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 This study proposes an intelligent protection relay design that uses artificial 

neural networks to secure electrical parts in power infrastructure from 

different faults. Electrical transformer and transmission lines are protected 

using intelligent differential and distance relay, respectively. Faults are 

categorized, and their locations are pinpointed using three-phase current 

values and zero-current characteristics to differentiate between non-earth and 

ground faults. The optimal aspects of the artificial neural network were 

chosen for optimal results with the least possible error. Levenberg-

Marquardt was established as the ideal training technique for the suggested 

system comprising the differential relay. Levenberg-Marquardt was the 

optimal training technique for the proposed framework consisting of the 

differential relay. Fault detection and categorization were performed using 

20 and 50 hidden layers, and the corresponding error rates were 9.9873e-3 

and 1.1953e-29. In the context of fault detection by the distance relay, the 

hidden layer neuron counts were 400, 250, and 300 for fault detection, 

categorization, and location; training error rates were 7.8761e-2, 1.2063e-6, 

and 1.1616e-26, respectively. 
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1. INTRODUCTION 

It is vital to have a continuous and dependable electricity source. Electrical outages impact the 

economic scenario at domestic and industrial levels. Irregular and arbitrary faults in the electricity 

transmission system cause major power interruptions. The effects of power outages can be reduced by 

quickly and accurately identifying faults to enable service restoration. Several studies have addressed 

electrical fault location [1]–[4]. Electrical faults are dangerous for the proper operation of any electrical 

system because they disturb regular system operation and create instability hazards. In the context of the 

electrical grid, transmission lines and transformers are affected the most. Numerous works have proposed 

methods to detect [5]–[7], pinpoint, and categorise electrical faults in the transmission network and power 

transformers. 

References number [8]–[10] proposed a productive method to detect, categorise, and pinpoint 

electric transmission system faults. The system comprised a virtual bus and neural network-based simulation 

to evaluate faults on the bus and transmission network. A two-port network performance technique specified 

an adaptive neuro-fuzzy inference system algorithm (ANFIS) devised to secure the electrical transmission 

system with frequent faults. Recognising and categorising AC transmission network faults was assessed by 

https://creativecommons.org/licenses/by-sa/4.0/
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[11] using power spectral density (PSD) and data assessment for fault-specific situations using PSD with 

frequency and time. Subsequently, a wavelet-covariance matrix is created to determine PSD. Researchers 

[12] indicated similar objectives for using evolutionary coding software (PSCAD/EMTDC) to simulate 

several operational and faulty situations for the high voltage transmission network. A combined method was 

proposed to recognise and identify faults in the transmission system comprising an interconnected network 

[13]. This work proposed to use phasor measurement units (PMUs) to determine positive sequence current 

and voltage characteristics. Fan and Liao [14] devised a system integrity preservation technique using  

wide-area evaluations. The approach divides the network, and the smaller networks or protection zones are 

fitted with current measuring instruments that help identify problems and provide a pinpointing vector for the 

faulty network region. The technique by [15] employs a change in sign concerning the positive-sequence 

current levels at line terminals to identify faults. Moreover, three-phase current values are determined locally 

and used to derive the transient monitor index to categorise faults.  

Phasor measurement units (PMU) [16] were devised to identify faulty conditions and use circuit 

breakers (CBs) to safeguard and secure the network. CBs operate based on the excessive divergence of a 

specific network parameter. Rapid and precise fault identification prevents large-scale effects on the 

distribution system and reduces economic impact. Power transmission lines are vulnerable to numerous 

faults; however, other system components are also affected. Power transformers are the costliest components 

in electrical distribution systems; they must be monitored continually in order to implement protective steps 

with a slight delay. Power transformers are secured using differential relays. This mechanism checks current 

flowing in the secondary and primary sides and sends a tripping command to the CB. 

Nevertheless, such relays may not be reliable during the high magnetising inrush current drawn 

when the transformers are switched on [17]. The primary concern about transformer protection is the rapid 

response offered by an effective differential relay technique that disconnects the transformers from the 

system, reducing damage. Ali et al. [18] devised an approach based on the primary and secondary current 

values corresponding to each phase; the ratio of the magnitude of difference and sum at both sides, and the 

phase-specific ratio of the magnitudes of the difference and aggregate of the primary and secondary terminal 

voltages are used for the protection scheme. A novel technique [19] used the integral concept to provide 

power transformers with differential protection. The necessary signals are computed operationally using 

restraining-current values for the required phases. The second harmonic is employed for more computations. 

Ali et al. [20] devised a universal technique using voltage and current ratios for primary and secondary sides, 

the direction of the current, and wave characteristics concerning power transformers independent of 

connection type (delta or star). Root cause identification is proposed in [21], considering that fault tree-based 

evaluation is employed to evaluate characteristics causing wrong trips. Regulation approaches can be used 

when the significant root issues are determined. The security framework facilitates an analytical qualification 

of protective model reliability. Artificial neural network (ANN) and wavelet transform based protection 

approach for three-phase transformers is specified in [22]. Wavelet operations are used to decompose present 

waves. ANN methods are employed for pattern categorisation. Numerous studies indicate the wavelet 

transform is appropriate for initiating feature determination for several transient scenarios. Althi et al. [23] 

proposed a safeguarding approach for open conductor and series issues concerning six-phase transmission 

networks. The technique starts by approximating the current characteristics from the time-domain current 

values at the conductor on the transmitting side. A fuzzy logic protection technique consumes the 

information. Das and Adhikari [24] used fuzzy logic to devise a fault identification and classification 

approach for a UPQC-compensated distribution line. Further, differential safeguarding for power 

transformers using the signal localised convolution neural network (SLCNN) is proposed [25]. Sequentially, 

the time and frequency coefficients are processed using the convolution approach for distinct signal 

localisation. The required coefficients are determined using wavelet operations concerning the differential 

current signal.  

The approach proposed in this study can accurately predict fault distance for line-to-ground (LG) 

and line-to-LG (LLG) ground faults. However, this approach cannot pinpoint faults for open conductors, 

line-to-line (LL), and LL-to-line (LLL). This work presents a power network fault detection, categorisation, 

and localisation approach that helps estimate with high precision the fault location in the transmission 

network. 

The study aims and objectives are devising an intelligent distance relay-based technique powered by 

artificial neural networks to safeguard power transmission lines. Devise an ANN-based intelligent differential 

protection approach to safeguard electrical power transformers. A two-related system is proposed to 

differentiate higher load and work scenarios for issues that affect the network but prevent CBs from tripping 

during electrical faults. Estimate fault location in the network using an ANN model trained using the present 

power network fingerprint. Classify system fault types using present power network fingerprint to train three 

artificial neural networks.  
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2. METHOD AND TOOLS 

Smart relays have been built to protect the electrical network. ANN based techniques help determine 

issues. Furthermore, it is feasible to differentiate between faults and acceptable overload. Figure 1 depicts the 

fault location categories and specifications for SLG, LL, LLG, and LLLG that could affect an electrical 

power network. Table 1 display the power network characteristics in this work. 

 

 

 
 

Figure 1. Power system with smart relays 

 

 

Table 1. Power network characteristics 
Elements Data 

Power supply 3 phases, Vp-p=16.5 kV, S=100 MVA, f=60 Hz 

Power transformer 3 phases, S=100 MVA, V1=16.5 kV, V2=230 kV, Yg/Yg 
Load 3 phases Yg, Vp.p=230 kV, f=60 Hz, P=90 MW, QL= 30 KVar 

Transmission line 
R1 [Ω/km]=0.08993, Ro [Ω/km]=0.224825, L1 [mH/km]=1.29, Lo [mH/km]=3.22, 

C1 [nf/km]=7.922, Co [nF/km]=4.74, Line length=200 Km 

 

 

The protection mechanism is devised with an intelligent distance relay to determine transmission 

network faults. The system is equipped with a smart differential safeguarding mechanism to protect the 

electrical transformer. Relays are designed considering the neural network; moreover, hidden layer neuron 

count is optimised to provide acceptable outcomes. The study also considers the training techniques required 

for the two relays. The differential phase considers current values and differences concerning the secondary 

and primary sides. 

Figure 2 depicts an intelligent distance relay that uses neural networks to safeguard the electrical 

network from faults. System voltage and current values comprise relay input; the framework is used to 

determine the impedance of the transmission line. The ANN technique works to determine the inductance 

and resistance of the electrical line, thereby identifying faults. A trip command is asserted to the CB to 

safeguard the network from an electrical fault. 

Figure 3 depicts the intelligent differential relay that relies on an artificial neural network to 

safeguard power transformers from electrical faults. The currents flowing in the secondary and primary sides 

of the three-phase transformer are used as relay input. Subsequently, the current difference between the two 

sides is fed into the network, considering the transformer conversion factor to allow the ANN to identify 

transformer fault and send the trip signal to allow the CB to isolate the transformer from the network. 

Hence, any difference indicates the presence of transformer faults. Currents on the three phases of 

the primary and secondary sides are used as neural network inputs. Table 2 specifies the characteristics of the 

neural network-based fault detection system. Table 3 lists information about the neural network framework 

used to determine and classify issues relating to electrical transformers. 
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Figure 2. Intelligent distance relay model 

 

 

 
 

Figure 3. Schematic of a smart differential relay 

 

 

Table 2. Specifications of the neural network for identifying transformer faults 
ANN–Parameters Characteristics 

Training–Algorithm Levenberg–Marquardt 
Epochs 10 
Training-Goal (MSE) 9.9873e-3 
Inputs 3 
Output–Neurons 1 
Neurons-Hidden Layer 20 

 

 

Table 3. Neural network building blocks to categorise transformer faults 
ANN- Parameters Characteristics 

Training –Algorithm Levenberg–Marquardt 
Epochs 4 

Training- Goal (MSE) 1.1953e-29 

Inputs 4 

Output-Neurons 1 

Neurons-Hidden Layer 50 

 

 

The distance relay protects the electrical line; it compares the measured line impedance against the 

nominal value to identify faults. If the determined impedance is below the nominal value for the line, a fault 

is indicated. Phase-specific voltage and current values are critical inputs to assess faults. Fault categorisation 

and location is based on the current flowing in the three phases; these values are used by the neural network 

system, as specified in Tables 4-6, respectively. 

The put forward technique begins by determining current flow in the secondary and primary sides of 

the transformer. If there is a difference between the two sides, the transformer has a fault, whereby the CB 

isolates the faulting system through a trip command. Subsequently, the fault is located and categorised. If the 

current values on the two sides are the same, the impedance is determined for the line and compared against 

the nominal value for a normal no-fault situation. 

If the determined line impedance is below the nominal value, a fault might exist in the system, and 

the CB is sent the trip signal to protect the system. Subsequently, the faulty system is isolated, the faults are 
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classified, and locations are pinpointed using the neural network. Figure 4 explain the Training, Testing and 

Validation graphs for detection faults by intelligent differential relay. Figure 5 explain the Training, Testing 

and Validation graphs for detection faults by intelligent distance relay. 

The safeguarding system mechanism is depicted in the flowchart presented in Figure 6. It depicts the 

issue detection and categorisation technique for fault location and type in the transmission network. The 

system measures the primary (Ip) and secondary (Is) current values for the transformer; subsequently, it 

gauges the voltage and current levels in the three-phase transmission system. Transmission network and 

transformer values and angles are computed. Initially, a phase-wise comparison is made for the primary and 

secondary current values. 

 

 

Table 4. Neural network aspects to identify transmission line faults 
ANN- Parameters Characteristics 

Training- Algorithm Levenberg– Marquardt 
Epochs 13 
Training -Goal (MSE) 7.8761e-2 
Inputs 2 
Output -Neurons 1 
Neurons - Hidden Layer 400 

 

 

Table 5. Neural network aspects to categorise transmission line faults 
ANN -Parameters Characteristics 

Training-Algorithm Levenberg– Marquardt 

Epochs 4 

Training-Goal (MSE) 1.2063e-6 
Inputs 4 

Output-Neurons 1 

Neurons-Hidden Layer 250 

 

 

Table 6. Neural network aspects to identify transmission line fault location 
ANN Parameters Characteristics 

Training Algorithm Levenberg– Marquardt 
No. of Epochs 6 
Training Goal (MSE) 1.1616e-26 
No. of Inputs 4 
No. of Output Neurons 1 
No. of Neurons Hidden Layer 300 

 

 

 
 

Figure 4. Testing and validation graphs for detection faults by intelligent differential relay 
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Figure 5. Testing and validation graphs for detection faults by intelligent differential relay 
 

 

 
 

Figure 6. Power system flowchart for the intelligent protection relay function 

 

 

A transformer fault is indicated if the values differ, and a trip signal is asserted to the CB to isolate the 

transformer from the network. Subsequently, the fault category is determined. However, if the currents on the two 

transformer sides are the same, the electrical line impedance (Z) is computed using the current and voltage values 

on every phase. Normal condition (ZL) is reported if the values are nominal. However, if the values are below the 

nominal values, a transmission fault is indicated, and a trip signal is asserted to the CB to isolate the transmission 

system. Subsequently, the fault type and location are determined using the proposed ANN technique. 
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3. RESULTS AND DISCUSSION 

Figure 1 depicts a MATLAB/Simulink simulated electrical power network with different fault 

categories. A typical case is increased electrical load, and it does not require the differential relays to issue 

the trip command to CBs. However, when the power transformers witness issues, the differential relays send 

commands to trip the CBs. Moreover, when the transmission line experiences different faults, the distance 

phase for safeguarding the transmission network is used to trip the CBs. Numerous scenarios were 

considered, and faults were simulated within the power system, as specified in Table 7. Furthermore, to 

clarify the numerous faults which can happen in the system, the categories of these faults were presented in 

the proposed model as shown in Table 8. Table 9 lists the fault location error on the transmission network 

using the neural network when the middle of the line experiences faults. 

 

 

Table 7. System faults used in this study 
Case-1 The system is normal without a fault or overload. 

Case-2 The system is in case of overload. 

Case-3 The system has a phase-to-ground (A-G) fault in the power transformer on the primary side. 

Case-4 The system has a phase-to-ground fault (B-G) in the power transformer on the primary side. 

Case-5 The system has a phase-to-ground (C-G) fault in the power transformer on the primary side. 
Case-6 The system had a two-phase to ground (AB-G) fault in the power transformer on the primary side. 

Case-7 The system has a two-phase to ground (BC-G) fault in the power transformer on the primary side. 
Case-8 The system had a two-phase to ground (AC-G) fault in the power transformer on the primary side. 

Case-9 The system had a three-phase to ground fault (ABC-G) in the power transformer on the primary side. 

Case-10 
The system had a phase-to-ground fault (A-G) in the transmission line at a distance of 25% of the 
length of the line. 

Case-11 
The system had a phase-to-ground fault (B-G) in the transmission line at a distance of 50% of the 

length of the line. 

Case-12 
The system had a phase-to-ground fault (C-G) in the transmission line at a distance of 75% of the 

length of the line. 

Case-13 
The system had a two-phase fault to the ground (AB-G) in the transmission line at a distance of 25% 
of the length of the line. 

Case-14 
The system had a two-phase to ground fault (BC-G) in the transmission line at a distance of 50% of 

the length of the line. 

Case-15 
The system has a two-phase to ground fault (AC-G) in the transmission line at a distance of 75% of 

the length of the line. 

Case-16 
The system had a three-phase to ground fault (ABC-G) in the transmission line at a distance of 50% of 
the length of the line. 

 

 

Table 8. System fault categories 
Cases Max 

imum 
current 

in 

phase 
A for 

primary 
trans-

former 

[KA] 

Max 

imum 
current  

in  

phase  
B for 

primary 
trans- 

former 

[KA] 

Max 

imum 
curr- 

ent  

in  
phase  

C for 
primary 

trans- 

former 
[KA] 

Max- 

imum 
current 

 in ph- 

ase A 
for 

sec-
ondary 

trans- 

former 
[KA] 

Max- 

imum 
current 

 in ph- 

ase B 
for 

sec-
ondary 

trans- 

former 
[KA] 

Max- 

imum 
current 

 in ph- 

ase C 
for 

sec-
ondary 

trans- 

former 
[KA] 

Max- 

imum 
current 

 in ph- 

ase A 
for 

trans- 
mission 

line 

[KA] 

Max- 

imum 
current 

 in ph- 

ase B 
for 

trans- 
mission 

line 

[KA] 

Max- 

imum 
current 

 in ph- 

ase C 
for 

trans- 
mission 

line 

[KA] 

Trip 

 signal  
C.B  

for 

trans- 
former 

Trip  

signal 
 C.B  

for 

 trans- 
mission 

 line 

1 3.7 3.7 3.7 3.7 3.7 3.7 0.266 0.266 0.266 No trip No trip 

2 5 5 5 5 5 5 0.363 0.363 0.363 No trip No trip 

3 22.3 3.7 3.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 
4 3.7 19.8 3.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 

5 3.7 3.7 9.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 

6 22.3 19.8 3.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 
7 3.7 19.8 9.74 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 

8 22.3 3.7 9.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 

9 22.3 19.8 9.7 3.7 3.7 3.7 0.266 0.266 0.266 Trip No trip 
10 16.2 3.7 3.7 16.2 3.7 3.7 1.16 0.266 0.266 No trip Trip 

11 3.7 15.2 3.7 3.7 15.2 3.7 0.266 1.02 0.266 No trip Trip 

12 3.7 3.7 8.05 3.7 3.7 8.05 0.266 0.266 0.56 No trip Trip 
13 17 15.6 3.7 17 15.6 3.7 1.22 1.11 0.266 No trip Trip 

14 3.7 15.4 8.3 3.7 15.4 8.3 0.266 1.6 0.598 No trip Trip 

15 15.9 3.7 7.96 15.9 3.7 7.96 1.14 0.266 0.52 No trip Trip 
16 16.5 15.8 8.21 16.5 15.8 8.21 1.19 1.13 0.589 No trip Trip 
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Table 9. Fault location detection error rate 

Cases 
Actual fault location in 

transmission line [km] 

Estimate fault location in 

transmission line using ANN [km] 
Error [%] 

10 50 49 1 

11 100 98 1 

12 150 151 -0.5 
13 50 50 0 

14 100 95 2.5 

15 150 149 0.5 
16 100 100 0 

 

 

The following diagrams indicate the current and voltage plots corresponding to a three-phase system 

under failure at time t=0.2 sec. The electrical line and both transformer sides are under the fault scenario. 

Figure 7 depicts the current and voltage plots for the three transmission phases where two phases have a 

ground fault (AB-G) at time t=0.2 sec, and phases A and B have higher current values. Figure 8 depicts the 

disconnect signals issued by the differential and distance relays to disconnect the circuit. Considering that the 

transmission line had faults, the distance relay asserted the trip command since the transformer is normal, but 

the line is faulty.  

 

 

 
 

Figure 7. Current and voltage plots for a two-phase-to-earth (AB-G) line fault 

 

 

 
 

Figure 8. The intelligent distance relay issuing the trip signal during transmission line faults 
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Figure 9 depicts the current and voltage plots for the primary and secondary sides of the transformer 

(Figures 9(a) and 9(b)). The primary side witnessed faults; Figure 9 depicts a one-phase-to-ground (B-G) fault at 

time t=0.2 sec using the primary and secondary current difference. Figure 10 depicts the signals issued by the 

differential and distance relays to disconnect the CB. In the case of a power transformer fault, Figure 10 indicates 

the differential relay issuing the disconnect command because the transformer was faulty, but the line was normal. 

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Power transformer phase-to-ground (B-G) fault (a) primary side voltage and current plot and  

(b) secondary side voltage and current plot 

 

 

 
 

Figure 10. The trip signal issued by the differential relay during a fault at the power transformer 
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4. CONCLUSION 

This paper discusses intelligent distance and differential relays to safeguard the electrical 

transmission line and power transformer, respectively. Fault categories were created, and their location in the 

power network was identified by employing the ANN. Transmission faults are determined by determining 

transmission line impedance and comparing it with the nominal values during regular operation. In the 

transformer case, the primary and secondary current values are compared; a transformer fault is indicated if 

they differ. If the measured transmission impedance falls below the nominal value, the line is faulty. This 

study uses three algorithms to train the system: Bayesian-Regularisation, Levenberg-Marquardt, and scaled 

conjugate gradient. The Levenberg-Marquardt technique was best suited for this study. 

 

 

ACKNOWLEDGEMENTS 

Authors would like to thank Mosul University, College of Engineering, Department of Electrical, 

for the support given during this work. 

 

 

REFERENCES 
[1] I. I. Alnaib, O. S. Alyozbaky, and A. Abbawi, “A new approach to detecting and classifying multiple faults in IEEE 14-bus system,” 

Eastern-European Journal of Enterprise Technologies, vol. 5, no. 8, pp. 6–16, Oct. 2020, doi: 10.15587/1729-4061.2020.208698. 
[2] M. R. Javed, U. S. Virk, A. Waleed, and M. Y. Jamal, “The performance comparison of artificial intelligence based distance 

relays for the protection of transmission lines,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 3, pp. 1177–1185, 

Jun. 2022, doi: 10.11591/eei.v11i3.3305. 
[3] O. W. Chuan, N. F. A. Aziz, Z. M. Yasin, N. A. Salim, and N. A. Wahab, “Fault classification in smart distribution network using 

support vector machine,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 3, p. 1148, Jun. 2020, 

doi: 10.11591/ijeecs.v18.i3.pp1148-1155. 
[4] A. M. S. Omar, M. K. Osman, M. N. Ibrahim, Z. Hussain, and A. F. Abidin, “Fault classification on transmission line using 

LSTM network,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 1, p. 231, Oct. 2020, doi: 

10.11591/ijeecs.v20.i1.pp231-238. 
[5] T. T. Hoang and T. H. Le, “Intelligent fault diagnosis for power distribution system-comparative studies,” Indonesian Journal of 

Electrical Engineering and Computer Science, vol. 25, no. 2, p. 601, Feb. 2022, doi: 10.11591/ijeecs.v25.i2.pp601-609. 

[6] P. P. Mawle, G. A. Dhomane, and P. G. Burade, “Application of artificial intelligence in early fault detection of transmission line-
a case study in India,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 6, p. 5707, Dec. 2022, 

doi: 10.11591/ijece.v12i6.pp5707-5716. 

[7] M. A. AL-Yoonus and O. S. A. Alyozbaky, “Detection of internal and external faults of single-phase induction motor using 
current signature,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 4, p. 2830, Aug. 2021, 

doi: 10.11591/ijece.v11i4.pp2830-2841. 

[8] F. Wang, E. Babulak, and Y. Tang, “On detecting and identifying faulty internet of things devices and outages,” Bulletin of 
Electrical Engineering and Informatics, vol. 10, no. 6, pp. 3127–3136, Dec. 2021, doi: 10.11591/eei.v10i6.2698. 

[9] A. Z. Jidin, R. Hussin, L. W. Fook, and M. S. Mispan, “A review paper on memory fault models and test algorithms,” Bulletin of 

Electrical Engineering and Informatics, vol. 10, no. 6, pp. 3083–3093, Dec. 2021, doi: 10.11591/eei.v10i6.3048. 
[10] M. Saini, A. A. M. Zin, M. W. Mustafa, A. R. Sultan, and R. Nur, “Algorithm for Fault Location and Classification on Parallel 

Transmission Line using Wavelet based on Clarke’s Transformation,” International Journal of Electrical and Computer 

Engineering (IJECE), vol. 8, no. 2, p. 699, Apr. 2018, doi: 10.11591/ijece.v8i2.pp699-710. 
[11] D. Guillen et al., “Fault detection and classification in transmission lines based on a PSD index,” IET Generation, Transmission 

&amp$\mathsemicolon$ Distribution, vol. 12, no. 18, pp. 4070–4078, Sep. 2018, doi: 10.1049/iet-gtd.2018.5062. 
[12] M. Singh, B. K. Panigrahi, and R. P. Maheshwari, “Transmission line fault detection and classification,” in 2011 International 

Conference on Emerging Trends in Electrical and Computer Technology, Mar. 2011, doi: 10.1109/icetect.2011.5760084. 

[13] A. Q. Khan, Q. Ullah, M. Sarwar, S. T. Gul, and N. Iqbal, “Transmission Line Fault Detection and Identification in an 
Interconnected Power Network using Phasor Measurement Units,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 1356–1363, 2018, 

doi: 10.1016/j.ifacol.2018.09.558. 

[14] W. Fan and Y. Liao, “Wide area measurements based fault detection and location method for transmission lines,” Protection and 
Control of Modern Power Systems, vol. 4, no. 1, Mar. 2019, doi: 10.1186/s41601-019-0121-9. 

[15] S. Biswas and P. K. Nayak, “A Fault Detection and Classification Scheme for Unified Power Flow Controller Compensated 

Transmission Lines Connecting Wind Farms,” IEEE Systems Journal, vol. 15, no. 1, pp. 297–306, Mar. 2021, doi: 
10.1109/jsyst.2020.2964421. 

[16] P. Ray and S. Beura, “Accurate Fault Detection of Distribution Network with Optimal Placement of Phasor Measurement Unit,” 

in 2019 International Conference on Intelligent Sustainable Systems (ICISS), Feb. 2019, doi: 10.1109/iss1.2019.8908029. 
[17] A. Ahmad, M. L. Othman, K. K. B. Zainab, and H. Hizam, “Adaptive ANN based differential protective relay for reliable power 

transformer protection operation during energisation,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 8, no. 4, p. 

307, Dec. 2019, doi: 10.11591/ijai.v8.i4.pp307-316. 
[18] E. Ali, A. Helal, H. Desouki, K. Shebl, S. Abdelkader, and O. P. Malik, “Power transformer differential protection using current 

and voltage ratios,” Electric Power Systems Research, vol. 154, pp. 140–150, Jan. 2018, doi: 10.1016/j.epsr.2017.08.026. 

[19] D. Bejmert, M. Kereit, F. Mieske, W. Rebizant, K. Solak, and A. Wiszniewski, “Power transformer differential protection with 
integral approach,” International Journal of Electrical Power &amp$\mathsemicolon$ Energy Systems, vol. 118, p. 105859, Jun. 

2020, doi: 10.1016/j.ijepes.2020.105859. 

[20] E. Ali, O. P. Malik, A. Knight, S. Abdelkader, A. Helal, and H. Desouki, “Ratios-based universal differential protection algorithm 
for power transformer,” Electric Power Systems Research, vol. 186, p. 106383, Sep. 2020, doi: 10.1016/j.epsr.2020.106383. 

[21] A. Zitouni, “Power Transformer Differential Relay Reliability Assessment Using False Trip Root Cause Analysis,” in 2020 

International Conference on Electrical Engineering (ICEE), Sep. 2020, doi: 10.1109/icee49691.2020.9249781. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Faults detection, location and classification of the elements in the … (Ali Abbawi Mohammed Alabbawi) 

607 

[22] R. N. Bhargavi, M. L. Swarupa, and M. Rajitha, “Power Transformer Protection using ANN and Wavelet Transforms,” in 2021 
7th International Conference on Advanced Computing and Communication Systems (ICACCS), Mar. 2021, doi: 

10.1109/icaccs51430.2021.9441828. 

[23] T. R. Althi, E. Koley, and S. Ghosh, “Fuzzy Logic based Fault Detection and Classification scheme for Series Faults in Six Phase Transmission 
Line,” in 2021 7th International Conference on Electrical Energy Systems (ICEES), Feb. 2021, doi: 10.1109/icees51510.2021.9383768. 

[24] S. Das and S. Adhikari, “Fuzzy logic based fault detection and classification in Unified Power Quality Conditioner (UPQC)-

compensated distribution line,” in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems 
(PEDES), Dec. 2020, doi: 10.1109/pedes49360.2020.9379334. 

[25] S. K. Murugan, S. P. Simon, and R. R. Eapen, “A Novel Signal Localized Convolution Neural Network for Power Transformer 

Differential Protection,” IEEE Transactions on Power Delivery, vol. 37, no. 2, pp. 1242–1251, Apr. 2022, doi: 
10.1109/tpwrd.2021.3080927. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Ali Abbawi Mohammed Alabbawi     was born in Mosul 1984. He got his B.Sc 

degree from Department of Electrical Engineering in Mosul University/Mosul-Iraq in 2006. 

He finished his M.Sc in power and machines/control system from College of 

Engineering/Mosul University/Iraq in 2013. His research interest in control system, power 

system analysis, and renewable energy technologies. He is now assistant Lecturer in 

Department of Electrical Engineering in University of Mosul. He can be contacted at email: 

ali.abbawi@uomosul.edu.iq. 

  

 

Ibrahim Ismael Alnaib     was born in Mosul 1989. He got his BSc degree from 

Department of Electrical Engineering in Mosul University/Mosul-Iraq in 2011. He finished 

his M.Sc in power and machines/control system from College of Engineering/Mosul 

University/Iraq in 2014. His research interest in control system, power system analysis and 

renewable energy technologies. He is now Lecturer in Department of Electrical Engineering 

in University of Mosul. He can be contacted at email: ibrahim-85353@uomosul.edu.iq. 

  

 

Omar Sharaf Al-Deen Yehya Al-Yozbaky     he obtained his Bachelor of Science 

(BSc) in Electrical Engineering in 2001 from the Department of Electrical Engineering, 

College of Engineering, University of Mosul, Iraq. Then he was appointed as an assistant 

engineer in the same mentioned department. After that, he got MSc in “Overcome the effect 

of Critical distance in XLPE High Voltage Cables by inductive shunt compensator’’, 2008 

from the same mentioned department as well. Upon his graduation, he was appointed as 

teaching staff (assistant lecturer) in the Department of Electrical Engineering, College of 

Engineering, University of Mosul. In 2012, he obtained the scientific title (lecturer) and the 

Ph.D. degree in the Department of Electrical and Electronic Engineering, Faculty of 

Engineering, University Putra Malaysia in 2017. Since 2014, he was a member of the Centre 

for Electromagnetic and lightning protection research (CELP). Now, he is Assistant Professor 

Department of Electrical Engineering, College of Engineering, University of Mosul. The 

subjects for interest, renewable energy fields associated with the smart grid, thermal modeling 

transformer design, and electrical machines. He can be contacted at email: 

o.yehya@uomosul.edu.iq. 

  

 

Karam Khairullah Mohammed     received the B.Sc. degree in electrical 

engineering from Mosul University, Mosul, Iraq, in 2012, and the M.Sc. degree in industrial 

power_control system from the Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in 

2018. He is currently pursuing the Ph.D. degree with the Universiti Teknologi Malaysia 

(UTM), Malaysia. His current research interests include in industrial power control system. 

He can be contacted at email: Karam_al_nakieb@yahoo.com. 

 
 

https://orcid.org/0000-0002-3773-6447
https://scholar.google.com/citations?user=L0x2OjAAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=56152383500
https://www.webofscience.com/wos/author/record/B-5719-2019
https://orcid.org/0000-0002-9041-0067
https://scholar.google.com/citations?user=Bbdt94wAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=57215664778
https://www.webofscience.com/wos/author/record/2462869
https://orcid.org/0000-0002-9735-1469
https://scholar.google.com/citations?hl=en&user=TFCRghoAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57193622867
https://www.webofscience.com/wos/author/record/2491160
https://orcid.org/0000-0001-8405-0336
https://scholar.google.com/citations?user=gWH0rBcAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57223039333
https://www.webofscience.com/wos/author/record/3213899

