
Bulletin of Electrical Engineering and Informatics

Vol. 12, No. 1, February 2023, pp. 387~394

ISSN: 2302-9285, DOI: 10.11591/eei.v12i1.4209  387

Journal homepage: http://beei.org

Automatic spelling error detection and correction for Tigrigna

information retrieval: a hybrid approach

Solomon Gebremariam Desta, Gurpreet Singh Lehal
Department of Computer Science, Faculty of Computing Sciences, Punjabi University, Patiala, India

Article Info ABSTRACT

Article history:

Received Jun 6, 2022

Revised Sep 4, 2022

Accepted Sep 26, 2022

 This paper proposes a hybrid approach to design and implement query

spelling error detection and correction (SEDC) for Tigrigna information

retrieval (IR). Our approach, which is the main contribution to this work, is

fast and robust to achieve better performance and also helps the users to

easily insert their corrected queries to retrieve relevant information from the

IR. This is achieved by combining the normalized measure of bigram

overlap using the Jaccard coefficient (J.C) technique, a dynamic

programming algorithm for edit distance, and probability of occurrence,

which were used to make suggestions for the misspelt words. Our approach

was evaluated on the SEDC subtasks separately. It achieved an F-measure of

98.85% on the spelling error detection subtask and an accuracy of 95.36%

on the spelling error correction subtask. Thus, a comparison was conducted

between our approach and the existing Tigrigna spell checker. It is found

that our approach outperformed the existing spell checker and shows a

5.36% improvement in accuracy. This is by far the most promising result

with regard to correcting the misspelt users’ queries and improving the

overall performance of the IR.

Keywords:

Effective hybrid approach

Information retrieval

Spell checker

Spelling corrector

Tigrigna language

This is an open access article under the CC BY-SA license.

Corresponding Author:

Solomon Gebremariam Desta

Department of Computer Science, Faculty of Computing Sciences, Punjabi University

NH 64, Urban Estate Phase II, Patiala, Punjab, India

Email: solomong6@gmail.com

1. INTRODUCTION

How people share and look for information has been significantly impacted by the internet and the

world wide web (WWW) [1]. Probably the most important phenomenon that has affected how information is

handled and processed is the advent of the internet. Therefore, it is crucial to have access to any kind of

information in a short time and it is so easy for information seekers [2]. Despite recent improvements in

search quality made possible by using large search engines like Google and Yahoo. The rapid increase in the

size of web information has introduced new challenges for search engines in the manner in which they

retrieve search results. In reality, there are still many situations in which users are presented with inaccurate

or very poor search results [3].

One of the main issues with search engine queries is misspelt queries in the user’s query [4]. Li [5]

reported that about 10 to 12% of all search phrases entered into search engines on the web are misspelt.

Spelling errors may occur for different reasons. When users type quickly, they may add or delete letters in an

unintentional manner. As mentioned in [6], typing an adjacent key on the keyboard by accident is very

common, especially on mobile devices with small virtual keyboards. Besides the typographical errors, some

of the errors come from the difficulty of spelling itself. Spelling provides a difficult barrier for foreign and

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 1, February 2023: 387-394

388

native speakers equally, with varying spelling norms, uncertain word-breaking boundaries, and the constant

introduction of new terms [7].

Query spelling correction is to automatically detect misspelt queries and find alternative forms in

order to correct them [8]. The capability to automatically correct misspelt queries has become crucial in

today’s search engines. Users commonly make spelling mistakes. Search engine users are especially prone to

making mistakes in their queries since they frequently explore novel content. The search engine can better

grasp the users’ intentions by using automatic spelling correction for queries, which can enhance the

effectiveness of information retrieval (IR) [5].

There is local research work that has been done on a spell checker for the Tigrigna language on mobile-

phone devices [9]. To find the input strings in a dictionary, they employed a dictionary look-up technique as well

as the Levenshtein distance for the edit distance algorithm to suggest the candidate terms for the misspelt query.

They also reduced the number of correction candidates by using statistical spelling suggestions based on

frequency. Finally, they evaluated the performance of the developed spelling corrector, and the experimental

result showed that the algorithm had achieved an accuracy of 92%. However, their approach is very expensive

and slow because they have to do a large number of edit distance computations using a dynamic programming

algorithm to calculate the distance between the query and every term in the dictionary.

This study has proposed an effective hybrid approach that is associated with the isolated-word error.

It attempts to solve the problem of query misspellings by cutting down the number of candidate terms in the

dictionary. Instead of computing the edit distances of the query term from every term in the dictionary, we

selected a small-sized and good set of candidate terms from the dictionary, and then we computed the edit

distances only to those selected terms, not to every term in the dictionary. Among the selected terms, we look

at their probability of occurrence to decide which of them is the best candidate term for the misspelt query as

a correction suggestion in order to improve the retrieval performance of the Tigrigna IR.

Tigrinya, often written as Tigrigna (“ትግርኛ”, Tigrina), is a Semitic language that is part of the

Afro-Asian language family [10]. It is primarily spoken in Eritrea and Ethiopia’s regional state of Tigray.

There are more than 6 million Tigrigna speakers on the globe. The regional state of Tigray has more than 4.3

million Tigrigna speakers, according to [11] and Eritrea has around 2.4 million Tigrigna speakers [12].

The language uses a script derived from the ancient Geez language for writing [13]. Each symbol in

Tigrigna is made up of a combination of a consonant and a vowel, and the symbols are arranged in groups of

related symbols. There is no noticeable symbol that represents a consonant followed by an inherent vowel for

each consonant in each symbol [14]. There are 276 distinct symbols, 20 numerals, and eight punctuation

marks in the writing system. Each of the 34 core consonants has seven different shapes or orders. Out of the

276 symbols, 238 (34*7) are distinct. Twenty labiovelars and 18 labialized consonants are among the

remaining symbols [15].

Its form of writing system differs slightly from the so-called “Ethiopic” writing system that is used

for Amharic and Geez languages. Ethiopian and Eritrean Orthodox Christians still use it as their liturgical

language since it is a respected and often ancient language. The most visible graphical units in the "Ethiopic"

writing system represent a consonant accompanied by a vowel. A similar form can be found in characters that

contain the same consonant followed by distinct vowels [16]. As an example, Table 1 presents some of the

character representations of Tigrigna scripts in Latin scripts.

Table 1. Character representation of Tigrigna scripts into Latin scripts [16]
1st order 2nd order 3rd order 4th order 5th order 6th order 7th order

ሀ he ሁ hu ሂ hi ሃ ha ሄ hie ህ h ሆ ho

ለ le ሉ lu ሊ li ላ la ሌ lie ል l ሎ lo

ሐ He ሑ Hu ሒ Hi ሓ Ha ሔ Hie ሕ H ሖ Ho

The writing system is typically represented as a two-dimensional matrix, with rows of units

beginning with the same consonant and columns of units encoding vowels of the same kind. The columns are

commonly referred to as “orders”. The vowel /e/ is in the first order, the vowel /u/ is in the second order, the

vowel /i/ is in the third order, the vowel /a/ is in the fourth order, the vowels /ie/ are in the fifth order, there is

no vowel in the sixth order, and the vowel /o/ is in the seventh order in Tigrigna language.

2. METHOD

In this section, our proposed methods and algorithms, which are associated with the isolated-word

error rather than the contextual aspect of the misspelt word, are discussed in detail. It combines the

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Automatic spelling error detection and correction for Tigrigna … (Solomon Gebremariam Desta)

389

normalized measure of bigram overlap using the Jaccard coefficient (J.C) technique. A dynamic

programming approach for editing distances, and then sorts them based on their probability of occurrence in

order to provide the best candidate term as a suggestion.

2.1. Dataset description

Unfortunately, Ethiopian languages have no standard lexicon available, like Webster’s English

dictionary for the English language [17]. As a result, we have collected Tigrigna documents from different

websites of the British broadcasting corporation [18], Tigrai media house [19], and voice of America [20].

The document collection comprises one thousand four hundred twenty (1,420) documents, and data

preprocessing is performed in order to generate the fifty-five thousand three hundred twenty (55,320) unique

Tigrigna words which are stored in the lexicon of the indexed corpus. As shown in Table 2, the document

collection contains news articles about various topics like accidents, agriculture, defense, education, finance,

health, law, politics, and social issues. These news articles are stored in a common folder in plain text format.

Plain text is used for document representation because it saves memory and is supported by the majority of

programming languages [21].

Table 2. Sources of the indexed corpus
No. Type of news #Documents in the corpus

1. Accident 64
2. Agriculture 184

3. Defense 254

4. Education 105
5. Finance 94

6. Health 111

7. Law 123
8. Politics 155

9. Social 330

Total#of documents 1,420

2.2. Spelling error detection and correction tasks

This subsection presents the spelling error detection and correction (SEDC) that performs the

following tasks in order to suggest the correct word. The following tasks are carried out as shown in: i) data

preprocessing is done to generate valid terms; ii) the given misspelt query is decomposed into bigrams;

iii) a small-sized but a good set of candidate dictionary terms are generated; iv) the minimum edit distance

required between the query term and the set of candidate dictionary terms is calculated; and v) among the

best candidate dictionary terms chosen, we look at the probability of occurrence to decide which of them is

the most likely suggested candidate term.

2.2.1. Data preprocessing

User’s query preprocessing is an essential procedure in the process of SEDC tasks. During the

preprocessing, a series of procedures are applied to produce valid terms. First, tokenization is performed by

removing all punctuation marks, control characters, digits, and special characters and replacing them with

space. Secondly, normalizing the user’s query is done. In this work, normalization is related to the expansion

of Tigrigna short words abbreviated by either a period (.) or a slash (/).

In the Tigrigna writing system, there are many abbreviations (shortened words). These short words

can be single or compound short words abbreviated by either a period (.) or a slash (/). Looking up in the

lexicon of the indexed corpus is not necessary because the short words are expanded to their correct full

compound form without searching for the short words in the indexed corpus.

2.2.2. Bigram overlap using J.C

Instead of calculating a series of edit distance computations of the query term from every term in the

dictionary, it is important to cut down the number of candidate terms in the dictionary. We choose a small-

sized but good set of candidate terms from the dictionary and then compute the edit distance only for those

chosen terms, not for every term in the dictionary. This brings us to the measure of distance between two

terms, which is called the n-gram overlap technique. An N-gram is a consecutive sequence of n-characters

from a given term. In this work we use bigrams, which is an n-gram for n=2.

We enumerated all the bigrams in the query string as well as every term in the indexed corpus. We

have built a bigram index which has its own bigram vocabulary and posting lists. We use this bigram index to

retrieve all the terms in the standard inverted index that have a good overlap with the query bigrams. When

most of the bigrams match between the query bigrams and a term in the lexicon, then we can define that

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 1, February 2023: 387-394

390

particular term in the lexicon as having a good overlap with the query term. This is one of the ways we can

decide that something has a good overlap with the query term and it is a good candidate to suggest as a

spelling correction. The retrieval process for plausible definitions of multiple n-grams in common, according

to [8], is simply a single scan of the postings for the n-grams in the query term Q. In order to generate the set

of bigrams for both Q and T, we designed an algorithm as shown in algorithm.

Bigram algorithm

Begin:

 bigrams = []

 for word in [words]:

 count = 0

 for token in word[:len(word) – 1]:

 bigrams.append(word[count:count + 2])

 count = count+1

 return bigrams

End

We used a normalised measure of bigram overlap using the J.C technique. It is a commonly used

measure of n-gram overlap. Satriady et al. [8] demonstrated how the linear scan intersection might be

adapted when the measure of bigram overlap is the J.C for measuring the bigram overlap between two groups

Q and T. It is given by (1):

𝐽. 𝐶 =
𝑄∩𝑇

𝑄∪𝑇
 (1)

where Q and T, respectively, are the two groups of bigrams in the query term Q and the group of bigrams in

the dictionary term T. We move from one dictionary term T to the next as the scan progresses, computing the

J.C between Q and T on the fly. We include T in the output if the coefficient is greater than the experiment’s

threshold value; otherwise, we will continue on to the next term in the postings. To compute the J.C., we

need a group of bigrams in Q and T.

J.C always assigns a number between 0 and 1. If the J.C is close to 1, then it is a good overlap. We

use J.C to decide whether the query and the lexicon term have a good overlap or not. So, the set Q is going to

be the set of bigrams in the query term and the set T is going to be the set of bigrams in the lexicon terms,

and then we compute the J.C between these two sets. If the J.C ends up being approximately close to 1, then

we can say that the query and the lexicon term have a good overlap. In this work, we defined the threshold to

be relatively close to 1, and then we chose the particular lexicon terms as good lists of candidate dictionary

terms.

2.2.3. Dynamic programming for edit distance

The smallest edit distance required between the query term and the set of candidate dictionary terms

is computed by SEDC to select words from the candidate suggestion lists, as stated below. The edit distance

table, created using the application of a dynamic programming algorithm, shows how to transform a query

term into a target word with the smallest number of insert, delete, or substitute operations. The tabulation

method is the most efficient approach to solve this problem. As a result, the following procedure is used to

create an edit distance table between the query term (Q) and the target word (T).

The edit distance between Q and T is referred to as ED (Q, T). The smallest number of steps

required to transform Q to T is computed as follows [22]; i) case 1, if one of the arguments is zero, the base

case for the edit distance function is (2):

𝐸𝐷 (0,0) = 0 (2)

where ED is the edit distance between 0 and 0, which means we don’t need any edit distance operation to

transform an empty string into another empty string (3):

𝐸𝐷 (𝑚, 0) = 𝑚 (3)

where ED is the edit distance between m and 0, which means we need to do m delete operations to transform

the first m characters into an empty string (4):

𝐸𝐷 (0, 𝑛) = 𝑛 (4)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Automatic spelling error detection and correction for Tigrigna … (Solomon Gebremariam Desta)

391

where ED is the edit distance between 0 and n, which means we need to do n insert operations to transform

the empty string to the first n characters; and ii) case 2, if both of the arguments are different from zero, the

minimum number of steps required to transform from Q into T is (5):

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚, 𝑛 − 1) + 1 (5)

where ED is the edit distance between m and n, which means the minimum number of steps required to

transform Q into the first n-1 characters of T plus the cost of adding a letter to T, which costs a single

operation or (6):

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚 − 1, 𝑛) + 1 (6)

where ED is the edit distance between m and n, which means the minimum number of steps required to transform

the first m-1 characters of Q into T followed by a delete operation on the very last character of Q or (7)

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚 − 1, 𝑛 − 1) + 1 𝑖𝑓 𝑄𝑚 ≠ 𝑇𝑛 𝑎𝑛𝑑 0 𝑖𝑓 𝑄𝑚 = 𝑇𝑛 (7)

where ED is the edit distance between m and n, which means the minimum number of steps required to

transform the first m-1 characters of Q into the first n-1 characters of T so that we are doing a substitution

operation. This would count as one if the two are different, or it would be zero as we are changing the

character into itself.

We used a bottom-up technique in order to choose terms with the smallest edit distance between the

query term and the target word. We start by computing the edit distance for smaller sub-problems and then

using the results of these smaller subproblems to compute the results for larger problems that come after. The

outcomes are stored in the edit distance table. For example, the following edit distance table shows three

substitution edit operations required to transform from the query term “ተምሀሪቲ” to the target word “ትምህርቲ”

as illustrated in Table 3.

Table 3. Edit distance table
 - ተ ም ሀ ሪ ቲ

- 0 1 2 3 4 5
ት 1 1 2 3 4 5
ም 2 2 1 2 3 4
ህ 3 3 2 2 3 4
ር 4 4 3 3 3 4
ቲ 5 5 4 4 4 3

2.2.4. Spelling suggestion using probability

SEDC recommended a list of candidate terms which have the least edit distance from the query

term, and now we need to sort them according to their probability of occurrence and present the best one as a

suggestion to the user. We used the indexed corpus as well as a list of words compiled from various sources

on the internet [18]–[20]. Then the words are stored with their own collection frequencies in the descending

order as shown in Table 4. The collection frequency (CF) indicates how often each word occurs in the

indexed corpus. Finally, we compared the probability of occurrence of the suggested list of terms, and the

one with the highest value of probability was given the highest ranking.

The SEDC detects the misspelt word and suggests the correct words with their probability of

occurrence in descending order. It is assumed that the suggested correct words are lexically related to the

misspelt words when SEDC predicts them. As demonstrated in [23], the probability of the proposed word

alternatives is computed using (8):

𝑃(𝑤) =
𝐶𝐹(𝑤)

𝑇𝑊(𝑤)
 (8)

where P(w) is the probability of the suggested word, CF(w) is the CF of a given word in the document

collection, and TW(w) is the total number of words in the document collection. For example, if the given

query is “ህል” and the suggested words with their probability of occurrence in the document collection are

computed as shown in Table 5.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 1, February 2023: 387-394

392

Table 4. Sample list of words with their CF
No. Word CF No. Word CF No. Word CF

1. ኣብ 15,855 11. ምስ 1,903 21. ዓም 1,163
2. ናይ 7,432 12. ልምዓት 1,827 22. መንግስቲ 1,158

3. ካብ 3,985 13. ዘሎ 1,746 23. ትምህርቲ 1,138

4. እዩ 3,345 14. ምግባር 1,738 24. ከም 1,062
5. እቲ 2,953 15. ትልሚ 1,721 25. ከይዲ 1,054

6. ስራሕ 2,826 16. ስራሕቲ 1,564 26. ልዕሊ 1,041

7. ናብ 2,649 17. መሰረት 1,450 27. መሬት 1,029
8. ወረዳ 2,324 18. እዚ 1,380 28. ኣብዚ 1,019

9. ድማ 2,151 19. ዓመት 1,239 29. መደብ 1,006

10. ቤት 2,061 20. ሰብ 1,180 30. ግልጋሎት 990

Table 5. Suggested words and their probability values of occurrence
Rank Suggested word CF(w) TW(w) P(w)

1st ህልዊ 24 55,320 0.000433839

2nd ህልው 14 55,320 0.000253073

3rd ህልኽ 2 55,320 0.000036153

3. RESULTS AND DISCUSSION

We have performed experiments on the SEDC subtasks in order to evaluate our proposed approach.

Then we calculated the precision, recall, and F-measures as the performance evaluation metrics. Precision is

defined as the number of correctly detected misspellings compared to all detected misspellings. Recall is defined

as the ratio of the number of correctly detected misspellings divided by the total number of errors in the test

dataset [24]. As we have mentioned in sub-section 2.1, we used 55,320 total words in the indexed corpus and

then we determined the sample size using Slovin’s formula for the purpose of testing [25]. It is calculated in (9):

𝑛 =
𝑁

1+𝑁𝑒2 (9)

where n, N, and e represent sample size, population size, and margin of error, respectively (we can use 5% if

there is no given margin of error).

The sample size is calculated at a 95% confidence level, and the indexed corpus of this study contains

a total of 55,320 words [18]–[20]. As a result, the sample size using the formula we got

𝑛 =
55,320

1+55,320(0.05)2 = 397.13. Since the sample size must be a whole number, then the approximate value of

the sample size is 397. That is the sample size of commonly misspelt words that were used for testing purposes

in this study.

We consulted two linguistic experts of the Tigrigna language in order to select the commonly

misspelt words, which were inflected words, functional words, and words with derivational morphemes. The

test dataset was prepared in order to evaluate the number of misspelt words correctly identified by the

spelling error detection subtask. Hence, the experimental results of the technique used for the spelling error

detection subtask are summarized in Table 6.

Table 6 shows that some experiments were conducted and SEDC detected 388 misspelt words,

while 9 misspelt words were not detected. That is out of 397 sample total errors prepared in the dataset,

which represents a recall rate of 97.73%. This indicates that the indexed corpus contains the misspellings as

the words were collected on the web. Moreover, the correctly spelled words were never wrongly detected as

misspellings, resulting in a precision rate of 100%. SEDC proves that it is highly reliable in detecting

misspellings correctly by achieving a 98.85% F-measure. That means only nine words, or 1.15%, were not

detected and corrected using our approach.

Table 6. Experimental results of the spelling error detection subtask
Error detection measurements Outcomes

Total errors in the dataset 397
Detected misspellings (TP) 388

Not detected misspellings (FN) 9

Correctly spelled word–incorrectly detected (FP) 0
Recall rate (%) 388/397=97.73%

Precision rate (%) 388/(388+0)=100%

F-measure (%) 2(97.73)(100)/(97.73+100)=98.85%

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Automatic spelling error detection and correction for Tigrigna … (Solomon Gebremariam Desta)

393

In addition to the three performance evaluation metrics discussed in Table 6, we could also evaluate

how the spelling error correction subtask generates the suggestion list of candidates. The quality of

suggestions proposed by the spelling error correction subtask is measured by the relative positions of the

correct word spellings in the suggestion list of candidates [23]. In the best case, the right word correction

mostly comes out on the top ranked lists of candidates. Hence, the performance of the spelling error

correction subtask is determined by selecting 388 words that were correctly detected misspellings by SEDC

during the spelling error detection subtask from the test dataset. The test dataset, however, excludes misspelt

words linked to people’s names, places’ names, and technological terminology. Here is an overview of the

experimental outcomes as shown in Table 7.

Table 7. Experimental results of spelling error correction subtask
No. Number of top suggestion(s) Number of correct suggestions Correct suggestions in %

1. Correct suggestion in top one 332 332/388=85.56
2. Correct suggestions in top three 344 344/388=88.65

3. Correct suggestions in top five 357 357/388=92.01

4. Correct suggestions in top ten 370 370/388=95.36

SEDC provided the correct candidate suggestion list as its top answer in 85.56% of the test dataset.

The percent of correct candidate suggestions listed among the top three answers is 88.65%. In 92.01% of the

test dataset, it is among the top five responses, and in 95.36% of the test dataset, the correct word is present in

the top ten words of the suggestion lists of candidates.

In general, we evaluated our proposed hybrid approach separately on SEDC subtasks. Our approach

achieved an F-measure of 98.85% on the subtask of spelling error detection. In contrast, the spelling error correction

subtask achieved an accuracy of 95.36%. Hence, we compared our approach to the Tigrigna spell checker that is

currently available [9]. In terms of accuracy, our approach outperformed the existing spell checker by 5.36%.

4. CONCLUSION

The aim of this research work was to design and implement an automatic query SEDC for Tigrigna IR

using a hybrid approach. To solve the problem of query misspellings, we observed that the normalized measure

of bigram overlap using the J.C technique improved the performance for looking up in the indexed corpus by

cutting it down into a small and good set of candidate dictionary terms instead of computing the edit distances

of the query term from every term in the dictionary. To evaluate our proposed approach, we calculated

precision, recall, and F-measures as the performance evaluation metrics. It was evaluated separately on the

SEDC subtasks. Our approach achieved an F-measure of 98.85% on the subtask of spelling error detection. The

spelling error correction subtask, on the other hand, achieved an accuracy of 95.36%. As a result, we compared

our approach to the existing Tigrigna spell checker. It is found that our approach outperformed the existing spell

checker and shows a 5.36% improvement in accuracy. The findings of this study showed that our approach is

fast and robust to achieve better performance and also helps the users to easily insert their corrected queries to

retrieve relevant information from the Tigrigna IR. As an extension to this work, it would be interesting to

identify and correct real-word errors to solve the contextual meaning of the user’s query.

ACKNOWLEDGEMENTS

We would like to take this opportunity to thank the Department of Computer Science at Punjabi

University Patiala for their support in accomplishing this research work.

REFERENCES
[1] C. Ziakis, M. Vlachopoulou, T. Kyrkoudis, and M. Karagkiozidou, “Important factors for improving Google search rank,” Future

Internet, vol. 11, no. 2, p. 32, Jan. 2019, doi: 10.3390/fi11020032.

[2] M. Alrwashdeh, O. L. Emeagwali, and H. Y. Aljuhmani, “The effect of electronic word of mouth communication on purchase
intention and brand image: An applicant smartphone brands in North Cyprus,” Management Science Letters, vol. 9, no. 4, pp.

505–518, 2019, doi: 10.5267/j.msl.2019.1.011.

[3] F. Cao, J. Zhang, X. Zha, K. Liu, and H. Yang, “A comparative analysis on digital libraries and academic search engines from the
dual-route perspective,” The Electronic Library, vol. 39, no. 2, pp. 354–372, Jul. 2021, doi: 10.1108/EL-09-2020-0265.

[4] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated query reformulation for efficient search based on query logs

from stack overflow,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), May 2021, pp. 1273–
1285, doi: 10.1109/ICSE43902.2021.00116.

[5] Y. Li, “Query spelling correction,” in Query Understanding for Search Engines, vol. 46, Cham: Springer, 2020, pp. 103–127, doi:

10.1007/978-3-030-58334-7_5.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 12, No. 1, February 2023: 387-394

394

[6] D. Soyusiawaty and D. H. R. Wolley, “Hybrid spelling correction and query expansion for relevance document searching,” International

Journal of Advanced Computer Science and Applications, vol. 12, no. 8, pp. 332–339, 2021, doi: 10.14569/IJACSA.2021.0120838.
[7] J. Gupta, Z. Qin, M. Bendersky, and D. Metzler, “Personalized online spell correction for personal search,” in The World Wide

Web Conference, May 2019, pp. 2785–2791, doi: 10.1145/3308558.3313706.

[8] W. Satriady, M. A. Bijaksana, and K. M. Lhaksmana, “Quranic latin query correction as a search suggestion,” Procedia Computer
Science, vol. 157, pp. 183–190, 2019, doi: 10.1016/j.procs.2019.08.156.

[9] A. B. Kiros and P. U. Aray, “Tigrigna language spellchecker and correction system for mobile phone devices,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 2307–2314, Jun. 2021, doi:
10.11591/ijece.v11i3.pp2307-2314.

[10] A. Fesseha, S. Xiong, E. D. Emiru, M. Diallo, and A. Dahou, “Text classification based on convolutional neural networks and

word embedding for low-resource languages: Tigrinya,” Information, vol. 12, no. 2, p. 52, Jan. 2021, doi: 10.3390/info12020052.
[11] M. A. G. Yohannes, “The Tigray region of Ethiopia,” in Language Policy in Ethiopia, vol. 24, Cham: Springer, 2021, pp. 29–51,

doi: 10.1007/978-3-030-63904-4_2.

[12] M. A. Keletay and H. S. Worku, “Developing concatenative based text to speech synthesizer for Tigrigna language,” Internet of
Things and Cloud Computing, vol. 8, no. 2, pp. 24–30, 2020, doi: 10.11648/j.iotcc.20200802.12.

[13] G. H. Gebremedhin and A. A. Mebrahtu, “Linguistic evolution of Ethiopic languages: A comparative discussion,” International

Journal of Intelligent Systems and Applications, vol. 8, no. 1, pp. 1–9, 2020, [Online]. Available:
https://www.researchgate.net/publication/338448158_Linguistic_Evolution_of_Ethiopic_Languages_A_Comparative_Discussion

[14] S. T. Abate, M. Y. Tachbelie, and T. Schultz, “Deep neural networks based automatic speech recognition for four Ethiopian

languages,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2020, pp. 8274–8278, doi: 10.1109/ICASSP40776.2020.9053883.

[15] E. D. Emiru, S. Xiong, Y. Li, A. Fesseha, and M. Diallo, “Improving Amharic speech recognition system using connectionist

temporal classification with attention model and phoneme-based byte-pair-encodings,” Information, vol. 12, no. 2, p. 62, Feb.
2021, doi: 10.3390/info12020062.

[16] Z. Berihu, G. M. Assres, M. Atsibaha, and T.-M. Grønli, “Enhancing bi-directional English-Tigrigna machine translation using
hybrid approach,” 2020. [Online]. Available: https://ojs.bibsys.no/index.php/NIK/article/view/835

[17] F. Gereme, W. Zhu, T. Ayall, and D. Alemu, “Combating fake news in ‘low-resource’ languages: Amharic fake news detection

accompanied by resource crafting,” Information, vol. 12, no. 1, pp. 1–9, Jan. 2021, doi: 10.3390/info12010020.
[18] British Broadcasting Corporation, “BBC news ትግርኛ.,” BBC News. https://www.bbc.com/tigrinya (accessed Jun. 10, 2021).

[19] Tigrai Media House, “TMH topics and issues,” TMHTV.org. https://tmhtv.org/ፕሮግራምን/ (accessed Mar. 10, 2021).

[20] Voice of America English News, “VOA daily news,” VOA.com. https://tigrigna.voanews.com/z/2914 (accessed Jan. 23, 2022).

[21] W. S. Pittard and S. Li, “The essential toolbox of data science: Python, R, Git, and Docker,” in Computational Methods and Data

Analysis for Metabolomics, vol. 2104, New York: Springer, 2020, pp. 265–311, doi: 10.1007/978-1-0716-0239-3_15.
[22] G. Lancia and M. Dalpasso, “Speeding-up the dynamic programming procedure for the edit distance of two strings,” in Database

and Expert Systems Applications, Cham: Springer, 2019, pp. 59–66, doi: 10.1007/978-3-030-27684-3_9.
[23] P. Kumar, A. Kannan, and N. Goel, “Design and implementation of NLP-based spell checker for the Tamil language,” in

Proceedings of 1st International Electronic Conference on Applied Sciences, Nov. 2020, p. 7636, doi: 10.3390/ASEC2020-07636.

[24] J. Miao and W. Zhu, “Precision–recall curve (PRC) classification trees,” Evolutionary Intelligence, vol. 15, no. 3, pp. 1545–1569,
Sep. 2022, doi: 10.1007/s12065-021-00565-2.

[25] I. Aryadinata and F. Samopa, “Analysis acceptance of use Internet banking and mobile banking, case study: Standart application

in XYZ company,” IPTEK Journal of Proceedings Series, no. 5, pp. 465–472, Dec. 2019, doi:
10.12962/j23546026.y2019i5.6402.

BIOGRAPHIES OF AUTHORS

Solomon Gebremariam Desta received his first degree in Computer Science

from Mekelle University, Ethiopia, in 2006 and an M.Sc. in Information Science from Addis

Ababa University, Ethiopia, in 2013. Currently, he is a PhD student in Computer Science at

Punjabi University, Patiala, India. He can be contacted at email: solomong6@gmail.com.

Gurpreet Singh Lehal holds a Ph.D in Computer Science from Punjabi

University, Patiala, India. Currently, he is Dean of the College Development Council, Director

of the Research Center for Punjabi Language Technology, and Professor in the Department of

Computer Science at Punjabi University, Patiala, India. His research interests include natural

language processing, multilingual computing, optical character recognition, Punjabi speech

synthesis, and gurmukhi OCR. He can be contacted at email: gslehal@gmail.com.

https://orcid.org/0000-0002-3934-8384
https://scholar.google.com/citations?user=c0O6SGQAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/GSM-9226-2022
https://orcid.org/0000-0001-6152-8050
https://scholar.google.com/citations?hl=en&user=c30bhDIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6508192778
https://www.webofscience.com/wos/author/record/2931187

