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 This paper focuses on synthesizing sliding mode control (SMC) for flexible-

joint manipulators (FJM) based on serial invariant manifolds in order to 

increase the control quality for the system. SMC based on the serial invariant 

manifolds is proposed. The control law is found based on synergetic control 

theory (SCT) and analytical design of aggregated regulators (ADAR) 

method. In order to improve the control quality due to the effect of the 

stiffness value between two links in the system, a mechanism for 

constructing manifolds is built. The time response of the outer loop 

manifolds close to the actuator will be larger in the next round. The control 

quality of the system can be pre-evaluated through the parameters of the 

designed manifolds. Global stability is demonstrated by using the Lyapunov 

function in the design process. Finally, the effectiveness of the proposed 

controller based on SCT is demonstrated by numerical simulation results and 

compared with the traditional SMC. 
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1. INTRODUCTION 

The development and application of technical manipulators led to many studies of manipulator 

control problems. Flexible-joint manipulators (FJM) offer several advantages over rigid-joint manipulators, 

such as light weight, lower cost, smaller actuators, larger workloads, mechanical capabilities, better mobility 

and transport, higher operating speeds, energy efficiency, and a larger number of applications. Therefore, 

they are often operated at high speeds to provide high productivity. However, when the control in the joint 

space operates using only the motor drive feedback, which is the most common case in robotics, the relative 

joint torsion is uncompensated lead to position errors under heavy load and large joint torque [1], [2]. In 

some cases, joint flexibility can lead to instability when neglected in control design, as explained in [3]. Non-

linearity, model uncertainty, friction, perturbation, and noise effects further complicate model-based 

controller design in controllers of FJM. Therefore, the conflicting requirements between high speed and high 

precision make for a challenging control problem. 

Research on dynamic modeling and control of FJM have received increasing attention in the last 

decades [1]–[22]. Many manipulators incorporate harmonic actuators to reduce speed, and it is known that 

such actuators exert elastic force into the joints. Industrial manipulators generally have elastic elements in the 

drive system, which can lead to the appearance of strong oscillations. For multi-degrees of freedom 

manipulators, joint elasticity can arise from a number of sources, such as elasticity in gears, belts, tendons, 

https://creativecommons.org/licenses/by-sa/4.0/


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Synthesis of sliding mode control for flexible-joint manipulators based on serial … (Le Tran Thang) 

99 

bearings, hydraulic lines, and can limit the speed and be obtained dynamic accuracy by designed control 

algorithms and assuming perfect stiffness at the joints. Along with some of the benefits and applications of a 

flexible-joint mechanism, joint elasticity presents a number of control challenges. Nonlinearities, model 

uncertainties, friction, perturbations, and noise effects further complicate model-based controller design in 

flexible-joint controllers [2]. Attempts to address the dynamic challenges of general flexibility have resulted 

in several control strategies being adopted to control these systems. 

Although considerable research has been performed on the dynamics and control of FJM, most of 

the currently available flexible-joint adaptive control strategies reported in the literature are techniques based 

on the model. The control problem of FJM is to design the controller so that the linkage of the manipulator 

can reach the desired position or follow precisely the specified trajectory with minimal vibration to the link. 

To achieve these goals, various methods using different techniques have been proposed as follows: the 

flexible-joint controller model was first proposed in the study [9]. Since then, many control methods have 

been applied to improve the tracking performance of the FJM, such as proportional integral derivative (PID) 

control [6], [7], linear quadratic regulator (LQR). [17], fuzzy logic control [13], [14], sliding mode control 

(SMC) [4], [5], backstepping control [15], robust control [11] and neural network control [5], [6]. For 

example, in [6], the authors designed a PID controller for FJM when considering it similar to rigid-joint 

manipulators and proved its efficiency through simulation results. Agee et al. [7], presented iPI controller to 

improve control quality when the object model is incomplete and has external disturbances, the results are 

proven through simulation and experiment results. But the essence of the PID controller and its variants is 

that the control signal is based on error information. Therefore, regardless of the physical nature of the object, 

it may not give the best control quality to the system. Doina [17], presented the use of LQR controller for this 

system. The results show that the effectiveness of the method is the applicability on embedded systems of the 

LQR controller. But the design of the LQR controller must conduct linearization of the control object, 

leading to the controller not having a good response when the system is far from the working point, and 

determining the matrices in the objective function is also difficult. 

SMC is one of the most powerful and well-regarded control techniques for nonlinear systems  

[3]–[6]. It can be applied to FJM and provides robust control to against disturbances and uncertainty of model 

[3]. The SMC provides the high accuracy and rapid system dynamic response in feedback loops, monitoring 

or tuning modes, as well as robustness to parameter variations and external disturbances [5]. The principle of 

traditional SMC is to limit the system trajectory to a sliding surface and then the system moves on sliding 

surface to the desired point. The selection of the appropriate sliding function represents an important part of 

the SMC design to stabilize the system trajectory. 

In this study, SMC law is designed based on serial invariant manifolds combined with synergetic 

control theory (SCT) [23]–[32]. The first invariant manifold is designed from a state under direct action of 

the actuator, and once the system has fallen into that manifold, the system becomes internally stable. The 

process of determining the internal control signal continues based on variable manifolds, which are intended 

to bring the system to the desired point or trajectory. In SCT, these points and trajectories are called technical 

invariants or control targets. SMC law and the internal control signal are found based on the analytical design 

of aggregated regulators (ADAR) method. The use of manifolds and the ADAR method allows us to tune the 

control quality through the physical nature of the object. In addition, the control law is found to ensure that 

the system is globally asymptotically stable at the first step. The quality of the system response of this 

method is shown by simulation results on MATLAB software and the effectiveness of the method is shown 

by comparison with the traditional SMC. 

 

 

2. MATHEMATICAL MODEL OF FJM 

The FJM considered in this paper is shown in Figure 1, where q1 is the rotation angle of the link of 

the flexible joint and q2 is the position of the motor shaft rotation angle. The purpose of the controller is to 

generate moment on the shaft. This moment through the flexible joint will act on the link to stabilize or to 

track a given trajectory. The difference of the flexible joint response is determined by the spring's elasticity as 

well as its intrinsic physical properties [4], [8]. The elasticity of the joint is described by the stiffness K of a 

linear torsion spring. Parameters I and J are the link inertia and motor inertia, respectively, and l is the height 

of the center of the link block. The equation of motion for this system is obtained using the Euler-Lagrange 

equation where L is the sum of kinetic energy Ktot and potential energy Ptot, which are defined as follows: 

 

𝐾𝑡𝑜𝑡 =
1

2
𝐼𝑞̇1

2 +
1

2
𝐽𝑞2

2 (1) 

 

𝑃𝑡𝑜𝑡 =
1

2
𝑘(𝑞1 − 𝑞2)

2 +𝑚𝑔𝑙 𝑐𝑜𝑠( 𝑞1) (2) 
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𝐿 = 𝐾𝑡𝑜𝑡 + 𝑃𝑡𝑜𝑡 (3) 

 

 

 
 

Figure 1. Flexible joint manipulator 

 

 

Using the Euler-Lagrange equation of motion (4) for the variables q1 and q2, we get the dynamic equations of 

the system as (4): 

 

{

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇1
) −

𝜕𝐿

𝜕𝑞1
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇2
) −

𝜕𝐿

𝜕𝑞2
= 𝜏

 (4) 

 

in (4), τ represents the torque or control force generated by the actuator. 

 

{
𝐼𝑞̈1 +𝑚𝑔𝑙 𝑠𝑖𝑛( 𝑞1) + 𝑘(𝑞1 − 𝑞2) = 0
𝐽𝑞̈2 − 𝑘(𝑞1 − 𝑞2) = 𝜏

 (5) 

 

Set the state variables as follows: [𝑞1 𝑞̇1 𝑞2 𝑞̇2]
𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4]

𝑇, the equation of the FJM (5) can 

be written as a state space model as (6): 

 

{
𝑥̇1 = 𝑥2;   𝑥̇2 = −

𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛 (𝑥1) −

𝑘

𝐼
(𝑥1 − 𝑥3);

𝑥̇3 = 𝑥4;   𝑥̇4 =
𝑘

𝐽
(𝑥1 − 𝑥3) +

𝜏

𝐽

 (6) 

 

The control objective is firstly to ensure that the state of the system changes stably to a desired 

operating point and that the static error approaches zero as time approaches infinity. To make it easier to 

write mathematical models in future calculations, we add the following functions: 

 

|
𝑓1(𝑥1, 𝑥2, 𝑥3) = −

𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛( 𝑥1) −

𝑘

𝐼
(𝑥1 − 𝑥3)

𝑓2(𝑥1, 𝑥2, 𝑥3) =
𝑘

𝐽
(𝑥3 − 𝑥1)

 (7) 

 

according to (8) system (7) can be written as: 

 

{
𝑥̇1 = 𝑥̇2;   𝑥̇2 = 𝑓1(𝑥1, 𝑥2, 𝑥3);

𝑥̇3 = 𝑥4;   𝑥̇4 = 𝑓2(𝑥1, 𝑥2, 𝑥3) +
1

𝐽
𝜏
 (8) 

 

here the parameters of the model used when simulating the control law are given in Table 1. 
 

 

Table 1. The parameter of the FJM 
Symbol Discription Value Unit 

m Mass of link 1.0 kg 

k Stiffness 50 Nm/rad 

J Inertia of motor actuator 1 kg m2 
I Inertia of flexible link 1 kg m2 

g Gravity 9.81 m/s2 

l Length of flexible link 1 m 
m Mass of link 1.0 kg 
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3. CONTROLLER DESIGN 

3.1.  Sliding control synthesis method based on invariant manifold sequential set 

When it is not possible to immediately specify a sliding surface of a manifold for the synthesis of 

nonlinear SMCs in SCT, a series or parallel set of invariant manifolds in phase space can be used based on 

the developed scalar and vector synthesis [23], [24]. A descriptive review of the synthesis method of SMC 

based on serial invariant manifolds has been presented in the study [3]. Assume that the initial differential 

equation of the control object has the form (9): 

 

{
𝑥̇𝑖(𝑡) = 𝑓𝑖(𝑥1, … , 𝑥𝑛) + 𝑎𝑖+1𝑥𝑖+1, 𝑖 = 1, 𝑛 − 1
𝑥̇𝑛(𝑡) = 𝑓𝑛(𝑥1, … , 𝑥𝑛) + 𝑢

 (9) 

 

where x=[x1, ...,xn]T is a vector of state variables, dim(x) = n×1; u=u(x) - a scalar control signal, and fi(x1, 

...,xn); 𝑖 = 1, 𝑛 − 1 is a continuously differentiable function. 

For system (9), the problem of SMC synthesis is posed: it is necessary to define a control law u(x)-a 

function of the state variables of the object (1), ensuring the object transition from an arbitrary initial state (in 

some acceptable area) to a certain state determined by the desired invariant manifolds-the control target. 

In the first step of the synthesis a manifold will be considered. 

 

𝜓1 = ∑ 𝛽𝑘
𝑛−1
𝑘=1 |𝑥𝑘| + |𝑠1| = 0 (10) 

 

With 𝑠1 = 𝑥𝑛 − 𝜑1(𝑥1, … , 𝑥𝑛−1) = 0, where 𝜑1(𝑥1, … , 𝑥𝑛−1) is an unknown continuous function at this step, 

as an internal control for the decomposed system of the next stage: 

 

{
𝑥̇𝑖(𝑡) = 𝑓𝑖(𝑥1, … , 𝑥𝑛) + 𝑎𝑖+1𝑥𝑖+1,  𝑖 = 1, 𝑛 − 2
𝑥̇𝑛−1(𝑡) = 𝑓𝑛−1(𝑥1, … , 𝑥𝑛−1) + 𝑎𝑛𝜑1(𝑥1, … , 𝑥𝑛−1)

 (11) 

 

based on the objective function of SCT and ADAR method. 

 

𝑇1𝜓̇1 + 𝜓1 = 0 (12) 

 

From the original equations of the object (9), the manifold (10) and (12) find the desired control law. 

 

𝑢 = −(∑ 𝛽𝑘(𝑓𝑘(𝑥1, … , 𝑥𝑛) + 𝑎𝑘+1𝑥𝑘+1)𝑠𝑖𝑔𝑛(𝑥𝑘) +
1

𝑇1
𝜓1

𝑛−1
𝑘=1 ) 𝑠𝑖𝑔𝑛(𝑠1) −

−∑
𝜕𝜑1

𝜕𝑥𝑖
(𝑓𝑖(𝑥1, … , 𝑥𝑛) + 𝑎𝑖+1𝑥𝑖+1) − 𝑓𝑛(𝑥1, … , 𝑥𝑛)

𝑛−1
𝑖=1 . (13) 

 

This control signal moves the system from an arbitrary initial state to a manifold ψ1=0. Since the 

root ψ1=0 of (12) is asymptotically stable when T1>0, this means that the system state falls on the 

submanifold s1, that is, on the sliding surface. The steady motion along s1=0 can be organized using 

submanifolds s2,..., sm: 

 

|
𝑠2 = 𝑥𝑛−1 − 𝜑2(𝑥1, … , 𝑥𝑛−2) = 0;
⋯
𝑠𝑛−1 = 𝑥2 − 𝜑𝑛−1(𝑥1) = 0;

 (14) 

 

and synthesize intermediate control laws φ2,..., φn-1 on the basis of functional equations of the form: 

 

𝑇𝑖 𝑠̇𝑖 + 𝑠𝑖 = 0,  𝑖 = 2, 𝑛 − 1; 𝑇𝑖 > 0 (15) 

 

and the decomposed system has the form (11). 

 

3.2.  Synthesis method of SMC based on serial invariant manifold for FJM 

The purpose of the flexible-joint control is to ensure that the link q1 moves in the desired trajectory 

xd by changing the voltage supplied to the motor to create a torque u acting on the motor shaft. From the 

point of view of SCT, it is necessary to synthesize the control signal τ(x1, x2, x3, x4 ) - a function that depends 

on the phase coordinates. The control signal will move flexible-links from the initial position following a 

given signal or stabilize at the desired position to ensure the required quality of the system when there are 

effects of disturbances. 
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From the purpose of the control problem, FJM is stable at a given desired position based on SCT, 

the authors propose the first invariant manifold corresponding to the control target. 

 

𝑥1 = 𝑥𝑑 (16) 

 

In the first step, based on the practical and mathematical model of the system, when the control 

signal u changes, it will affect on the dynamics of links q1 and link q2. So that the first invariant manifold is 

selected as: 

 

𝜓1 = |𝑠1| = 0 (17) 

 

where 𝑠1 = 𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3). The function 𝜑1(𝑥1, 𝑥2, 𝑥3) determines the desired characteristics of the 

changing velocity of q1 at the intersection with the invariant manifold 𝜓1 = 0. The function 𝜑1(𝑥1, 𝑥2, 𝑥3) is 

determined in the process of synthesizing the control law, proceeding from the invariant condition (14). To 

ensure the manifold (15) is globally stable, according to ADAR [25]–[27], the macro variable 𝜓1 must satisfy 

the roots of the basic (18): 

 

𝑇1𝜓̇1 + 𝜓1 = 0 (18) 

 

where T1>0 ensures the asymptotic stability of the system. Substituting (17) into (18), the control law has the 

form: 𝑇1
𝑑

𝑑𝑡
|𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3)| + |𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3)| = 0. From the above equation and replacing 𝑥̇4 from 

the mathematical model (6), the internal control signal is described as follows: 

 

𝜏 = −𝑘(𝑥1 − 𝑥3) + 𝐽 ∑
𝜕𝜑1

𝜕𝑥𝑖

3
𝑖=1

𝜕𝑥𝑖

𝜕𝑡
−

𝐽

𝑇1
|𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3)|𝑠𝑖𝑔𝑛(𝑠1) (19) 

 

When the system enters the manifold, the performance point of the system touches the intersection of the 

𝜓1 = 0 manifold, then the system (6) will be seperated and the dynamics of the closed system are described 

by the (20): 

 

{

𝑥̇1 = 𝑥2

𝑥̇2 = −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛( 𝑥1) −

𝑘

𝐼
(𝑥1 − 𝑥3)

𝑥̇3 = 𝜑1(𝑥1, 𝑥2, 𝑥3)

 (20) 

 

The function 𝜑1(𝑥1, 𝑥2, 𝑥3) in the decomposed system (20) can be considered as an internal control signal. In 

the second step of the synthesis, to find for the control law and to determine the function 𝜑1(𝑥1, 𝑥2, 𝑥3), an 

additional invariant manifold is introduced, which will ensure the stability of the closed-loop system and the 

response of invariant technology (16). A second invariant manifold is chosen: 

 

𝜓2 = 𝑥3 − 𝜑2(𝑥1, 𝑥2) = 0 (21) 

 

To ensure the internal stability of the system (20) similar to the first step, the macro variable 2  must satisfy 

the roots of the basic equation: 

 

𝑇2𝜓̇2 +𝜓2 = 0 (22) 

 

where T2>0 ensures the asymptotic stability of the system. Substituting (21) into (22) to get the control law: 
 

𝑇2
𝑑

𝑑𝑡
(𝑥3 − 𝜑2(𝑥1, 𝑥2)) + (𝑥3 − 𝜑2(𝑥1, 𝑥2)) = 0 (23) 

 

From the above equation and replacing 𝑥̇3 from the system of internal dynamic (20), the internal control 

signal 𝜑1 has the form: 
 

𝜑1 = ∑
𝜕𝜑2

𝜕𝑥𝑖

2
𝑖=1

𝜕𝑥𝑖

𝜕𝑡
−

𝑥3−𝜑2(𝑥1,𝑥2)

𝑇2
 (24) 

 

When the system enters the manifold, the performance point of the system touches the intersection of the manifold 

𝜓2 = 0, then the dynamic system (20) is separated and the closed system are described by (25): 
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{
𝑥̇1 = 𝑥2

𝑥̇2 = −
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛( 𝑥1) −

𝑘

𝐼
𝑥1 +

𝑘

𝐼
𝜑2(𝑥1, 𝑥2)

 (25) 

 

In the third step of the synthesis, to find for the control and to determine the function 𝜑2(𝑥1, 𝑥2), a 

third invariant manifold is constructed, which will ensure the internal stability of the closed-loop system and 

the response of invariant technology (16). 

 

𝜓3 = 𝑥2 − 𝐾(𝑥1 − 𝑥𝑑) = 0 (26) 

 

The dynamic system (25) on the manifold in the last step (26) are rewritten as: 

 

𝑥̇1 = 𝐾(𝑥1 − 𝑥𝑑) (27) 

 

From the dynamic (27), the asymptotic stability condition at 𝑥1 = 𝑥𝑑 is 𝐾 < 0. To satisfy the condition  
𝜓2 = 0, the macro variable 𝜓2 must satisfy the solution of (28): 

 

𝑇3𝜓̇3 +𝜓3 = 0 (28) 

 

where T3>0 is the condition for asymptotic stability of the system with the invariant manifold. 

Substitute (26) into (28) to find the internal control signal 𝜑2(𝑥1, 𝑥2). 
 

3 2 1 2 1( ( )) ( ) 0
d d

d

dt
T x K x x x K x x− − + − − =  (29) 

 

Furthermore, the equations of the decomposed system (25) are substituted into (29), resulting in the resulting 

(30): 

 

𝑇3 (−
𝑚𝑔𝑙

𝐼
𝑠𝑖𝑛( 𝑥1) −

𝑘

𝐼
𝑥1 +

𝑘

𝐼
𝜑2(𝑥1, 𝑥2) − 𝐾(𝑥2 − 𝑥̇𝑑)) + 𝑥2 − 𝐾(𝑥1 − 𝑥𝑑) = 0 (30) 

 

From (30) the internal control signal 𝜑2(𝑥1, 𝑥2) is found: 

 

𝜑2(𝑥1, 𝑥2) =
𝑚𝑔𝑙

𝑘
𝑠𝑖𝑛( 𝑥1) + 𝑥1 +

𝐼𝐾

𝑘
(𝑥2 − 𝑥̇𝑑) −

𝐼

𝑘𝑇3
(𝑥2 − 𝐾(𝑥1 − 𝑥𝑑)) (31) 

 

From the (17), (21), (31) and invariant technology (10), the control law u for the FJM has the form. 

 

𝜏 = −𝑘(𝑥1 − 𝑥3) + 𝐽 ∑
𝜕𝜑1

𝜕𝑥𝑖

3
𝑖=1

𝜕𝑥𝑖

𝜕𝑡
−

𝐽

𝑇1
|𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3)|𝑠𝑖𝑔𝑛(𝑠1) (32) 

 

where 𝜑1 = (
𝑚𝑔𝑙

𝑘
𝑐𝑜𝑠( 𝑥1) + 1 +

𝐼𝐾

𝑘𝑇3
) 𝑥2 +

𝐾𝑇3

𝑘𝑇3
(−𝑚𝑔𝑙 𝑠𝑖𝑛( 𝑥1) − 𝑘(𝑥1 − 𝑥3)) −

𝑥3−𝜑2(𝑥1,𝑥2)

𝑇2
 

 

Check the stability of the control law τ and the response of the condition for the sliding mode [28]. Choosing 

a positive Lyapunov function of the form: 

 

𝑉 = 0.5 𝑠1
2 (33) 

 

When the control law (29) affects on the system (6), the derivative of the Lyapunov function (30) has the form: 

 

𝑉̇ = 𝑠1𝑠̇1 = 𝑠1 (𝑥̇4 − ∑
𝜕𝜑1

𝜕𝑥𝑖

3
𝑖=1

𝜕𝑥𝑖

𝜕𝑡
) = −𝑠1

1

𝑇1
|𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3)|𝑠𝑖𝑔𝑛(𝑠1) = −

1

𝑇1
|𝑠1|

2 ≤ 0 (34) 

 

In (34) and the control law (32) always guarantees the system (6) global stability. In addition, the sliding 

surface 𝑠1 = 𝑥4 − 𝜑1(𝑥1, 𝑥2, 𝑥3) and its derivative 𝑠̇1 can be expressed from the functional (18). Then the 

condition for the appearance of sliding mode (32) is created by the choice of the parameters T1>0. 

 

3.3.  Synthesis of SMC for flexible coupling 

SMC law presented in the studies [3] is synthesized for this system to compare the results of SMC 

law based on serial invariant manifolds. Select the sliding surface of the controller σ has the form: 
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𝜎 = ∑ 𝛼𝑖
𝑛−1
𝑖=1 𝑒𝑖 + 𝑒𝑛 (35) 

 

where n = 4, αi (i = 1,2,3) are positive constants chosen to ensure the dynamics of asymptotic stability of the 

system on the sliding surface, the errors ei are calculated as (36): 

 

𝑒1 = 𝑥1 − 𝑥𝑑 ;  𝑒2 = 𝑥2 − 𝑥̇𝑑 ;  𝑒3 = 𝑒̈1 = 𝑓1(𝑥1, 𝑥2, 𝑥3) − 𝑥̈𝑑; 

𝑒4 = 𝑒1 =
𝜕𝑓1

𝜕𝑥1
𝑥2 +

𝜕𝑓1

𝜕𝑥2
𝑓1 +

𝜕𝑓1

𝜕𝑥3
𝑥4 − 𝑥𝑑 . (36) 

 

in (35) is written as 

 

𝜎 = 𝛼1𝑒1 + 𝛼2𝑒2 + 𝛼3𝑒3 + 𝑒4 (37) 

 

where αi are the coefficients given such that the characteristic polynomial of (35) is a Hurwitz polynomial (all 

roots have negative real part). 

 

𝛼1𝑒1 + 𝛼2𝑒2 + 𝛼3𝑒3 + 𝑒4 = 0 (38) 

 

Then all roots of the characteristic equation are on the left of the complex plane, so e(t) will 

approach 0 as t approaches ∞. The equation σ =0 defines a curved surface S in n-dimensional space called the 

sliding surface S. The problem of controlling the output signal x(t) following the setting signal xd(t) is 

transformed into the problem of finding the control signal τ(t) such that σ →0. 

 

Selection of Lyapunov function 𝑉 =
1

2
𝜎2 

 

Derivative of Lyapunov function 𝑉 = 𝜎𝜎̇ 

 

To σ →0 it is necessary to choose the control signal τ(t) such that 𝑉̇ < 0, from expressions (36) and (37). 

 

𝜎̇ = 𝛼1𝑒̇1 + 𝛼2𝑒̇2 + 𝛼3𝑒̇3 + 𝑒̇4 = 𝛼1𝑥2 + 𝛼2𝑓1 + 𝛼3 (
𝜕𝑓1
𝜕𝑥1

𝑥2 +
𝜕𝑓1
𝜕𝑥2

𝑓1 +
𝜕𝑓1
𝜕𝑥3

𝑥4) 

+
𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥1
𝑥2) +

𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥2
) 𝑓1 +

𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥3
) 𝑥4 +

𝜕𝑓1

𝜕𝑥3
(𝑓2 +

𝑢

𝐽
) (39) 

 

Then, the the sliding control law is defined as: 

 

𝜏 = −(
𝜕𝑓1

𝜕𝑥3
)
−1

{
𝛼1𝑥2 + 𝛼2𝑓1 + 𝛼3 (

𝜕𝑓1

𝜕𝑥1
𝑥2 +

𝜕𝑓1

𝜕𝑥2
𝑓1 +

𝜕𝑓1

𝜕𝑥3
𝑥4) +

𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥1
𝑥2) +

𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥2
) 𝑓1 +

+
𝑑

𝑑𝑡
(
𝜕𝑓1

𝜕𝑥3
) 𝑥4 +

𝜕𝑓1

𝜕𝑥3
(𝑓2) − 𝛼1𝑥̇𝑑 − 𝛼2𝑥̈𝑑 − 𝛼3𝑥𝑑 − 𝑥𝑑

(4)
+ 𝛤𝑠𝑎𝑡(𝜎)

} (40) 

 

where 

 
𝜕𝑓1

𝜕𝑥1
=

−𝑘

𝐼
−

𝑚𝑔𝑙

𝐼
𝑐𝑜𝑠( 𝑥1);

𝜕𝑓1

𝜕𝑥2
= 0;

𝜕𝑓1

𝜕𝑥3
=

𝑘

𝐼
; (41) 

 

in (40), the saturation function sat(σ) is chosen instead of the sign function sign(σ) to reduce chattering which 

can damage the actuator, the parameter Г is a positive constant. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Description of the intended results 

In-depth simulations have been performed to demonstrate the potential of the proposed control law 

for the FJM system. The proposed control parameters are selected through the parameters Ti (i=1:3) and K. 

These parameters reflect the convergence time to the selected manifolds and the total time from initial 

positions to the desired point can be calculated in advance. In this study, a set of parameters will be selected 

with the following values: K=-31; T1=0.2; T2=0.2; T3=0.3. The SMC parameters were selected based on the 

[3] study as follows: Г=1040; α1=27; α2=27; α3=9. The implementation of the SMC control law and the 

proposed control law is conducted with two cases: The first case when the initial state of the system 

x(0)=[0.3; 0.5; 0.3; 0.5]T is stable to the origin of coordinates xfinish=[0; 0; 0; 0]; the second case when initial 
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states are x(0)=[0.3; 0.5; 0.3; 0.5]T and angle q1 is tracking the desired trajectory which has the form x1= 

sin(ωt) with frequency ω=0.5. The maximum torque generated by the actuator is 10 Nm.  

 

4.2.  Numerical simulation results 

Figures 2(a) and (b) illustrates the angle response q1, q2 of the FJM system with two control laws for 

the first case. Both the basic SMC and the SMC based on invariant manifolds are stable about the origin of 

coordinates. The actual angles of the joints are rapidly approaching the desired values. Besides, it also 

noticed that the quality of the suggested controller is better. The setting time of q1 to the error value 0.015 

(rad) is 1.86 s and for the sliding controller normally is 1.92 s. During the rest of the time, the two controllers 

bring the system's state to the origin of coordinates without overshooting. The angle rotation with the ox axis 

of both controllers is very close to the set value. Figure 2(c) shows the moment generated by the proposed 

control law and the normal SMC. The switching phenomenon occurs at time 0.01s, and the moment 

generated by the proposed control law has no switching phenomenon and the torque is smoother. In addition, 

the initial moment of the proposed control law has the opposite direction to the moment that generates the 

normal SMC law, so the overshoot at the beginning of q1, q2 of the proposed control law is smaller than of the 

sliding control law shown in the period from 0 s to 3.1 s Figures 2(a) and (b). 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. Simulation results when moving with non-zero initial conditions to the coordinate axis (a) response 

of link q1, (b) response of link q2, and (c) moment of motor 

 

 

Figure 3 is the response of the FJM system to the above two control laws for the second case. In 

which Figures 3(a) and (b) is the response of link angle q1 and tracking error when the following value has a 

period. The proposed control law gives better results: the time response to follow the desired trajectory for 

the proposed control law takes only 2.2 s while SMC takes up to 4.15 s. Besides, the large tracking error of 

the proposed control law is 0.019 (rad) and SMC is 0.14 (rad). In Figure 3(c) the motion of link q2 has a 

smaller amplitude, which means that the link angle q2 moves in a narrower range because the possible control 

of q2 will be increased when the amplitude of the setting value increases. For the moment of the system 
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shown in Figure 3(d), both of control laws generate similar control signals. However, at the beginning time, 

the moment direction of the proposed control law is opposite to that of the SMC control law and the signal 

function is smoother. This can be explained that in the proposed control law, it is only necessary to bring the 

sliding surface in the first manifold, the switching signal is smaller after entering the sliding surface. 

Therefore, the zero point of system will stabilize to the desired point under the effects of dynamics. 
 

 

  
(a) (b) 

 

  

(c) (d) 

 

Figure 3. Simulation results when the desired trajectory is sin (0.5t) with non-zero initial conditions  

(a) response of link q1, (b) error of tracking link q1, (c) response of link q2, and (d) moment of motor 

 

 

5. CONCLUSION 

The paper has successfully built a SMC law based on serial invariant manifolds and ADAR method. 

According to the numerical analysis of the results, the proposed controller shows the ability to adapt to 

different types of desired trajectories and good tracing ability. Furthermore, the SMC law based on these 

invariant manifolds gives a smooth, non-switching signal and the direction of the control law action ensures a 

lower overshoot than the normal SMC law. 
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