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 This paper proposes a hybrid approach to design and implement query 

spelling error detection and correction (SEDC) for Tigrigna information 

retrieval (IR). Our approach, which is the main contribution to this work, is 

fast and robust to achieve better performance and also helps the users to 

easily insert their corrected queries to retrieve relevant information from the 

IR. This is achieved by combining the normalized measure of bigram 

overlap using the Jaccard coefficient (J.C) technique, a dynamic 

programming algorithm for edit distance, and probability of occurrence, 

which were used to make suggestions for the misspelt words. Our approach 

was evaluated on the SEDC subtasks separately. It achieved an F-measure of 

98.85% on the spelling error detection subtask and an accuracy of 95.36% 

on the spelling error correction subtask. Thus, a comparison was conducted 

between our approach and the existing Tigrigna spell checker. It is found 

that our approach outperformed the existing spell checker and shows a 

5.36% improvement in accuracy. This is by far the most promising result 

with regard to correcting the misspelt users’ queries and improving the 

overall performance of the IR. 
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1. INTRODUCTION 

How people share and look for information has been significantly impacted by the internet and the 

world wide web (WWW) [1]. Probably the most important phenomenon that has affected how information is 

handled and processed is the advent of the internet. Therefore, it is crucial to have access to any kind of 

information in a short time and it is so easy for information seekers [2]. Despite recent improvements in 

search quality made possible by using large search engines like Google and Yahoo. The rapid increase in the 

size of web information has introduced new challenges for search engines in the manner in which they 

retrieve search results. In reality, there are still many situations in which users are presented with inaccurate 

or very poor search results [3]. 

One of the main issues with search engine queries is misspelt queries in the user’s query [4]. Li [5] 

reported that about 10 to 12% of all search phrases entered into search engines on the web are misspelt. 

Spelling errors may occur for different reasons. When users type quickly, they may add or delete letters in an 

unintentional manner. As mentioned in [6], typing an adjacent key on the keyboard by accident is very 

common, especially on mobile devices with small virtual keyboards. Besides the typographical errors, some 

of the errors come from the difficulty of spelling itself. Spelling provides a difficult barrier for foreign and 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 12, No. 1, February 2023: 387-394 

388 

native speakers equally, with varying spelling norms, uncertain word-breaking boundaries, and the constant 

introduction of new terms [7]. 

Query spelling correction is to automatically detect misspelt queries and find alternative forms in 

order to correct them [8]. The capability to automatically correct misspelt queries has become crucial in 

today’s search engines. Users commonly make spelling mistakes. Search engine users are especially prone to 

making mistakes in their queries since they frequently explore novel content. The search engine can better 

grasp the users’ intentions by using automatic spelling correction for queries, which can enhance the 

effectiveness of information retrieval (IR) [5]. 

There is local research work that has been done on a spell checker for the Tigrigna language on mobile-

phone devices [9]. To find the input strings in a dictionary, they employed a dictionary look-up technique as well 

as the Levenshtein distance for the edit distance algorithm to suggest the candidate terms for the misspelt query. 

They also reduced the number of correction candidates by using statistical spelling suggestions based on 

frequency. Finally, they evaluated the performance of the developed spelling corrector, and the experimental 

result showed that the algorithm had achieved an accuracy of 92%. However, their approach is very expensive 

and slow because they have to do a large number of edit distance computations using a dynamic programming 

algorithm to calculate the distance between the query and every term in the dictionary. 

This study has proposed an effective hybrid approach that is associated with the isolated-word error. 

It attempts to solve the problem of query misspellings by cutting down the number of candidate terms in the 

dictionary. Instead of computing the edit distances of the query term from every term in the dictionary, we 

selected a small-sized and good set of candidate terms from the dictionary, and then we computed the edit 

distances only to those selected terms, not to every term in the dictionary. Among the selected terms, we look 

at their probability of occurrence to decide which of them is the best candidate term for the misspelt query as 

a correction suggestion in order to improve the retrieval performance of the Tigrigna IR. 

Tigrinya, often written as Tigrigna (“ትግርኛ”, Tigrina), is a Semitic language that is part of the  

Afro-Asian language family [10]. It is primarily spoken in Eritrea and Ethiopia’s regional state of Tigray. 

There are more than 6 million Tigrigna speakers on the globe. The regional state of Tigray has more than 4.3 

million Tigrigna speakers, according to [11] and Eritrea has around 2.4 million Tigrigna speakers [12]. 

The language uses a script derived from the ancient Geez language for writing [13]. Each symbol in 

Tigrigna is made up of a combination of a consonant and a vowel, and the symbols are arranged in groups of 

related symbols. There is no noticeable symbol that represents a consonant followed by an inherent vowel for 

each consonant in each symbol [14]. There are 276 distinct symbols, 20 numerals, and eight punctuation 

marks in the writing system. Each of the 34 core consonants has seven different shapes or orders. Out of the 

276 symbols, 238 (34*7) are distinct. Twenty labiovelars and 18 labialized consonants are among the 

remaining symbols [15]. 

Its form of writing system differs slightly from the so-called “Ethiopic” writing system that is used 

for Amharic and Geez languages. Ethiopian and Eritrean Orthodox Christians still use it as their liturgical 

language since it is a respected and often ancient language. The most visible graphical units in the "Ethiopic" 

writing system represent a consonant accompanied by a vowel. A similar form can be found in characters that 

contain the same consonant followed by distinct vowels [16]. As an example, Table 1 presents some of the 

character representations of Tigrigna scripts in Latin scripts. 

 

 

Table 1. Character representation of Tigrigna scripts into Latin scripts [16] 
1st order 2nd order 3rd order 4th order 5th order 6th order 7th order 

ሀ he ሁ hu ሂ hi ሃ ha ሄ hie ህ h ሆ ho 

ለ le ሉ lu ሊ li ላ la ሌ lie ል l ሎ lo 

ሐ He ሑ Hu ሒ Hi ሓ Ha ሔ Hie ሕ H ሖ Ho 

 

 

The writing system is typically represented as a two-dimensional matrix, with rows of units 

beginning with the same consonant and columns of units encoding vowels of the same kind. The columns are 

commonly referred to as “orders”. The vowel /e/ is in the first order, the vowel /u/ is in the second order, the 

vowel /i/ is in the third order, the vowel /a/ is in the fourth order, the vowels /ie/ are in the fifth order, there is 

no vowel in the sixth order, and the vowel /o/ is in the seventh order in Tigrigna language. 

 

 

2. METHOD 

In this section, our proposed methods and algorithms, which are associated with the isolated-word 

error rather than the contextual aspect of the misspelt word, are discussed in detail. It combines the 
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normalized measure of bigram overlap using the Jaccard coefficient (J.C) technique. A dynamic 

programming approach for editing distances, and then sorts them based on their probability of occurrence in 

order to provide the best candidate term as a suggestion. 

 

2.1.  Dataset description 

Unfortunately, Ethiopian languages have no standard lexicon available, like Webster’s English 

dictionary for the English language [17]. As a result, we have collected Tigrigna documents from different 

websites of the British broadcasting corporation [18], Tigrai media house [19], and voice of America [20]. 

The document collection comprises one thousand four hundred twenty (1,420) documents, and data 

preprocessing is performed in order to generate the fifty-five thousand three hundred twenty (55,320) unique 

Tigrigna words which are stored in the lexicon of the indexed corpus. As shown in Table 2, the document 

collection contains news articles about various topics like accidents, agriculture, defense, education, finance, 

health, law, politics, and social issues. These news articles are stored in a common folder in plain text format. 

Plain text is used for document representation because it saves memory and is supported by the majority of 

programming languages [21]. 

 

 

Table 2. Sources of the indexed corpus 
No. Type of news #Documents in the corpus 

1. Accident 64 
2. Agriculture 184 

3. Defense 254 

4. Education 105 
5. Finance 94 

6. Health 111 

7. Law 123 
8. Politics 155 

9. Social 330 

Total#of documents 1,420 

 

 

2.2.  Spelling error detection and correction tasks 

This subsection presents the spelling error detection and correction (SEDC) that performs the 

following tasks in order to suggest the correct word. The following tasks are carried out as shown in: i) data 

preprocessing is done to generate valid terms; ii) the given misspelt query is decomposed into bigrams;  

iii) a small-sized but a good set of candidate dictionary terms are generated; iv) the minimum edit distance 

required between the query term and the set of candidate dictionary terms is calculated; and v) among the 

best candidate dictionary terms chosen, we look at the probability of occurrence to decide which of them is 

the most likely suggested candidate term. 

 

2.2.1. Data preprocessing 

User’s query preprocessing is an essential procedure in the process of SEDC tasks. During the 

preprocessing, a series of procedures are applied to produce valid terms. First, tokenization is performed by 

removing all punctuation marks, control characters, digits, and special characters and replacing them with 

space. Secondly, normalizing the user’s query is done. In this work, normalization is related to the expansion 

of Tigrigna short words abbreviated by either a period (.) or a slash (/). 

In the Tigrigna writing system, there are many abbreviations (shortened words). These short words 

can be single or compound short words abbreviated by either a period (.) or a slash (/). Looking up in the 

lexicon of the indexed corpus is not necessary because the short words are expanded to their correct full 

compound form without searching for the short words in the indexed corpus. 

 

2.2.2. Bigram overlap using J.C 

Instead of calculating a series of edit distance computations of the query term from every term in the 

dictionary, it is important to cut down the number of candidate terms in the dictionary. We choose a small-

sized but good set of candidate terms from the dictionary and then compute the edit distance only for those 

chosen terms, not for every term in the dictionary. This brings us to the measure of distance between two 

terms, which is called the n-gram overlap technique. An N-gram is a consecutive sequence of n-characters 

from a given term. In this work we use bigrams, which is an n-gram for n=2. 

We enumerated all the bigrams in the query string as well as every term in the indexed corpus. We 

have built a bigram index which has its own bigram vocabulary and posting lists. We use this bigram index to 

retrieve all the terms in the standard inverted index that have a good overlap with the query bigrams. When 

most of the bigrams match between the query bigrams and a term in the lexicon, then we can define that 
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particular term in the lexicon as having a good overlap with the query term. This is one of the ways we can 

decide that something has a good overlap with the query term and it is a good candidate to suggest as a 

spelling correction. The retrieval process for plausible definitions of multiple n-grams in common, according 

to [8], is simply a single scan of the postings for the n-grams in the query term Q. In order to generate the set 

of bigrams for both Q and T, we designed an algorithm as shown in algorithm. 
 

 
Bigram algorithm 

Begin: 

      bigrams = [] 

      for word in [words]: 

          count = 0 

          for token in word[:len(word) – 1]: 

              bigrams.append(word[count:count + 2]) 

              count = count+1 

      return bigrams 

End 

 
 

We used a normalised measure of bigram overlap using the J.C technique. It is a commonly used 

measure of n-gram overlap. Satriady et al. [8] demonstrated how the linear scan intersection might be 

adapted when the measure of bigram overlap is the J.C for measuring the bigram overlap between two groups 

Q and T. It is given by (1): 

 

𝐽. 𝐶 =
𝑄∩𝑇

𝑄∪𝑇
 (1) 

 

where Q and T, respectively, are the two groups of bigrams in the query term Q and the group of bigrams in 

the dictionary term T. We move from one dictionary term T to the next as the scan progresses, computing the 

J.C between Q and T on the fly. We include T in the output if the coefficient is greater than the experiment’s 

threshold value; otherwise, we will continue on to the next term in the postings. To compute the J.C., we 

need a group of bigrams in Q and T. 

J.C always assigns a number between 0 and 1. If the J.C is close to 1, then it is a good overlap. We 

use J.C to decide whether the query and the lexicon term have a good overlap or not. So, the set Q is going to 

be the set of bigrams in the query term and the set T is going to be the set of bigrams in the lexicon terms, 

and then we compute the J.C between these two sets. If the J.C ends up being approximately close to 1, then 

we can say that the query and the lexicon term have a good overlap. In this work, we defined the threshold to 

be relatively close to 1, and then we chose the particular lexicon terms as good lists of candidate dictionary 

terms. 

 

2.2.3. Dynamic programming for edit distance 

The smallest edit distance required between the query term and the set of candidate dictionary terms 

is computed by SEDC to select words from the candidate suggestion lists, as stated below. The edit distance 

table, created using the application of a dynamic programming algorithm, shows how to transform a query 

term into a target word with the smallest number of insert, delete, or substitute operations. The tabulation 

method is the most efficient approach to solve this problem. As a result, the following procedure is used to 

create an edit distance table between the query term (Q) and the target word (T).  

The edit distance between Q and T is referred to as ED (Q, T). The smallest number of steps 

required to transform Q to T is computed as follows [22]; i) case 1, if one of the arguments is zero, the base 

case for the edit distance function is (2): 

 

𝐸𝐷 (0,0) = 0 (2) 

 

where ED is the edit distance between 0 and 0, which means we don’t need any edit distance operation to 

transform an empty string into another empty string (3): 

 

𝐸𝐷 (𝑚, 0) = 𝑚 (3) 

 

where ED is the edit distance between m and 0, which means we need to do m delete operations to transform 

the first m characters into an empty string (4): 

 

𝐸𝐷 (0, 𝑛) = 𝑛 (4) 
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where ED is the edit distance between 0 and n, which means we need to do n insert operations to transform 

the empty string to the first n characters; and ii) case 2, if both of the arguments are different from zero, the 

minimum number of steps required to transform from Q into T is (5): 

 

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚, 𝑛 − 1) + 1 (5) 

 

where ED is the edit distance between m and n, which means the minimum number of steps required to 

transform Q into the first n-1 characters of T plus the cost of adding a letter to T, which costs a single 

operation or (6): 

 

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚 − 1, 𝑛) + 1 (6) 

 

where ED is the edit distance between m and n, which means the minimum number of steps required to transform 

the first m-1 characters of Q into T followed by a delete operation on the very last character of Q or (7) 

 

𝐸𝐷 (𝑚, 𝑛) = min 𝐸𝐷 (𝑚 − 1, 𝑛 − 1) + 1 𝑖𝑓 𝑄𝑚 ≠ 𝑇𝑛 𝑎𝑛𝑑 0 𝑖𝑓 𝑄𝑚 = 𝑇𝑛 (7) 

 

where ED is the edit distance between m and n, which means the minimum number of steps required to 

transform the first m-1 characters of Q into the first n-1 characters of T so that we are doing a substitution 

operation. This would count as one if the two are different, or it would be zero as we are changing the 

character into itself. 

We used a bottom-up technique in order to choose terms with the smallest edit distance between the 

query term and the target word. We start by computing the edit distance for smaller sub-problems and then 

using the results of these smaller subproblems to compute the results for larger problems that come after. The 

outcomes are stored in the edit distance table. For example, the following edit distance table shows three 

substitution edit operations required to transform from the query term “ተምሀሪቲ” to the target word “ትምህርቲ” 

as illustrated in Table 3. 

 

 

Table 3. Edit distance table 
 - ተ ም ሀ ሪ ቲ 

- 0 1 2 3 4 5 
ት 1 1 2 3 4 5 
ም 2 2 1 2 3 4 
ህ 3 3 2 2 3 4 
ር 4 4 3 3 3 4 
ቲ 5 5 4 4 4 3 

 

 

2.2.4. Spelling suggestion using probability 

SEDC recommended a list of candidate terms which have the least edit distance from the query 

term, and now we need to sort them according to their probability of occurrence and present the best one as a 

suggestion to the user. We used the indexed corpus as well as a list of words compiled from various sources 

on the internet [18]–[20]. Then the words are stored with their own collection frequencies in the descending 

order as shown in Table 4. The collection frequency (CF) indicates how often each word occurs in the 

indexed corpus. Finally, we compared the probability of occurrence of the suggested list of terms, and the 

one with the highest value of probability was given the highest ranking. 

The SEDC detects the misspelt word and suggests the correct words with their probability of 

occurrence in descending order. It is assumed that the suggested correct words are lexically related to the 

misspelt words when SEDC predicts them. As demonstrated in [23], the probability of the proposed word 

alternatives is computed using (8):  

 

𝑃(𝑤) =
𝐶𝐹(𝑤)

𝑇𝑊(𝑤)
 (8) 

 

where P(w) is the probability of the suggested word, CF(w) is the CF of a given word in the document 

collection, and TW(w) is the total number of words in the document collection. For example, if the given 

query is “ህል” and the suggested words with their probability of occurrence in the document collection are 

computed as shown in Table 5. 
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Table 4. Sample list of words with their CF 
No. Word CF No. Word CF No. Word CF 

1. ኣብ 15,855 11. ምስ 1,903 21. ዓም 1,163 
2. ናይ 7,432 12. ልምዓት 1,827 22. መንግስቲ 1,158 

3. ካብ 3,985 13. ዘሎ 1,746 23. ትምህርቲ 1,138 

4. እዩ 3,345 14. ምግባር 1,738 24. ከም 1,062 
5. እቲ 2,953 15. ትልሚ 1,721 25. ከይዲ 1,054 

6. ስራሕ 2,826 16. ስራሕቲ 1,564 26. ልዕሊ 1,041 

7. ናብ 2,649 17. መሰረት 1,450 27. መሬት 1,029 
8. ወረዳ 2,324 18. እዚ 1,380 28. ኣብዚ 1,019 

9. ድማ 2,151 19. ዓመት 1,239 29. መደብ 1,006 

10. ቤት 2,061 20. ሰብ 1,180 30. ግልጋሎት 990 

 

 

Table 5. Suggested words and their probability values of occurrence 
Rank Suggested word CF(w) TW(w) P(w) 

1st ህልዊ 24 55,320 0.000433839 

2nd ህልው 14 55,320 0.000253073 

3rd ህልኽ 2 55,320 0.000036153 

 

 

3. RESULTS AND DISCUSSION 

We have performed experiments on the SEDC subtasks in order to evaluate our proposed approach. 

Then we calculated the precision, recall, and F-measures as the performance evaluation metrics. Precision is 

defined as the number of correctly detected misspellings compared to all detected misspellings. Recall is defined 

as the ratio of the number of correctly detected misspellings divided by the total number of errors in the test 

dataset [24]. As we have mentioned in sub-section 2.1, we used 55,320 total words in the indexed corpus and 

then we determined the sample size using Slovin’s formula for the purpose of testing [25]. It is calculated in (9): 

 

𝑛 =
𝑁

1+𝑁𝑒2 (9) 

 

where n, N, and e represent sample size, population size, and margin of error, respectively (we can use 5% if 

there is no given margin of error). 

The sample size is calculated at a 95% confidence level, and the indexed corpus of this study contains 

a total of 55,320 words [18]–[20]. As a result, the sample size using the formula we got  

𝑛 =  
55,320

1+55,320(0.05)2 = 397.13. Since the sample size must be a whole number, then the approximate value of 

the sample size is 397. That is the sample size of commonly misspelt words that were used for testing purposes 

in this study. 

We consulted two linguistic experts of the Tigrigna language in order to select the commonly 

misspelt words, which were inflected words, functional words, and words with derivational morphemes. The 

test dataset was prepared in order to evaluate the number of misspelt words correctly identified by the 

spelling error detection subtask. Hence, the experimental results of the technique used for the spelling error 

detection subtask are summarized in Table 6. 

Table 6 shows that some experiments were conducted and SEDC detected 388 misspelt words, 

while 9 misspelt words were not detected. That is out of 397 sample total errors prepared in the dataset, 

which represents a recall rate of 97.73%. This indicates that the indexed corpus contains the misspellings as 

the words were collected on the web. Moreover, the correctly spelled words were never wrongly detected as 

misspellings, resulting in a precision rate of 100%. SEDC proves that it is highly reliable in detecting 

misspellings correctly by achieving a 98.85% F-measure. That means only nine words, or 1.15%, were not 

detected and corrected using our approach. 

 

 

Table 6. Experimental results of the spelling error detection subtask 
Error detection measurements Outcomes 

Total errors in the dataset 397 
Detected misspellings (TP) 388 

Not detected misspellings (FN) 9 

Correctly spelled word–incorrectly detected (FP) 0 
Recall rate (%) 388/397=97.73% 

Precision rate (%) 388/(388+0)=100% 

F-measure (%) 2(97.73)(100)/(97.73+100)=98.85% 
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In addition to the three performance evaluation metrics discussed in Table 6, we could also evaluate 

how the spelling error correction subtask generates the suggestion list of candidates. The quality of 

suggestions proposed by the spelling error correction subtask is measured by the relative positions of the 

correct word spellings in the suggestion list of candidates [23]. In the best case, the right word correction 

mostly comes out on the top ranked lists of candidates. Hence, the performance of the spelling error 

correction subtask is determined by selecting 388 words that were correctly detected misspellings by SEDC 

during the spelling error detection subtask from the test dataset. The test dataset, however, excludes misspelt 

words linked to people’s names, places’ names, and technological terminology. Here is an overview of the 

experimental outcomes as shown in Table 7. 

 

 

Table 7. Experimental results of spelling error correction subtask 
No. Number of top suggestion(s) Number of correct suggestions Correct suggestions in % 

1. Correct suggestion in top one 332 332/388=85.56 
2. Correct suggestions in top three 344 344/388=88.65 

3. Correct suggestions in top five 357 357/388=92.01 

4. Correct suggestions in top ten 370 370/388=95.36 

 

 

SEDC provided the correct candidate suggestion list as its top answer in 85.56% of the test dataset. 

The percent of correct candidate suggestions listed among the top three answers is 88.65%. In 92.01% of the 

test dataset, it is among the top five responses, and in 95.36% of the test dataset, the correct word is present in 

the top ten words of the suggestion lists of candidates. 

In general, we evaluated our proposed hybrid approach separately on SEDC subtasks. Our approach 

achieved an F-measure of 98.85% on the subtask of spelling error detection. In contrast, the spelling error correction 

subtask achieved an accuracy of 95.36%. Hence, we compared our approach to the Tigrigna spell checker that is 

currently available [9]. In terms of accuracy, our approach outperformed the existing spell checker by 5.36%. 
 
 

4. CONCLUSION 

The aim of this research work was to design and implement an automatic query SEDC for Tigrigna IR 

using a hybrid approach. To solve the problem of query misspellings, we observed that the normalized measure 

of bigram overlap using the J.C technique improved the performance for looking up in the indexed corpus by 

cutting it down into a small and good set of candidate dictionary terms instead of computing the edit distances 

of the query term from every term in the dictionary. To evaluate our proposed approach, we calculated 

precision, recall, and F-measures as the performance evaluation metrics. It was evaluated separately on the 

SEDC subtasks. Our approach achieved an F-measure of 98.85% on the subtask of spelling error detection. The 

spelling error correction subtask, on the other hand, achieved an accuracy of 95.36%. As a result, we compared 

our approach to the existing Tigrigna spell checker. It is found that our approach outperformed the existing spell 

checker and shows a 5.36% improvement in accuracy. The findings of this study showed that our approach is 

fast and robust to achieve better performance and also helps the users to easily insert their corrected queries to 

retrieve relevant information from the Tigrigna IR. As an extension to this work, it would be interesting to 

identify and correct real-word errors to solve the contextual meaning of the user’s query. 
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