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 Robust optimization is based on the assumption that uncertain data has a 

convex set as well as a finite set termed uncertainty. The discussion starts 

with determining the robust counterpart, which is accomplished by assuming 

the indeterminate data set is in the form of boxes, intervals, box-intervals, 

ellipses, or polyhedra. In this study, the robust counterpart is characterized 

by a box-interval uncertainty set. Robust counterpart formulation is also 

associated with master and subproblems. Robust Benders decomposition is 

applied to address problems with convex goals and quasiconvex constraints 

in robust optimization. For all data parameters, this method is used to 

determine the best resilient solution in the feasible region. A manual 

example of this problem's calculation is provided, and the process is 

continued using production and operations management–quantitative 

methods (POM-QM) software. 
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1. INTRODUCTION 

Many optimization problems in practice face obstacles such as the fact that the available data is not 

known exactly when the data problem should be solved. This can be due to measurement errors, modeling 

errors, or a lack of information available when making decisions [1]. Stochastic optimization and robust 

optimization are two methodologies that have been proposed to cope with the issue of data uncertainty in the 

optimization problem. In stochastic optimization, the optimization problem contains expectations and 

probability constraints where the assumptions are a combined probability distribution of known uncertain 

parameters. However, in practice, optimization stochastic does not have sufficient data to estimate its 

distribution, especially in large-scale problems [2]. 

Initially developed in the early 1970 s, robust optimization was intended to give decision makers 

with a framework where probability models could not be worked out [3]. To discover a solution that is viable 

for all potential data parameters up to the worst case, robust optimization assumes that the uncertain data 

have a convex set and a boundary set called the uncertainty set [4], [5]. Specifically, robust optimization 

plays an important role in things that are easy to do and provides an overview of the solution to the worst 

case that efficiently meets the requirements i) high resilience and protection against uncertainty and ii) 

achieving objective values that are close to the problem objectives [6]. One of the well-known methods of 

dealing with data uncertainty in optimization problems is the robust counterpart method proposed by [7]. A 

semi-infinite optimization problem—one with a limited number of variables and an infinite constraint 
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function—is the formulation that is addressed when uncertain data are included in the model under 

consideration [6]. 

Ben-Tal et al. [4], robust formulation can be achieved by assuming the uncertain data set is in three 

sets which are expressed as an uncertain set in the form of boxes, intervals, ellipses, or polyhedral [7]–[9]. 

Ben-Tal and Nemirovski [10], to analyze the computationally robust counterpart analysis, the robust 

counterpart must be converted into linear programming (LP), conic quadratic optimization (CQO), or 

semidefinite optimization (SDO). With this research, the Benders decomposition approach is used to solve 

robust optimization problems for linear programming in a box-interval state in the presence of quasiconvex 

constraints. Where the Benders decomposition method is expected to be able to solve a complex set of 

variables that must be solved in the master problem [11]–[13].  

− Problem description 

Integer programming problems, such as those posed by Benders decomposition, are well-

documented in the literature, and it was used to tackle a variety of robust optimization problems, including 

Beale integer programming problems [14]. The Benders decomposition is used by Saito and Murota [15] to 

tackle issues involving robust mix integer programming with ellipsoidal uncertainty. Syed et al. [16] 

considered Benders decomposition to define which of the accessible power plants to reduce price of power. 

Poojari [17], using Benders decomposition to get a robust solution in supply chain planning problems. 

Karamyar [18], using Benders decomposition for location problems and machine allocation in health care 

schedules. Emami [19], developed a robust counterpart model in the problem of receiving orders and 

scheduling in machines. Order issues are determined by different date, revenue, late penalty, processing time 

and setup time on the machine. From the proposed model, several valid pieces are introduced to accelerate 

the convergence of the Benders algorithm and heuristic methods to get a feasible solution.  

From the various literatures described above, this study discusses solving optimization problems for 

quasiconvex constraints in a box-interval uncertainty. In this problem, robust counterpart is expressed as a 

semi-infinite linear programming problem which is an optimization problem with many variables and 

infinitely many constraints [20]. This method will create a strong companion model of the proposed model 

by introducing several valid parts to accelerate the convergence of the classical Benders algorithm and 

heuristic methods to get a feasible solution. 

 

 

2. THE PROPOSED METHOD 

2.1.  Robust optimization 

The formula for the indefinite linear optimization is as follows: 

 

min
𝑥

{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑑}(𝑐,𝐴,𝑑)∈𝑈 (1) 

 

where 𝑐 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛 and 𝑑 ∈ ℝ𝑚 is an uncertain coefficient, and 𝑈 shows the user the uncertainty set. 

The basic paradigm of robust optimization is based on the following three assumptions [3], [4], [21]: i) all 

decision variables 𝑥 ∈ ℝ𝑛 represents the here and now decision, where the decision variable must get a 

certain numerical value as a result of solving the problem before the actual data, ii) it is the responsibility of 

the decision maker, if the real data falls within a predetermined uncertainty range 𝑈, to make a decision. Iii) 

the constraint of the uncertainty problem is hard, i.e., the decision maker cannot abide the violation of the 

constraint when the data is in a predetermined uncertainty set 𝑈. 

 

2.2.  Robust counterpart 

Assume 𝑐 ∈ ℝ𝑛 and 𝑑 ∈ ℝ𝑚 is certified, then the robust reformulation of (1) is called the robust 

counterpart problem which as shown in [4], [22]: 

 

min
𝑥

{𝑐𝑇𝑥: 𝐶(𝜁)𝑥 ≤ 𝑞, ∀𝜁 ∈ ℤ} (2) 

 

where ℤ ⊂ ℝ𝐿 shows the primitive uncertainty set. A solution 𝑥 ∈ ℝ𝑛 is called robust feasible if it satisfies 

the uncertain constraint 𝐶(𝜁)𝑥 ≤ 𝑞 for all realization 𝜁 ∈ ℤ.  

 

2.3.  Box-interval uncertainty 

In box-interval uncertainty 𝑈𝐼, an optimization problem can be formulated as a semi-infinite 

program with robust counterparts [23]: 

 

min 𝑧 (3) 
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𝑠. 𝑡. 𝑓(𝑥, 𝜁) ≤ 𝑧, ∀𝜁 ∈ 𝑈𝐼 

 

𝑔(𝑥, 𝜁) ≤ 0, ∀𝜁 ∈ 𝑈𝐼 

 

𝑥 ∈ 𝑋 
 

In (3), there is 𝑈∞ = {𝜁‖𝜁‖∞ ≤ 𝜓} [6] where 𝜓 is a control parameter in the uncertainty set [24] as 

illustrated in Figure 1. Based on [25] the value of 𝜓 ≤ 1. 
 
 

 
 

Figure 1. Box-interval illustration 

 

 

2.4.  Convergence in robust optimization 

Definition 1: convex function: a function 𝑔(𝑝, 𝑝̂) is called quasiconvex on 𝑝̂ ∈ [−𝛥𝑝, +𝛥𝑝] if and 

only if 𝑝̂ ∈ [−𝛥𝑝, +𝛥𝑝], 𝑔(𝑝, 𝑝̂) ≤ max{𝑔(𝑝, 𝛥𝑝), 𝑔(𝑝, −𝛥𝑝)} for all p [20], [26]. 

Definition 2: objective robustness: n the case of a candidate points (𝑝𝑐 , 𝑞𝑐) objective robustness 

predominates if the inequality is lowered: 

 
𝑓(𝑝𝑐,𝑞𝑐,𝑝,𝑞̂)−𝑓(𝑝𝑐,𝑞𝑐,0,0)

𝜀
≤ 1 (4) 

 

fulfill for all 𝑝̂ ∈ [−𝛥𝑝, 𝛥𝑝] and 𝑞̂ ∈ [−𝛥𝑞, 𝛥𝑞]. 
Definition 3: Robustness of feasibility: In the case of a candidate solution (𝑝𝑐 , 𝑞𝑐) if: 

 

𝑔𝑗(𝑝, 𝑞, 𝑝̂, 𝑞̂) ≤ 0, ∀𝑗 = 1, … , 𝐽 (5) 

 

fulfill for all 𝑝̂ ∈ [−𝛥𝑝, 𝛥𝑝] and 𝑞̂ ∈ [−𝛥𝑞, 𝛥𝑞], then the robust feasibility is prevailed. 

Assume that the objective function is convex with the constraint convex so that the solution persists 

when nominal 𝑝̂ = 𝑞̂ = 0. 

 

min 𝑓(𝑝, 𝑞)
𝑝,𝑞

 (6) 

 

𝑠. 𝑡. 𝑔(𝑝, 𝑞, 𝑝̂, 𝑞̂) ≤ 0, 𝑗 = 1, … , 𝐽  

 

𝑝 ∈ 𝑅𝑛 , 𝑞 ∈ 𝑍𝑚, 𝑝̂ ∈ 𝑅𝑛𝑢 , 𝑞̂ ∈ 𝑅𝑚𝑢  

 

∀𝑝̂ ∈ [−𝛥𝑝, 𝛥𝑞], ∀𝑞̂ ∈ [−𝛥𝑞, 𝛥𝑞]  

 

Definition 4: robust points: points that meet robust eligibility for (6) are considered robust points. SR 

represents the set of robust points for (6). 

Definition 5: locally optimal robust: for the robust optimization problem, the locally optimal robust 

𝑝 ∗ solution is a robust point such that there is a set of neighbors 𝑈 of the optimal 𝑝 ∗ robust solution 

𝑓(𝑝 ∗) ≤ 𝑓(𝑝), ∀𝑝 ∈ 𝑈. 

Definition 6: globally optimal robust: for formulation (6), globally optimally robust (𝑝∗, 𝑞∗) is an 

optimal robust point on 𝑓(𝑝∗, 𝑞∗) ≤ 𝑓(𝑝, 𝑞), ∀(𝑝, 𝑞) ∈ 𝑆𝑅. 

 

 

3. METHOD 

3.1.  Robust optimization re-formulation  

By adding an auxiliary function 𝛼𝑏 (6) will produce two master problems for the defined Benders 

decomposition:  
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𝛼𝑏(𝑝̂, 𝑞̂) = 𝑚𝑖𝑛
𝑝,𝑞

𝑓(𝑝, 𝑞) (7) 

 

s. 𝑡. 𝑔𝑗(𝑝, 𝑞, 𝑝̂, 𝑞̂) ≤ 0, 𝑗 = 1, … , 𝐽  

 

𝑝 ∈ 𝑅𝑛 , 𝑞 ∈ 𝑍𝑚  

 

𝛼𝑞(𝑞) = 𝑚𝑖𝑛
𝑝

𝑓(𝑝, 𝑞) (8) 

 

s. 𝑡. 𝑔𝑗(𝑝, 𝑞, 𝑝̂, 𝑞̂) ≤ 0, 𝑗 = 1, … , 𝐽  

 

𝑝̂ ∈ 𝑝̂𝑓𝑖𝑥𝑒𝑑 , 𝑞̂ = 𝑞̂𝑓𝑖𝑥𝑒𝑑  

 

𝑝 ∈ 𝑅𝑛  

 

3.2.  Algorithm improvement 

By following the basic algorithm of [27]–[29], the following Benders decomposition improvement 

algorithm is used to solve problems (7) and (8): 

Step 0. Set the 𝐼 iteration to 0 with the smallest constant as the tolerance value. 

Step 1. Set iteration for 𝐼 = 𝑖𝑡𝑒 + 1 where variables (𝑝̂, 𝑞̂) are a complex variable that is fixed in the 

subproblem. So, the master problem becomes: 

 

min
𝛼𝑞,𝑞

𝛼𝑞 + 𝑓𝑞(𝑞)  

 

𝑠. 𝑡. 𝑞𝑑𝑜𝑤𝑛 ≤ 𝑞 ≤ 𝑞𝑢𝑝  

 

𝛼𝑞 ≤ 𝛼𝑞
min (9) 

 

𝑠. 𝑡. − Δ𝑝 ≤ 𝑝̂ ≤ 𝛥𝑝  

 

−Δ𝑝 ≤ 𝑞̂ ≤ 𝛥𝑞  

 

𝛼𝑞 ≤ 𝛼𝑞
max (10) 

 

the limits of 𝛼𝑝, 𝛼𝑞  determined and given 𝛼𝑝 = 𝛼𝑝
𝑖𝑡𝑒, 𝛼𝑞 = 𝛼𝑞

𝑖𝑡𝑒 and 𝑞 = 𝑞𝑓𝑖𝑥𝑒𝑑
𝑖𝑡𝑒 , 𝑝̂ = 𝑝̂𝑓𝑖𝑥𝑒𝑑

𝑖𝑡𝑒 , 𝑞̂ = 𝑞̂𝑓𝑖𝑥𝑒𝑑
𝑖𝑡𝑒 . 

Step 2. Fix complicated variable values 𝑝̂, then solve the subproblem with Bender's standard decomposition 

method. 

 

𝑤 = 𝑚𝑖𝑛
𝑝

𝑓𝑝(𝑝) (11) 

 

s. 𝑡. 𝑔𝑗(𝑝, 𝑞, 𝑝̂, 𝑞̂) ≤ 0, 𝑗 = 1, … , 𝐽  

 

𝑞 = 𝑞𝑓𝑖𝑥𝑒𝑑
𝑖𝑡𝑒 , (𝑑𝑢𝑎𝑙 = 𝜆𝑖𝑡𝑒)  

 

𝑝̂ = 𝑝̂𝑓𝑖𝑥𝑒𝑑
𝑖𝑡𝑒   

 

𝑞̂ = 𝑞̂𝑓𝑖𝑥𝑒𝑑
𝑖𝑡𝑒   

 

Step 3. Check for convergence. Set 𝑧𝑠𝑢𝑏 = 𝑤, 𝑧𝑚𝑎𝑠𝑡1 = 𝛼𝑝
𝑖𝑡𝑒, 𝑧𝑚𝑎𝑠𝑡2 = 𝛼𝑞

𝑖𝑡𝑒. If the difference 𝑧𝑢𝑝 −

𝑧𝑑𝑜𝑤𝑛1 ≤ 𝜀 and 𝑧𝑢𝑝 − 𝑧𝑑𝑜𝑤𝑛2 ≤ 𝜀 then the iteration stops. 

Step 4. Add standard Benders snippet for master problem (9). 

  

𝛼𝑞 ≥ 𝑓(𝑝𝑖𝑡𝑒
𝑠𝑜𝑙 , 𝑞𝑖𝑡𝑒

𝑠𝑜𝑙 , 𝑝̂𝑖𝑡𝑒
𝑠𝑜𝑙 , 𝑞̂𝑖𝑡𝑒

𝑠𝑜𝑙) + 𝜆𝑖𝑡𝑒(𝑞 − 𝑞𝑖𝑡𝑒
𝑠𝑜𝑙) (12) 
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Step 1 (return). N represents the number of iterations that have been completed. Once Benders pieces have 

been added, solve the following master problem, 

 

𝑚𝑖𝑛
𝛼𝑞,𝑞

𝛼𝑞 + 𝑓𝑞(𝑞). 𝑡 𝑞𝑑𝑜𝑤𝑛 ≤ 𝑞 ≤ 𝑞𝑢𝑝 (13) 

 

𝛼𝑝 ≥ 𝑓(𝑝𝑖𝑡𝑒
𝑠𝑜𝑙 , 𝑞𝑖𝑡𝑒

𝑠𝑜𝑙 , 𝑝̂𝑖𝑡𝑒
𝑠𝑜𝑙 , 𝑞̂𝑖𝑡𝑒

𝑠𝑜𝑙) + 𝜆𝑖𝑡𝑒(𝑞 − 𝑞𝑖𝑡𝑒
𝑠𝑜𝑙)  

 

for 𝑖𝑡𝑒 = 1, … , 𝑁  

 

𝛼𝑞 ≥ 𝛼𝑞
𝑚𝑖𝑛  

 

return to step 2 and continue with iterations until convergence is met. 

 

 

4. RESULTS AND DISCUSSION 

Numerical calculations are show the improvement algorithm for the Benders decomposition method 

to obtain a robust solution to problems (7) and (8). In this case, the robust optimization problem lies in the 

box-interval uncertain constraint. 

 

min
𝑝,𝑞

 𝑧 = −
1

4
𝑝 − 𝑞 (14) 

 

𝑠. 𝑡. (−1 + 𝜁1)𝑝 + (−1 + 𝜁2)𝑞 ≤ 5  

 

(−
1

2
+ 𝜁3) 𝑝 + (1 + 𝜁4)𝑞 ≤

15

2
  

 

(
1

2
+ 𝜁4) 𝑝 + (1 + 𝜁5)𝑞 ≤

35

2
  

 
(1 + 𝜁6)𝑝 + (−1 + 𝜁7)𝑞 ≤ 10  

 
(1 + 𝜁8)𝑝 ≤ 16  

 
(1 + 𝜁9)𝑞 ≥ 0  

 

∀𝜁𝑖 ∈ 𝑏𝑜𝑥 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑖 = 1, … , 𝐼  

 

4.1.  Solution 

By taking 𝜁 ∈ [−0.1, +0.1] and 𝜁𝑖 = 0.1 which is substituted into the problem constraint (14), 

problem (14) will become a deterministic problem (15) which is robust by forming a robust counterpart into 

the set of box-interval uncertainties: 

 

min
𝑝,𝑞

 𝑧 = −
1

4
𝑝 − 𝑞 (15) 

 

𝑠. 𝑡. − 0.9𝑝 − 0.9𝑞 ≤ 5  

 

−0.4𝑝 + 1.1𝑞 ≤ 7.5  

 

0.6𝑝 + 1.1𝑞 ≤ 17.5  

 

1.1𝑝 − 0.9𝑞 ≤ 10  

 

1.1𝑝 ≤ 16  

 

1.1𝑞 ≥ 0  

 

the next stage, the deterministic optimization problem (15) is solved by the improvement algorithm Benders 

Decomposition starting with: 
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Step 0: iteration 𝑣 = 1. The master problem, 

 

minimize
𝑝,𝛼

 −
1

4
𝑝 + 𝛼  

 

𝑠. 𝑡. 1.1𝑝 ≤ 16  

 

−25 ≤ 𝛼  

 

Step 1: the subproblem solution: 

 

min
𝑞

 𝑧 = −𝑞  

 

𝑠. 𝑡. − 0.9𝑝 − 0.9𝑞 ≤ 5  

 

−0.4𝑝 + 1.1𝑞 ≤ 7.5  

 

0.6𝑝 + 1.1𝑞 ≤ 17.5  

 

1.1𝑝 − 0.9𝑞 ≤ 10  

 

1.1𝑝 ≤ 16 (𝑑𝑢𝑎𝑙 = 𝜆)  

 

1.1𝑞 ≥ 0  

 

The solution is 𝑆(1) = (𝑝(1), 𝑞(1)) = (14.5,8) by minimizing the objective function z. And the 

optimal value of the dual variable with the constraint 𝑝(1) = 14 is 𝜆(1) = 0.5. 

Step 2: check for convergence. The upper and lower limits of the optimal objective function, 

 

𝑧𝑢𝑝
(1)

= −
1

4
𝑝(1) − 𝑞(1) = −

1

4
(14.5) − 8 = −11.625  

 

𝑧𝑑𝑜𝑤𝑛
(1)

= −
1

4
𝑝(1) + 𝛼(1) = −

1

4
(14.5) − 25 = −28.625  

 

because of the difference 𝑧𝑢𝑝
(1)

− 𝑧𝑑𝑜𝑤𝑛
(1)

= 17 > 𝜀, then the process continues to the next step. 

Step 3: master problem solution. Update the iteration 𝑣 = 1 + 1 = 2. Master problem: 

 

minimize
𝑝,𝛼

 −
1

4
𝑝 + 𝛼  

 

𝑠. 𝑡. 8.7 + 1.1(𝑝 − 14) ≤ 17.5  

 

1.1𝑝1 ≤ 16  

 

𝛼 ≤ 17.5  

 

where the first constraint is done by Benders cut 1 which is related to the previous iteration. 

Because too many iterations have been carried out and the convergence has not been achieved, the 

problem solving (15) is continued with the help of the production and operations management–quantitative 

methods (POM-QM) software. By using the POM-QM software, the convergence results are obtained with 

the upper and lower limits of the optimal objective function being: 

 

𝑧𝑢𝑝
(5)

= −
1

4
𝑝(5) − 𝑞(5) = −12.95  

 

𝑧𝑑𝑜𝑤𝑛
(5)

= −
1

4
𝑝(5) + 𝛼(5) = −12.95  
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because of the difference 𝑧𝑢𝑝
(5)

− 𝑧𝑑𝑜𝑤𝑛
(5)

= −12.95 + 12.95 = 0 < 𝜀 then the optimal solution is obtained by 

𝑝 ∗= 10, 𝑞 ∗= 10.45, 𝑧 ∗= −12.95. The results of the iteration summary with the improvement of the 

Benders decomposition method are shown in Table 1. Figures 2(a) and 2(b) provide examples of the 

problem's feasible and robust feasible regions problem (14). 

 

 

Table 1. Optimal solution and iteration improvement of Benders decomposition 

Iteration 𝒑(𝒗) 𝒒(𝒗) 𝜶(𝒗) 𝝀(𝒗) 𝒛𝒖𝒑
(𝒗)

 𝒛𝒅𝒐𝒘𝒏
(𝒗)

 

1 14.5 8 -25 0.5 -11.625 -28.625 

2 0 4.5 -17.5 -1 -4.5 -17.5 

3 4.5 8.5 -13.33 -0.5 -9.625 -14.455 
4 -6 0 -5.25 -0.5 -1.5 -6.75 

5 10 10.45 -10.45 -0.5 -12.95 -12.95 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Provide examples of the (a) illustration of feasible region and (b) illustration of robust feasible 

region 

 

 

The deterministic problem (14) is a linear programming problem by giving the value of  

𝑝 ∗= 10, 𝑞 ∗= 12.5 and 𝑧 ∗= −15. It is possible to establish the robust optimization (14) solution by 

examining the corner point of the robust workable area, which provides the value of  

𝑝 ∗= 10, 𝑞 ∗= 10.45 and 𝑧 ∗= −12.95. Thus, as illustrated in Table 2, the globally optimal interval is met. 
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Table 2. Comparison of feasible regions with robust feasible regions 
Description Deterministic solution Robust solution 

𝒑 ∗ 10 10 

𝒒 ∗ 12.5 10.45 

𝒛 ∗ -15 -12.95 

 

 

5. CONCLUSION 

To create a stochastic optimization model, one assumes that the input data is known precisely and is 

equivalent to a predetermined nominal value. Data uncertainty has a significant influence on the model's 

quality and feasibility, which this technique does not consider. When data are obtained from various nominal 

values, certain constraints may be broken and the best solution established using nominal data may no longer 

be optimal or feasible. Problems that include parameters or decision variables with box-interval uncertainty 

may be solved using this method. It is suggested that Bender's decomposition improvement approach be used 

to produce a robust optimal linear programming solution. 
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