimizing the 

controller, it is applied to a simple standard procedure, and the results show that the proposed method works 

well. According to Romasevych et al. [17], the gains of the PI controller were calibrated using the PSO; the 

control system under consideration was a PI controller cascaded with a general plant. Roslan et al. [18] 

proposed a PSO algorithm to improve the performance of the PI controller in a real-time simulation system 

by finding the optimum values for the PI controller parameters. All of this research implemented the control 

by Simulink. The following points are the primary contributions of this paper: i) proposed PSO-based 

optimum PI controller parameters to find the optimum performance of UPFC by controlling the voltage of 

the two converters of the UPFC device and finding the optimal location of this device. The proposed 

algorithm is coded in MATLAB code (M-file); ii) the objective function of the research is to minimize the 

transmission line's active and reactive power loss; and iii) the proposed method is tested on the Iraqi national 

grid (ING) (46-bus) system. 

 

 

2. PROPOSED METHOD 

To achieve the objective mentioned in the paper's contributions. PSO is used to determine the 

optimal location of the UPFC and the optimum parameters of the PI controller. The study method is 

discussed thoroughly: UPFC modelling and the proposed PSO-based optimum PI controller with UPFC.  

 

2.1.  Unified power flow controller 

The UPFC concept was proposed by Gyugyi [19]. The use of UPFC makes it possible to 

simultaneously control the impedance of a transmission line, the phase angle, the magnitude of the voltage, 

and the active and reactive power flow [20]–[23]. As shown in Figure 1 [12], UPFC comprises two voltage-

sourced converters, one coupled in a shunt (i.e. STATCOM) and the other in a series ((i.e. SSSC) [24], [25]. 

By injecting an AC voltage with a controllable magnitude and phase angle in series with the transmission line 

via a series-connected coupling transformer, the series converter performs the primary role of a UPFC. On 

the other hand, the main job of the shunt converter is to give or take the actual power that the series converter 

needs at the common DC link [26]. Figure 2 [12] shows the UPFC's electrical model. 

The essential operation of UPFC and the needed to apply PSO to it to find the location and 

parameters of PI-based UPFC controller on the power transmission network ING (400 kV). As a result, (1) 

through (16) [12] are used to implement the PSO program. To achieve the given goals that will be discussed 

using in the following section: 

 

𝐸𝑣𝑅 = 𝑉𝑣𝑅(cos⁡ 𝛿𝑣𝑅 + 𝑗sin⁡ 𝛿𝑣𝑅) (1) 

 

𝐸𝑐𝑅 = 𝑉𝑐𝑅(cos⁡ 𝛿𝑐𝑅 + 𝑗sin⁡ 𝛿𝑐𝑅) (2) 

 

Re{−𝐸𝑣𝑅𝐼𝑣𝑅
∗ + 𝐸𝑐𝑅𝐼𝑚

∗ } = 0 (3) 
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[
I𝐾
I𝑚

] = [
(Y𝑐𝑅 + Y𝑣𝑅) −Y𝑐𝑅 −Y𝑐𝑅 −Y𝑣𝑅

−Y𝑐𝑅 Y𝑐𝑅 Y𝑐𝑅 0
] [

V𝐾

V𝑚

E𝑐𝑅

E𝑣𝑅

] (4) 

 

where: 

𝐸𝑣𝑅 , 𝐸𝑐𝑅: UPFC voltage sources 

𝑉𝑣𝑅: the controllable magnitude supplying the shunt converter ((𝑉𝑣𝑅 ⁡min)≤⁡𝑉𝑣𝑅≤(𝑉𝑣𝑅 max)) 

𝛿𝑣𝑅: the phase angle of the shunt converter (0 ≤𝛿𝑣𝑅≤ 2π) 

𝑉𝑐𝑅: the controllable voltage magnitude supplying the series converter ((𝑉𝑐𝑅 min)≤𝑉𝑐𝑅≤𝑉𝑐𝑅max)) 

𝛿𝑐𝑅: the phase angle of the series converter (0 ≤𝛿𝑐𝑅 ≤ 2π) [12] 

bus K: 

 
𝑃𝐾 = 𝑉𝑘

2⁡𝐺𝐾𝐾 +⁡𝑉𝐾𝑉𝑚[𝐺𝐾𝑚 cos( 𝜃𝐾 − 𝜃𝑚) + 𝐵𝐾𝑚𝛿ⅈ𝑛(𝜃𝐾 − 𝜃𝑚)] + 𝑉𝐾𝑉𝑐𝑅[𝐺𝐾𝑚 cos⁡( 𝜃𝐾 − 𝛿𝑐𝑅)  

+𝛿ⅈ𝑛(𝜃𝑘 − 𝛿𝑐𝑅)] + 𝑉𝐾𝑉𝑣𝑅⁡[𝐺𝑣𝑅 cos⁡( 𝜃𝐾 − 𝛿𝑣𝑅) + 𝐵𝑣𝑅 ⁡𝛿ⅈ𝑛(𝜃𝐾 − 𝛿𝑣𝑅)] (5) 

 

𝑄𝐾 = −𝑉𝐾
2⁡𝐵𝐾𝐾 + 𝑉𝐾𝑉𝑚[𝐺𝑘𝑚𝛿ⅈ𝑛(𝜃𝐾 − 𝜃𝑚) − 𝐵𝐾𝑚 cos(𝜃𝐾 − 𝜃𝑚)]  

+𝑉𝐾𝑉𝑐𝑅[𝐺𝐾𝑚𝛿ⅈ𝑛(𝜃𝐾 − 𝛿𝑐𝑅) − ⁡𝐵𝑘𝑚 cos. (𝜃𝐾 − 𝛿𝑐𝑅)] + 𝑉𝐾𝑉𝑣𝑅[⁡𝐺𝑣𝑅 ⁡ 𝛿ⅈ𝑛(𝜃𝐾 − 𝛿𝑣𝑅)  

+𝐵𝑣𝑅 cos(𝜃𝐾 − 𝛿𝑣𝑅)] (6) 

 

bus m: 

 

𝑃𝑚 = 𝑉𝑚
2𝐺𝑚𝑚 + 𝑉𝑚𝑉𝐾[𝐺𝑚𝐾 cos(𝜃𝑚 − 𝜃𝐾) + 𝐵𝑚𝐾𝛿ⅈ𝑛(𝜃𝑚 − 𝜃𝐾)]  

+𝑉𝑚𝑉𝑐𝑅[𝐺𝑚𝑚 . cos(𝜃𝑚 − 𝛿𝑐𝑅) + 𝐵𝑚𝑚𝛿ⅈ𝑛(. 𝜃𝑚 − 𝛿𝑐𝑅)] (7) 

 

𝑄𝑚 = −𝑉𝑚
2𝐵𝑚𝑚 + 𝑉𝑚𝑉𝐾[𝐺𝑚𝐾𝛿ⅈ𝑛(𝜃𝑚 − 𝜃𝐾) − 𝐵𝑚𝐾 cos⁡(𝜃𝑚 −𝜃𝐾)]  

+𝑉𝑚𝑉𝑐𝑅[𝐺𝑚𝑚 ⁡𝛿ⅈ𝑛(𝜃𝑚 − 𝜃𝑐𝑅) − ⁡𝐵𝑚𝑚 cos( 𝜃𝑚 −𝛿𝑐𝑅)] (8) 

 

where: 

𝑃𝐾: active power of bus k, 𝑃𝑚 : active power (bus m) 

𝑄𝐾: reactive power (bus k),⁡𝑄𝑚 : reactive power (bus m) 

𝑉𝐾, Vm: voltage magnitudes of bus k and bus m, respectively 

𝐵𝐾𝑚, 𝐵𝑚𝐾 : substances between connecting buses k and m 

𝐺𝐾𝑚,⁡𝐺𝑚𝐾: conductance between buses k and m, respectively 

𝐵𝑚𝑚, B𝐾𝐾: substances of bus k and bus m, respectively 

𝐺𝑚𝑚 , 𝐺𝑘𝑘: conductance at bus k and n 

series converter 

 

𝑃𝑐𝑅 = 𝑉𝑐𝑅
2 𝐺𝑚𝑚 + 𝑉𝑐𝑅𝑉𝐾[𝐺𝑘𝑚 cos(𝛿𝑐𝑅 − 𝜃𝐾) + 𝐵𝐾𝑚 δin(𝛿𝑐𝑅 − 𝜃𝐾)]  

+𝑉𝑐𝑅𝑉𝑚[𝐺𝑚𝑚 𝑐𝑜𝑠(𝛿𝑐𝑅 − 𝜃𝑚)⁡+𝐵𝑚𝑚 𝛿ⅈ𝑛(𝛿𝑐𝑅 − 𝜃𝑚) (9) 

 

𝑄𝑐𝑅 = −𝑉𝑐𝑅⁡
2 𝐵𝑚𝑚 + 𝑉𝑐𝑅𝑉𝐾[𝐺𝐾𝑚𝛿ⅈ𝑛(𝛿𝑐𝑅 − 𝜃𝐾) − 𝐵𝐾𝑚 cos( 𝛿𝑐𝑅 − 𝜃𝐾)]  

+𝑉𝑐𝑅𝑉𝑚[𝐺𝑚𝑚𝛿ⅈ𝑛(𝛿𝑐𝑅 − 𝜃𝑚𝑚) − 𝐵𝑚𝑚 cos( 𝛿𝑐𝑅 − 𝜃𝑚) (10) 

 

shunt converter 

 

𝑃𝑣𝑅 = −𝑉𝑣𝑅
2 𝐺𝑣𝑅 + 𝑉𝑣𝑅𝑉𝐾[𝐺𝑣𝑅 cos( 𝛿𝑣𝑅 − 𝜃𝐾) + 𝐵𝑣𝑅𝛿ⅈ𝑛(𝛿𝑣𝑅 −⁡𝜃𝐾)] (11) 

 

𝑄𝑣𝑅 = 𝑉𝑣𝑅
2 𝐵𝑣𝑅 + 𝑉𝑣𝑅𝑉𝐾 ⁡[𝐺𝑣𝑅𝛿ⅈ𝑛(𝛿𝑣𝑅 − 𝜃𝐾) − 𝐵𝑣𝑅 cos(𝛿𝑣𝑅 − 𝜃𝐾)] (12) 

 

Δ𝑃𝑏𝑏 = 𝑃𝑣𝑅 + 𝑃𝑐𝑅 = 0 (13) 
 

𝑃𝑣𝑅 + 𝑃𝑐𝑅 = 𝑃𝐾 + 𝑃𝑚 = 0 (14) 
 

where: 

𝑃𝑐𝑅
, 𝑃𝑣𝑅

: series and shunt converters active power, respectively 

𝑄𝑐𝑅 , 𝑄𝑣𝑅 : series and shunt converters reactive power, respectively 

Δ𝑃𝑏𝑏⁡: represent the power mismatch 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 3, June 2023: 1237-1247 

1240 

[
 
 
 
 
 
 

Δ𝑃𝐾

Δ𝑃𝑚

Δ𝑄𝐾

Δ𝑄𝑚

Δ𝑃𝑚𝐾

Δ𝑄𝑚𝐾

Δ𝑃𝑏𝑏 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

⁡⁡

∂𝑃𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡

∂𝑃𝐾

∂𝜃𝑚

∂𝑃𝐾

∂𝑉𝑣𝑅
𝑉𝑣𝑅 ⁡

∂𝑃𝐾

∂𝑉𝑚
𝑉𝑚 ⁡⁡

∂𝑃𝐾

∂𝛿𝑐𝑅

∂𝑃𝐾

∂𝑉𝑐𝑅
𝑉𝑐𝑅

∂𝑃𝐾

∂𝛿𝑣𝑅

∂𝑃𝑚

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡

∂𝑃𝑚

∂𝜃𝑚
0 ⁡⁡

∂𝑃𝑚

∂𝑉𝑚
𝑉𝑚

∂𝑃𝑚

∂𝛿𝑐𝑅

∂𝑃𝑚

∂𝑉𝑐𝑅
𝑉𝑐𝑅 0

∂𝑄𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝐾

∂𝜃𝑚

∂𝑄𝐾

∂𝑉𝑣𝑅
𝑉𝑣𝑅 ⁡

∂𝑄𝐾

∂𝑉𝑚
𝑉𝑚

∂𝑄𝐾

∂𝛿𝑐𝑅

∂𝑄𝑘

∂𝑉𝑐𝑅
𝑉𝑐𝑅

∂𝑄𝐾

∂𝛿𝑣𝑅

∂𝑄𝑚

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝑚

∂𝜃𝑚
0 ⁡

∂𝑄𝑚

∂𝑉𝑚
𝑉𝑚

∂𝑄𝑚

∂𝛿𝑐𝑅

∂𝑄𝑚

∂𝑉𝑐𝑅
𝑉𝑐𝑅 0

∂𝑃𝑚𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡⁡

∂𝑃𝑚𝐾

∂𝜃𝑚
0 ⁡⁡⁡

∂𝑃𝑚𝐾

⁡∂𝑉𝑚
𝑉𝑚

∂𝑃𝑚𝐾

∂𝛿𝑐𝑅

∂𝑃𝑚𝐾

∂𝑉𝑐𝑅
𝑉𝑐𝑅 0

∂𝑄𝑚𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡

∂𝑄𝑚𝐾

∂𝜃𝑚
0 ⁡⁡⁡⁡

∂𝑄𝑚𝐾

⁡⁡∂𝑉𝑚
𝑉𝑚

∂𝑄𝑚𝐾

∂𝛿𝑐𝑅

∂𝑄𝑚𝐾

∂𝑉𝑐𝑅
𝑉𝑐𝑅 0

∂𝑃𝑏𝑏

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡

∂𝑃𝑏𝑏

∂𝜃𝑚
⁡⁡⁡

∂𝑃𝑏𝑏

⁡∂𝑉𝑣𝑅
𝑉𝑣𝑅 ⁡⁡⁡

∂𝑃𝑏𝑏

⁡∂𝑉𝑚
𝑉𝑚

∂𝑃𝑏𝑏

∂𝛿𝑐𝑅

∂𝑃𝑏𝑏

∂𝑉𝑐𝑅
𝑉𝑐𝑅

∂𝑃𝑏𝑏

∂𝛿𝑣𝑅]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
Δ𝜃𝐾

Δ𝜃𝑚
Δ𝑉𝑣𝑅

𝑉𝑣𝑅

Δ𝑉𝑚

𝑉𝑚

Δ𝛿𝑐𝑅
Δ𝑉𝑐𝑅

𝑉𝑐𝑅

Δ𝛿𝑣𝑅]
 
 
 
 
 
 
 
 
 

 (15) 

 

[
 
 
 
 
 
 
Δ𝑃𝐾

Δ𝑃𝑚

Δ𝑄𝐾

Δ𝑄𝑚

Δ𝑃𝑚𝐾

Δ𝑄𝑚𝐾

Δ𝑃𝑏𝑏 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

∂𝑃𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡⁡⁡

∂𝑃𝐾

∂𝜃𝑚
⁡
∂𝑃𝐾

∂𝑉𝐾
𝑉𝐾 ⁡⁡⁡⁡

∂𝑃𝐾

∂𝑉𝑚
𝑉𝑚

⁡∂𝑃𝐾

∂𝛿𝑐𝑅

⁡∂𝑃𝐾

∂𝑉𝑐𝑅
𝑉𝑐𝑅

∂𝑃𝐾

∂𝛿𝑣𝑅

∂𝑃𝑚

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡⁡

∂𝑃𝑚

∂𝜃𝑚

∂𝑃𝑚

∂𝑉𝐾
𝑉𝐾 ⁡⁡⁡⁡⁡

∂𝑃𝑚

∂𝑉𝑚
𝑉𝑚

∂𝑃𝑚

∂𝛿𝑐𝑅

∂𝑃𝑚

∂𝑉𝑐𝑅
𝑉𝑐𝑅 0

∂𝑄𝐾

∂𝜃𝐾
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝐾

∂𝜃𝑚

∂𝑄𝐾

∂𝑉𝐾
𝑉𝐾 ⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝐾

∂𝑉𝑚
𝑉𝑚

∂𝑄𝐾

∂𝛿𝑐𝑅

∂𝑄𝐾

∂𝑉𝑐𝑅
𝑉𝑐𝑅

∂𝑄𝐾

∂𝛿𝑣𝑅

∂𝑄𝑚

∂𝐴𝐾
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝑚

∂𝜃𝑚

∂𝑄𝑚

∂𝑉𝐾
𝑉𝐾 ⁡⁡⁡⁡⁡⁡⁡

∂𝑄𝑚

∂𝑉𝑚
𝑉𝑚

∂𝑄𝑚
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Figure 1. The basic scheme of UPFC 

 

 

 
 

Figure 2. The electrical model of UPFC 
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2.2.  Particle swarm optimization 

Kennedy and Eberhart [27] proposed a PSO algorithm. This algorithm could be found in the 

congestion intelligence branch. This algorithm allows users to share knowledge and experiences. Simulating 

simplified versions of society was used to generate PSO [28]. The following is how the system works [29]: 

- The process is used to research swarms like fish schools and flocks of birds. 

- It is founded on basic ideas. As a result, it only uses a small amount of memory and computes quickly. 

- It was designed for non-linear optimisation problems with continuous variables initially. 

The velocity may be used to express this modification, and the following can be used to change the 

speed of each agent [30], [31]: 

 

𝑉𝑖𝑑
𝐾𝑜+1 = 𝑤𝑉𝑖𝑑

𝐾𝑜 + 𝐶1 × rand( Pbest 𝑖𝑑 − 𝑋𝑖𝑑
𝑘𝑜) + 𝐶2 ⁡× ⁡𝑟𝑎𝑛𝑑(⁡Gbest⁡𝑖𝑑 − 𝑋𝑖𝑑

𝑘𝑜) (17) 

 

𝑋𝑖𝑑
𝑘𝑜+1 = 𝑋𝑖𝑑

𝑘𝑜 + 𝑉𝑖𝑑
𝑘𝑜+1 (18) 

 

where: 

i=1,2,3.……n, d=1,2,3…….m, n. Group's number of particles, m particle members 

𝑋𝑖𝑑
𝑘𝑜⁡𝑎𝑛𝑑⁡𝑋𝑖𝑑

𝑘𝑜+1 represent a current and modified searching point,𝑉𝑖𝑑
𝐾𝑜and 𝑉𝑖𝑑

𝐾𝑜+1 represents the current 

velocity and modified velocity,⁡𝑉𝑝𝑏𝑒𝑠𝑡 ⁡and 𝑉𝑔𝑏𝑒𝑠𝑡  represents velocity based on ⁡𝑝𝑏𝑒𝑠𝑡 ⁡and ⁡𝑔𝑏𝑒𝑠𝑡  

𝑃𝑏𝑒𝑠𝑡 ith particle's best position,⁡𝐺𝑏𝑒𝑠𝑡  is the group's best particle,⁡𝑤𝑖 the agent′s weight function velocity, 

𝐶1, 𝐶1 : Acceleration constant: 

 

𝑤(i) = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

k𝑜𝑚𝑎𝑥
) ∗ 𝑘0 (19) 

 

where: 

𝑤𝑚𝑎𝑥 , 𝑤𝑚𝑖𝑛: represent maximum and minimum weight 

𝑘0 ,⁡k𝑜𝑚𝑎𝑥: represent current iteration and maximum, respectively 

In this paper, the proposed PSO-based optimum PI controller with UPFC system and location design 

procedure is shown in Figure 3. The flow chart of this proposal is shown in Figure 4. The PSO parameters 

used in the proposed work are given in Table 1. 
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Figure 3. The proposed PSO-based optimum PI controller with UPFC system and location design procedure 
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Start

Reset PSO parameters: number of iteration (T), 

size of the population (N), number of problem 

dimension (D),  c1, c2 and w  

End

Yes

Generate initial population 

t > T

Reach maximum iteration?

Evaluate the velocity and update position for 

each agent by using Equation (17) and (18) 
t = t + 1

No

Save of optimal the PI controller based UPFC system and location

 

Yes

 

Run the system with PI controller based UPFC 

and location select for each agent (Pkm)

Calculate objective function for each agent  

(Pkm) using Equation (20)

i > N

Reach Maximum population?
No

i=i+1

 

Run the system with PI controller based UPFC 

and location select for each agent  (Pkm)

Calculate objective function for each agent  

(Pkm) using Equation (20)

i > N

Reach Maximum population?
No

i=i+1

 
 

Figure 4. Flow chart of the proposed PSO-based optimum PI controller with UPFC system and location 

design procedure 

 

 

Table 1. The parameters of PSO 
Parameters of PSO 

Number of particles 20  

Number of iterations 100 

Number of variables 5 

C1, C2 1.5 

W 0.5 

 

 

2.3.  Proportional-integral controller 

The approach of selecting the parameter settings (proportional and integral) gains of the PI 

controller of the series and shunt converter should be chosen to increase the regulated process's stability [32]. 

Control loop tuning is adjusting the system parameters to achieve the best possible system outputs. From 

Figure 3, (Kp) represent proportional gain, (Ki) means integral gain, (Vse) describe the magnitude of the 

UPFC series voltage source converter, and (Vsh) represents the magnitude of the UPFC shunt voltage source 

converter. Each particle from the PSO search for five variables of the system, the parameters of controller Kp 

and Ki of the two converters series and shunt, and the optimal location of the UPFC. The total power flow 

losses for each particle population of the grid with UPFC were obtained from the Newton Raphson method 

by MATLAB code.  
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3. RESULTS AND DISCUSSION  

The ING (46-bus) was used as the case study; the system consists of 22 generator buses and 42 load 

buses. Figure 5 shows the single-line diagram of the ING system. The following approach has been 

implemented on the ING system: two scenarios have been examined: 

- Case 1: pre-optimization (without UPFC) 

- Case 2: losses minimisation with UPFC installation using PSO proposed 
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Figure 5. ING's single-line diagram 

 

 

3.1.  Case 1: pre-optimization (without UPFC) 

The ING (400 kV) systems are employed as test systems to validate the proposed PSO algorithm. The 

PSO algorithm is written in the computer programming language MATLAB. There were 73 transmission lines, 

bus 23 (KUTP) is the slack bus in this situation, and the ING data is based on the Iraqi Ministry of Electricity 

database. By modelling the ING in the MATLAB code program, the system's total active and reactive losses are 

727.4593 MW, total reactive losses are 5155.9 MVAR, and total apparent power is 5207 MVA. 

 

3.2.  Case 2: losses minimization with UPFC installation using PSO proposed 

The Newton-Raphson method was employed to perform load flow analysis, and loss minimization 

of active and reactive power losses was chosen as this work's primary goal by (20):  

 

𝑜𝑏𝑗𝑒𝑐𝑡ⅈ𝑣𝑒⁡𝑓𝑢𝑛𝑐𝑡ⅈ𝑜𝑛 = ∑ 𝑚ⅈ𝑛⁡(𝑆𝑙𝑜𝑠𝑠)
𝑁𝑏

𝑖=1
 (20) 

 

𝑆𝑙𝑜𝑠𝑠⁡represent the total active and reactive power loss of the lines, and Nb: is the number of the transmission 

lines. The response of the objective function is shown in Figure 6. The PSO algorithm with PI controller 

suggests installing UPFC on buses (14-17), BGE4 (Baghdad)-AMN4 (Baghdad). The active and reactive 

power losses of the lines without UPFC and UPFC-based PSO-PI are shown in Figures 7 and 8. 
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Figure 6. The response of the objective function 

 

 

 
 

Figure 7. The active power losses 

 

 

 
 

Figure 8. The reactive power losses 

 

 

Figure 9 illustrates the system's active losses decreased from 727.4593 to 579.3449 MW, while the 

reactive losses decreased from 5155.9 to 39711 MVAR, as shown in Table 2, an improvement in loss of 19% 

and 23%, respectively. The results of the optimization are in Table 3. The reduction in losses improves the 

voltage magnitude of the buses, as shown in Figure 10.  
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Figure 9. Total active and reactive power losses 

 

 

Table 2. The total amount of active and reactive losses both before and after compensation 
Losses Without UPFC with UPFC (PI-PSO) Improvement (%) 

P total (MW) 727.4593 594.3449 19 
Q total (MVAR) 5155.9 3971.1 23 
S total (MVA) 5207 4015.3 23 

 

 

Table 3. The results of the proposed optimisation 
PI parameters Location of UPFC 

Kps Kis Kpsh Kish (14-17) 
0.0016 6.82e-04 0.1076 0.0382 BGE4-AMN4 

 

 

 
 

Figure 10. Voltage magnitude in p.u. with and without UPFC 

 

 

4. CONCLUSION 

The paper proposes an optimized PI controller to control the UPFC. In the proposed system, a PSO 

algorithm was used to find the optimum values of PI gains and the optimal location of the UPFC. This 

proposed method was tested on the ING system. The results show good performance has been achieved in 

minimizing losses. The optimal location of the UPFC was between bus 14 and bus 17, which was named 

BGE4 (Baghdad)-AMN4 (Baghdad), and the total active power and reactive power losses of the ING power 

system decreased from 727.4593 to 579.3874 MW and from 5155.9 to 3971.1 MVAR, respectively. As a 

result, voltage regulation was achieved. The future study can replace the PI controller with a fuzzy logic 

controller and compare the results from the two controllers. 
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