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 Nowadays social networks such as Twitter, LinkedIn, and Facebook are a 

popular and necessary platform. It is considered a miniature of an actual 

social network because of its advantages in connecting and sharing 

information between users. The analysis of data on online social networks 

has become a field that has attracted a lot of attention from the research 

community and anchor link prediction is one of the main research directions 

in this field. Depending on demand, a user can simultaneously participate in 

many different online social networks, anchor link prediction is a kind of 

task that determines the identity of a user on many different social networks. 

In this article, we proposed an algorithm that determines missing/future 

anchor links between users from two different online social networks. Our 

algorithm utilizes the graph attention technique to represent the source and 

target network into the low-dimension embedding spaces, we then apply the 

canonical correlation analysis to recline their embeddings into same latent 

spaces for final prediction. 
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1. INTRODUCTION 

Recently, with the diversity of different online social networks, anyone in real-life social network 

can take part in several online social networks for many different purposes. Most of them participate in these 

online social networks with the same or similar user properties such as full name, username, and gender. 

However, in some cases, users may not disclose personal information consistently across different social 

networks. This leads to using this information to predict anchor links will not be accurate because of the 

noisy information. Thus, anchor link prediction, which is a task of matching users over social networks, is a 

major challenge and attracts a lot of attention from the scientific community up to present. 

There are many different methods for anchor link prediction problems. The initial studies handled the 

anchor link prediction problem by exploiting self-defined user profile and user generated contents to measure 

the similarity to get the prediction result. The traditional methods attempt to align users across online social 

networks using self-defined user personal profile such as name, gender, age, location [1]-[3], and user’s 

generated content such as tweets, posts, publications [4], [5]. Usually, the methods that follow this approach 

often use heuristics to process text data and compare similarity. These methods are sensitive to the similarity 

metrics or self-defined user information, and thus come with limitations due to the imbalance of users’ 

demographic data in different information networks and privacy issues in retrieving user profile information. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recently, the rapid development of network embedding techniques [6]-[8] has opened a new 

research trend in the field of anchor link prediction. Network embedding is a task of learning the 

representation of a node in the network in which it has low dimension than the original one but still 

preserving the network properties and structure. Following this strategy, some methods [9]-[13] attempt to 

find the low-dimensional embedding of every node in the source and target online social networks using a 

graph neural network [14] which is a generalization of convolution neural networks to process some kind of 

data represented by the graph structure. Few years recently, graph neural networks (GNN) have been 

considered as a powerful and pragmatic technique for any problem that can be represented by graphs. 

Therefore, there are many variant models developed based on GNN, such as recurrent GNN [15], 

convolutional GNN [16], [17], graph auto-encoders [18], [19], and spatial-temporal GNN [20]. Graph 

attention network [21] is one of the modern models widely applied in fields such as link prediction [22]-[24], 

node classification [25], node clustering [26], recommendation system [27], [28], information diffusion [29], 

and in this paper, we apply this technique to resolve the anchor link prediction problem. 

MAUIL [30] is an anchor link prediction method which combines multiple embedding techniques to 

increase the accuracy of the anchor link prediction model. It uses three levels of attribute embedding 

techniques to preserve the node attributes of the network and use the Line method [31] to embed network 

information in terms of network structure. Although, this method has obtained great results, which has been 

demonstrated experimentally to give better results compared to other solutions. However, it also exposes 

some limitations in terms of performance as well as complexity. Inspired by MAUIL, we propose an anchor 

link prediction method based on the idea of graph attention mechanism to increase the accuracy and 

performance of this model. Here the main contributions of our paper:  

− We propose a combination method of anchor link prediction to improve the accuracy of the MAUIL 

method by substituting the network embedding method that is used in MAUIL by a graph attention 

mechanism to find the embedding of the source and target network. 

− We apply canonical correlation analysis to project their representation onto same latent embedding 

spaces and compute the alignment matrix of nodes between source and target network. The experiment 

on real life datasets shows that our proposed method is outperforming than the original one. 

 

 

2. PROPOSED METHOD 

Our proposed model is a combination of three modules: multilevel attribute embedding, graph 

attention network, and regularized canonical correlation analysis (RCCA)-based correlation analysis. 

Consequently, a total of four embedding matrices (three for attribute-based embedding and one for graph 

attention network (GAT)-based embedding) are integrated to establish the final embedding of each social 

networks. As described in the Figure 1, our model can be divided into three steps as shown in: 

− At first, we feed user’s attributes of source and target network into three-level embedding techniques to 

compute node embedding which preserves the attribute information of each user in network. 

− Then, we use attribute embedding as initial feature vector along with network structure as the input of 

graph attention mechanism. This process utilizes the contribution of neighbor nodes to the aggregation 

step to construct the final embedding. 

− Finally, we apply canonical correlation analysis to project the source and target embedding into the 

same latent representation. Then, we compute final network alignment matrix based on the similarity 

score of embedding vectors between source and target network. 
 

 

 
 

Figure 1. Framework overview for anchor link prediction 
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2.1.    Multi-level attribute embedding techniques 

2.1.1. Character-level attribute embedding 

This embedding technique aims to learn the representation of node using the text similarity of 

similar usernames. Text content in the user’s name may contain multiple type of characters such as alphabets, 

numeric, spaces, and special symbols, and generally we see them as tokens. For each username, we count the 

frequency of each unique token to get a list of tuples 𝑡 =  [(𝑡1: 𝑓1), (𝑡2: 𝑓2), (𝑡3: 𝑓3), … , (𝑡𝑚: 𝑓𝑚)], where ti is 

the ith token which appears in username, fi is the number of occurrences of token ti in username. During the 

counting process, we also build a token dictionary which contains all unique tokens that appear in the 

usernames of all users. Finally, the corresponding count-weighted vector for user 𝑣𝑖  is  

𝑋𝑖
𝑐⃗⃗ ⃗⃗  = [𝑓𝑖1, 𝑓𝑖2, … , 𝑓𝑖𝑝] ∈ 𝑅𝑝 where fij is the frequency of jth token in the token dictionary which occurs in the 

username of user vi, p is the total number of unique tokens in dictionary. 

The embedding matrix for all node in each network 𝑋𝑐 = [𝑋1
𝑐⃗⃗ ⃗⃗  , 𝑋2

𝑐⃗⃗ ⃗⃗  , … , 𝑋𝑛
𝑐⃗⃗ ⃗⃗  ] ∈ 𝑅𝑛 x 𝑝 is reduced by 

apply the auto-encoder method which is an essential and powerful technique to reduce the dimensional of 

data. This work implements a one-layer auto-encoder to integrate the token frequency vectors into distributed 

embedding space. After this step, we acquire the feature matrix of each network at character-level  

𝑃𝑐 = [𝑃1
𝑐⃗⃗ ⃗⃗ , 𝑃2

𝑐⃗⃗ ⃗⃗ , … , 𝑃𝑛
𝑐⃗⃗ ⃗⃗ ] ∈ 𝑅𝑛 x 𝑑 where Rn x p is the original high-dimensional and Rn x d is reduced-dimensional 

character-level representation of character level embedding. 

 

2.1.2. Word-level attribute embedding 

This embedding technique aims to learn the representation of node using the similarity of text of 

similar word group or short sentences such as affiliations, social relationship, and working experiences. We 

apply the Word2vec model [32], which is one of the most popular techniques for converting texts into feature 

vectors to embed the characteristics of user at word-level. The attribute embedding at word-level of the user 

vi in a network G with n users is denoted by 𝑎𝑖
𝑤 and may contain part of the word. We can represent the 

words in these short sentences using a sequence of m unique words 𝑤 = 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚. We use them as 

input corpus to build the vocabulary dictionary, target words, and contextual words list for each target word 

using a window size. Then, they are fed into the continuous bag of words (CBOW) model [32], a neural 

network model that predicts the target word by trying to understand the context of the surrounding words. 

 

𝑃𝑖
𝑤 = (1 −  𝜆)𝑍𝑖 +  𝜆

1

|𝑁𝑖|
∑ 𝑍𝑗𝑗∈𝑁𝑖

 (1) 

 

To clearly distinguish between word-level and character-level embedding, we enhance the word-

level embedding of a node by adding the neighboring node’s embedding information. Thus, we use the (1) to 

regularize the embedding of each user by a real number parameter λ ∈ [0,1] along with the contribution of 

their neighbor embeddings. Where, Zi is the word-level embedding vector of ith node of Word2vec model, Ni 

are the neighbor nodes of ith node. 

 

2.1.3. Topic-level attribute embedding 

In this topic-level embedding, we use latent Dirichlet allocation (LDA) [33] which is a popular topic 

modeling technique to extract topics from a given corpus. This embedding technique aims to learn the 

representation of node using the text similarity of attribute texts of user in terms of long sentences or 

paragraphs such as description of books, projects, and published articles. All of this information is merged in 

order to create the corpus data as input for this embedding technique. We treat user’s attributes at topic-level 

as a document which may contain many words. Firstly, we clean, preprocess and tokenize the text corpus 

data to words. Then, we build a document-word matrix ∈ R|D| x |W| where |D| is the number of 

documents/users, |W| is the number of distinct words in the word-level dictionary. LDA converts this 

document-word matrix into two other matrices: document-topic matrix and topic-word matrix.  

The goal of this process is to find the most optimal representation of the document-topic matrix ∈ 
R|D| x |T| and the topic-word matrix ∈ R|T| x |W| through an iterative process, where |T| is the number of topics. 

At the first iteration, it randomly assigns a list of topics to each word in a document to generate the initial 

document-topic and topic-word matrices. Then, LDA will iterate over each document Di and each word Wj in 

document in order to update the correct topic for a specific word Wj with an assumption that all the topics that 

have been assigned are correct except the current word. 

 

2.2.  Graph attention network 

We apply graph attention mechanism [21], an efficient graph neural network to find the low 

dimensional embedding which maximizes the preservation of network attributes and local structure. The 
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GAT model has a mechanism to assign the different attention coefficients to all neighborhoods of a node at 

the aggregation step to increase the performance of prediction tasks. We also employ a multi-head attention 

mechanism to prevent noisyness and make the prediction model more stable. 

 

𝑙𝑖𝑗 =  𝑜 𝑇[𝑊 xi ⃗⃗⃗⃗  || W xj⃗⃗ ] (2) 

  

First, we use the embedding vector generated from the multilevel attribute embedding technique (as 

proposed in subsection 2.1.) as the initial feature vector for the GAT model. We denote 𝑥𝑖⃗⃗⃗   as the feature 

vector of a user node vi in network G, and 𝑥𝑗⃗⃗⃗   is the initial feature vector of the user node vj ∈ Ni are its 

neighbors. We use (2) to compute the important score 𝑙𝑖𝑗  between user node vi and all its neighbors  

𝑣𝑗 , 1 ≤ 𝑗 ≤ |𝑁𝑖|. Where, 𝑊 ∈ 𝑅𝐷 x 𝐷 is the weight matrix and 𝑜 ∈ 𝑅2𝐷  is the weight vector that is the model 

parameters, D is the original dimension of the initial feature vector, D′ is the dimension of the hidden layer. 

 

αi,j =  
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑙𝑖,𝑗))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑙𝑖,𝑡))
|𝑁𝑖|

𝑡=1

 (3) 

  
These important scores are then typically normalized using the softmax function, in order to be 

comparable across different neighborhoods. We use the (3) to compute the normalized attention coefficient αi,j 

between node vi and all its neighbors vi. Where, LeakyReLU is a type of activation function based on a ReLU. 
 

𝑢⃗ i =  𝜎(
1

𝐾
∑ ∑ 𝛼𝑖,𝑗

𝑘 𝑊𝑘𝑥𝑗⃗⃗⃗  
|𝑁𝑖|
𝑗=1

𝐾
𝑘=1 ) (4) 

 

Finally, we compute the embedding vector of user node vi in graph G using (4) which implements a 

multi-head attention to stabilize the self-attention learning process. In which, K is the number of attention 

mechanisms and k is the kth attention mechanism. 

 

2.3.  Canonical correlation analysis 

After representing the attribute level and the structure level of each network in the above steps, we 

will have the embedding matrices X ∈ Rd x n and Y ∈ Rd x m representing the information of the source network 

and the target network. Where m and n are the number of users in the source and target networks, d is the 

final dimensional concatenate from the four embedding techniques mentioned (5). 
 

p = max 𝑐𝑜𝑟𝑟(ℎ𝑖
𝑇 𝑋,𝑚𝑗

𝑇  𝑌) = 𝑚𝑎𝑥
ℎ𝑖

𝑇 𝐶𝑋𝑌 𝑚𝑗

√(ℎ𝑖
𝑇 𝐶𝑋𝑋 ℎ𝑖)(𝑚𝑗

𝑇  𝐶𝑌𝑌 𝑚𝑗)
  (5) 

 

We use canonical correlation analysis (CCA) technique to represent these two distinct spaces X, Y on 

the same common semantic space. CCA is a technique for learning the linear correlational relations among 

multiple multidimensional datasets. CCA finds a canonical latent space that maximizes association between 

projections of these datasets onto that common space. RCCA technique mostly define the canonical matrices 

as 𝐴 =  [𝑎1;  𝑎2; . . . ;  𝑎𝑘]  ∈  𝑅𝑑 𝑥 𝑘 and 𝐵 =  [𝑏1;  𝑏2; . . . ;  𝑏𝑘]  ∈  𝑅𝑑 𝑥 𝑘, it includes k pairs of linear 

projections. We use (5) to find the canonical matrices A and B which maximize the correlation source and 

target network. The canonical matrices of the anchor link problem are resolved by projecting the embedding 

of the associated social networks GX/GY into the canonical matrices A and B to get the common correlated 

space 𝑍𝑋 = 𝐴𝑇𝑋 ∈ 𝑅k x n and 𝑍𝑌 = 𝐵𝑇𝑌 ∈ 𝑅k x m 

 

 

3. EXPERIMENTAL 

3.1.  Datasets 

We experiment our proposed model in two real-life alignment datasets [30]. Table 1 illustrates the 

statistics of these data sets. 

− Weibo vs Douban. This dataset was gathered from two well-known Chinese social networks, Weibo 

and Douban. It contains 1,397 anchor links. 

− Data base and logic programming17 (DBLP17) vs DBLP19. This dataset was collected from computer 

science bibliography website. In this research, two snapshots of the DBLP network were collected in 

two different periods of time and we treat them as one pair of alignment networks. The anchor links 

were constructed from the authors who have the same unique key in two different snapshots of network, 

and it contains 2,832 anchor links. 
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Table 1. Statistics of real-life data sets 

 #Nodes #Edges #Anchors 

Weibo 9,714 117,218 1,397 

Douban 9,526 120,245 

DBLP17 9,086 51,700 2,832 

DBLP19 9,325 47,775 

 

 

3.2.  Evaluation metrics 

In our study, we used the Hit-precision metric [1] to assess the performance of the proposed method. 

The Hit-precision can be computed using (7). This metric measures the number of true anchor link appears in 

the top-k candidates. 
 

ℎ(𝑥) =  
𝑘−(ℎ𝑖𝑡(𝑥)−1)

𝑘
  (6) 

 

In (6), ℎ𝑖𝑡(𝑥) is the position of a truly predicted user in the top-k candidates of the output collection. 

Suppose that n is the number of assessed user pairs, we can compute the hit-precision using the average score 

of the truly predicted user pairs. 
 

Hit-precision =  ∑ ℎ(𝑥𝑖)
𝑛
𝑖=1   (7) 

 

3.3.  Baselines 

We compare our proposed method with the following state-of-the-art anchor link prediction methods: 

− MAUIL contains three modules: attribute-based embedding module, network-based embedding 

module, and RCCA-based module. 

− Our method is an improvement of MAUIL by adding the graph attention mechanism. This method 

includes four modules: attribute-based embedding, network structure -based embedding module, graph 

attention embedding module, and RCCA-based module. 

 

3.4.  Performance comparison 

We compare the performance of our proposed method with the baselines. In the experiment, all the 

hyperparameters of both compared methods and our method are tuned to perform the best on the test dataset. 

For our method, the output dimensional for each embedding technique is set to the same value 𝐷 = 100, the 

number of canonical components is empirically set to 𝑘 = 80 for both the Weibo-Douban and DBLP 

datasets. Correspondingly, the regulation parameters 𝑅 = 1000 are considered for the Weibo-Douban and 

DBLP dataset, respectively. 

Table 2 is convincing results on the prediction of the anchor link for the DBLP17-DBLP19 and 

Weibo-Douban dataset. From this table, we can discover that our model consistently outperforms all 

baselines in two pairs of datasets. We also tested our model on many different training ratios and evaluate the 

performance on difference hit-precision. Figure 2(a) shown the performance on hit-precision@5, Figure 2(b) 

shown the performance on hit-precision@10, Figure 2(c) shown the performance on hit-precision@20, 

Figure 2(d) shown the performance on hit-precision@30 for DBLP dataset. Similarly, Figure 3(a) shown the 

performance on hit-precision@5, Figure 3(b) shown the performance on hit-precision@10, Figure 3(c) 

shown the performance on hit-precision@20, Figure 3(d) shown the performance on hit-precision@30 for 

DBLP dataset. The experimental results show that, our model gives consistently better results for all training 

ratios. The accuracy of the model is proportional to the training data, when the training data reaches about 

50%-60%, the accuracy almost converges. 

 

 

Table 2. Comparison of Hit-precision with training ratio 30% 

Metric 
Weibo vs Douban DBLP-17 vs DBLP-19 

Our method MAUIL Our method MAUIL 

Hit-precision@1 0.2380 0.2310 0.7720 0.7510 

Hit-precision@3 0.2913 0.2797 0.8060 0.7810 

Hit-precision@5 0.3236 0.3099 0.8224 0.7970 

Hit-precision@10 0.3774 0.3597 0.8412 0.8213 

Hit-precision@15 0.4104 0.3920 0.8543 0.8324 

Hit-precision@20 0.4326 0.4163 0.8636 0.8379 

Hit-precision@25 0.4488 0.4361 0.8695 0.8413 

Hit-precision@30 0.4615 0.4527 0.8747 0.8435 
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(a) (b) 

 

  
(c) (d) 

 

Figure 2. Precision@K comparision on DBLP dataset (a) precision@5, (b) precision@10, (c) precision@20, 

and (d) precision@30 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 3. Precision@K comparision on Weibo-Douban dataset (a) precision@5, (b) precision@10,  

(c) precision@20, and (d) precision@30 
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4. CONCLUSION 

In this article, we study and apply multilevel embedding techniques to learn the representation of 

nodes in online social networks. We project learned embedding onto same latent space using canonical 

correlation analysis and apply the models in representation learning along with other techniques to predict the 

formulation of the anchor link across information networks, specific tasks in information network analysis. 

The experiments on the real-life dataset indicate that our method can substantially enhance the precision 

compare to the traditional methods. The following is a summary of our contributions in this article: i) we 

have learned theoretical knowledge related to network representation learning, graph attention network, and 

anchor link prediction; ii) we combined the multilevel embedding techniques for text-based attributes, graph 

attention mechanism, and canonical correlation analysis into the anchor link prediction; and iii) we have 

experimented with two real-life data sets. We also have evaluated and compared experimental results with 

related algorithms and our model consistently outperforms all baselines. 
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