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 An unmanned aerial vehicle (UAV) image recognition system in real-time is 

proposed in this study. To begin, the you only look once (YOLO) detector 

has been retrained to better recognize objects in UAV photographs. The 

trained YOLO detector makes a trade-off between speed and precision in 

object recognition and localization to account for four typical moving 

entities caught by UAVs (cars, buses, trucks, and people). An additional 

1500 UAV photographs captured by the embedded UAV camera are fed into 

the YOLO, which uses those probabilities to estimate the bounding box for 

the entire image. When it comes to object detection, the YOLO competes 

with other deep-learning frameworks such as the faster region convolutional 

neural network. The proposed system is tested on a wild test set of 1500 

UAV photographs with graphics processing unit GPU acceleration, proving 

that it can distinguish objects in UAV images effectively and consistently in 

real-time at a detection speed of 60 frames per second. 
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1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) with the ability to operate autonomously have grown in 

popularity in recent years for a variety of reasons. These include reconnaissance and surveillance, search and 

rescue, and infrastructure assessment. Visual object identification is a vital component in the development of 

completely autonomous systems for UAVs of this kind [1]. It is difficult to identify objects on low-cost 

consumer UAVs with their onboard cameras because of the poor resolution and noise, as well as the tiny size 

of the things they are trying to capture [2]. This makes the process of object recognition even more difficult. 

Due to the necessity for near real-time performance in many UAV applications, such as when objects are 

required for navigation, the task becomes much more complex [3]. The problem to be solved is the difficulty 

of identifying and locating objects using cheap and lightweight drones. Where the work aims to develop an 

object detection system using you only look once (YOLO) and determine the location accurately and in real 

time, while maintaining the system in terms of weight and cost. 

Real-time tracking of cars, pedestrians, and landmarks for autonomous navigation and landing has 

been a common goal of many UAV investigations. Therefore, there are just a few systems that can identify 

several objects, despite the fact that many UAV applications need the ability to identify numerous targets. It 

is therefore suggested that there are two practical but important restrictions to blame for this gap between 

application demands and technology capabilities [4]. It is difficult to build and store a variety of target object 

models, especially when the objects have a variety of appearances, and real-time object detection requires 
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high computing power even to detect single objects, much less when many target objects are involved, in 

addition to object recognition algorithms that are tailored to specific object and context types [5]. 

There are a number of different related works that are associated with UAV object detection, as 

follows. Al-Sheary and Almagbile [6] examined the risks associated with huge gatherings and developed a 

variety of safe crowd management strategies. Another option is real-time drone crowd monitoring, which is 

becoming more popular in order to save lives, preserve the environment, protect property, and maintain peace 

and authority. According to the findings of this research, pedestrian crowd monitoring systems may be a 

viable alternative [7]. Crowd density was computed using image segmentation algorithms based on real-time 

images taken by UAVs; after which the data was evaluated and the results were presented. The provided 

strategy may be used to make rapid decisions using high-quality data. An 80 percent accuracy rate was found 

for the photo segmentation method used in this study [8].  

Hsieh et al. [9] created the car parking lot dataset (CARPK), the world's largest drone observation 

dataset. It is a difficult dataset for large-scale car counting jobs in parking lots. The research also created a 

unique strategy for generating viable area suggestions for an item counting task with regularized structures. 

The learned deep model can count things better if it knows how items are arranged. Counting automobiles 

from drone view scenes is the purpose of the proposed technique, and they compared it to four other 

methods: the one-look regression-based counting approach, two popular object identification systems, and a 

density object counting metric. Based on the methodologies used, region-based convolutional neural network 

(R-CNN) Faster is comparable to YOLO in terms of object detection success in recent years [10]. 

Lu et al. [11] investigated the difficulties of using drones to detect targets. They built a testbed to 

examine real-world events. The researchers identified these difficulties after testing perception modules with 

recent computer vision techniques. Our extensive simulations show that these characteristics have a big 

influence on the search algorithm design. More robust computer vision algorithms for target search and other 

drone-related applications are needed, as well as improved techniques to describe the effect of persistent 

characteristics. 

A novel framework for three dimensions (3D) object localization and tracking using drones [12]. It 

involves object detection, multi-object tracking, ground plane estimation, and 3D target localization. The 

tracing and 3D localization performances are benchmarked against industry standards and ground truth. To 

address occlusions and camera rapid movements, their system is resilient. Their work is, nevertheless, bound 

by several constraints. In spite of this, they found that rapid camera motions do impact group plane 

estimations. Epipolar searches cannot be performed using a camera that simply spins one way, as is the case 

with typical drones [13]. Making use of CNN's monocular depth map might therefore be useful to address 

this aspect. Using the suggested approach, 3D positions may be acquired for each object, allowing for a 

smoother trajectory than two dimensions (2D). They believe that the addition of constraints to 3D trajectories 

will make the system more durable and successful. 

Singhal et al. [14] suggested that a drone might be used to identify items in real-time. The neural 

network and machine learning algorithms successfully recognized all sorts of things. With so many uses in 

both autonomous and non-autonomous sectors, merging object detection with drone technology will help 

mankind. The detection module would identify all target objects and deliver the recognized object data. 

Object detection will be employed in surveillance, delivery, population analysis, and traffic monitoring, 

among other applications. Their work also involves a section on the system's future development. UAVs, 

commonly known as drones, have an important role in disaster response and humanitarian aid [15]. The main 

purpose of their study is to investigate how unmanned aerial vehicles (or drones) might help survivors in the 

case of a tsunami, earthquake, flood, or another natural disaster. Initially, it is anticipated that any natural 

disaster would cause quick damage to infrastructure, transportation, and key services [16]. The goal of this 

work is achieved by building a Yolo model for the purpose of identifying specific objects and then using this 

information to determine the exact location by repeating the detection process with more than one projection 

through a proposed algorithm. 

 

 

2. THE PROPOSED APPROACH 

2.1.  System hardware 

This section presents a discussion of the hardware used throughout the study, as presented in  

Table 1. A drone with four propellers was developed with the goal of identifying objects in the sky. The 

drone was constructed with the help of several electrical components [17]. 

In this case, the Drone Frame was employed, which is a representation of the aircraft’s construction 

with a size of 450 mm. There were four brushless motors that met the criteria (the rest of the details are stated 

in Table 1). The fan speed was controlled by the use of an electronic speed controller. The propellers of the 

F11 aircraft were represented by drone blades, which were employed in this project, as shown in Figure 1 and 

Figure 2. A lithium-ion battery with four cells was utilized [4]. 
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Table 1. Hardware specifications 
Device type Device model Supply voltage Product size Output interface 

Drone frame F450 - 450 mm - 
Brushless motors FPV drone 7.4 -11v 4.49 x 3.39 x 0.98 inches 7500 RPM 

Electronic speed controller BEC 2A 7.4 -11v 55x26x8 mm 30A for motor 

Drone blades F11 - 11 x 3 x 0.3 inches - 
Battery Ovonic 4S 14.8V 2.7*1.26*1.4inch XT60 plug 

PIXHAWK flight controller Radiolink PIXHAWK 5V 6.65 x 4.25 x 1.93 inches multi 

Radiolink FS-i6X 12v 9.13 x 8.31 x 4.29 inches Antenna 
Power module FPV Drone 5v 4.02 x 2.52 x 0.31 inches XT60 plug 

GPS compass TS100 5v 3.2 x 2.2 x 0.4 inches Jumper wires 

Raspberry Pi 3 Pi 3 B+ Motherboard 5v 3.54 x 2.36 x 0.79 inches Jumper pins 
Camera handlebar GoPro 10 5V 2.36 x 1.38 x 7.17 inches Jumper pins 

 

 

  
 

Figure 1. QUAD-COPTER Drone structure Figure 2. Drone flies up to the sky 

 

 

The control of the aircraft was accomplished with the use of a Da-Jiang innovations (DJI) 

Controller. The aircraft was controlled via the use of a radio connection. The power module was responsible 

for controlling the aircraft’s electrical power source. The plane’s coordinates were determined using a global 

positioning system (GPS) compass of type TS100, which was connected to satellites. It was decided to utilize 

the Raspberry Pi 3 to run an artificial intelligence model in order to determine the position of targets. 

Moreover, the camera handlebar was used so that the user can regulate the stability of the camera as well as 

the location. 

 

2.2.  System overview 

The two phases of the proposed system architecture are described below. Each stage has a series of 

sub-steps that are necessary to accomplish the research goals and accomplish the research goal. Figure 3 

depicts the remote motion control and position detection steps. 

The QUAD-COPTER motion control is the initial level, which involves four sub-steps. There is an 

important role for this stage in the QUAD-COPTER’s navigation and avoidance capabilities. Detecting the 

position of the QUAD-COPTER is the second step in the process, which includes a number of procedures 

that transfer data to the base station, which displays the location on a map. At this point, the goal is to use 

real-time object recognition and transmission to relay data back to the base station as quickly as possible. 

There are four major components to the proposed system. An Arduino and Raspberry Pi 3 was used 

to build the drone and manage its fly direction. A number of software applications were installed and 

downloaded to help specify the drone's components and its readiness for flight. Servo and Raspberry Pi 3 

applications, as well as protocols for video transmission and signal transfer between the drone and the 

computer, were all included in this section. To identify and categorize the newly found items in real-time, a 

one-dimensional convolutional neural network technique was used (labeling). In addition to the GPS 

trackers, which were utilized to calculate the beginning and finishing sites of the drones, the trigonometric 

functions were used in altering the camera angle and the drone height in order to automatically determine the 

direction of the observed item. 
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Figure 3. Proposed system 

 

 

3. METHOD 

3.1.  Object detection 

The recognition of objects in photographs taken by UAVs has been a persistent problem in 

computer vision. It is difficult to discern items in drone photographs because of the variety of sizes involved, 

including people, buildings, water bodies, and hills. In this paper, a build-in module in YOLO is used [14].  

YOLO was chosen because it works in real time more efficiently than other artificial intelligence 

(AI) methods. The advantage of YOLO's fast response is that it uses only one stage, which is the CNN 

without using the reign of interest stage. 

 

3.2.  Localization  

Locating a UAV's physical position in line with a real or virtual coordinate system is known as 

localization. When a direct measurement of the UAV's position is unavailable, localization is critical [18]. 

The accuracy of the estimated location information at a particular point in time is used to assess the 

performance of a system that uses localization. In this paper, the software is built to calculate X, Y, and Z 

coordination, as shown in Figure 4 [19]. 

 

 

 
 

Figure 4. Localization in UAV's systems 

 

 

Both X, Y, and Z are needed to be position coordinates. Path denotes the value of the lateral axis 

(Pitch), while Yaw denotes the value of the vertical axis. After the completion of the form and the addition of 

the values to the right pane [20] these values need to be solved. The results are shown in the x, y, and z 
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coordinates, which correspond to the goal location [21]. Basically, when the drone moves in more than one 

direction in order to get a precise and steady position to the target, the intersection of these points is found  

by taking the average of these locations. Consequences for obtaining target coordinates may be found  

in (1)-(3) [12]. 

 

Deltax = r ∗ cos(th) ∗ sin⁡(psi)  (1) 

 

Deltay = r ∗ cos(th) ∗ cos⁡(psi)  (2) 

 
Deltaz = r ∗ sin⁡(th)  (3) 

 
New x, y, z values are shown using (3)-(5): 

 

𝑋𝑛𝑒𝑤 = 𝑥 + 𝐷𝑒𝑙𝑡𝑎𝑥  (4) 

 
𝑌𝑛𝑒𝑤 = 𝑦 + 𝐷𝑒𝑙𝑡𝑎𝑦  (5) 

 
𝑍𝑛𝑒𝑤 = 𝑧 + 𝐷𝑒𝑙𝑡𝑎𝑧  (6) 

 

The result of the above modules is a straight line that starts from the drone and ends up in ∞, passing 

through the target position. The straight line is divided into radius r which is utilized to calculate the average 

of obtained target points. However, the average shows the closest point to the target position that the drone 

has captured from different trends [22]. 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Object detection  

The preliminary step was investigating the efficiency of YOLOs training on image data in the 

identification of various items in the lab setting. A variety of things were gathered and placed over the testing 

area, after which a drone is used to photograph them from a variety of angles and views. The training in 

Figure 5 shows that the model currency increases slightly and becomes approximately 0.97 whenever the 

number of training images increased [17]. Figure 6 illustrates the model wrong object detection rates that 

decreased to 0.05 whenever the number of training images increased. 

In order to prove that the proposed method works in a realistic yet controlled context, three separate 

sets of tests are performed. As part of the initial series of tests, it involves the investigation of how well 

YOLO can recognize objects from a high distance, as well as how well they can be used in a robot 

application [23], [24]. To test the performance of YOLO for human recognition, the latency times are 

compared at different distances, whereby a slight change in the connection latency led to a significant 

increase whenever the distance became bigger, as shown in Table 2. 

Finally, as a basic simulation of a search-and-rescue or surveillance application, the proposed 

technique is tested by having a drone look for a target item in an interior setting. Figure 7 shows the results of 

the search-and-rescue simulation. 

 

 

 
 

Figure 5. Right object detection rates increase  
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Figure 6. Wrong object detection rates increased 

 

 

 
 

Figure 7. A drone is able to detect person from high distance using YOLO 

 

 

4.2.  Localization testing 

As part of the testing requirements, the YOLO model is first tested to check its latency from 

different distances. The drone has been changed with different angles and views to get as many readings of 

latency as possible [25]. The results show that when the distance between the base station and drone 

increased, the latency slightly increases as well, as presented in Table 2. When the distance was 25 m, the 

latency was only 2 ms, whereas, in comparison to a distance of 200 m, the latency became 35 ms.  

By analyzing the numbers, it can be stated that the latency is not very high compared to the distance between 

the drone and the base station [26]. 

 

 

Table 2. Latency between base station and drone  
Distance (m) Latency (ms) 

25 2  
50 5  

100 15  

150 23  
200 35  

 

 

5. CONCLUSION  

It was hypothesized in this study that UAVs might identify hundreds of object types using CNN. 

Although YOLO is computationally intensive, a local transmission control protocol (TCP) connection 

solution to recognition is being considered. It is possible to run object identification algorithms on low-cost 

consumer UAVs, such as lightweight, low-cost consumer UAVs using the YOLO technique. Even with 

practically infinite local TCP connection capacity comes a potentially significant and unexpected 

communication latency, as well as very changeable system loads. As a low-cost hardware platform, the 

QUAD-COPTER was used to evaluate the proposed method in an actual outdoor setting. In spite of the 

added communication latency, the findings indicate that the local TCP connection technique might offer 

speed-ups of almost an order of magnitude, even when identifying hundreds of object types. In a basic target 

search scenario, it was proven that the proposed technique is effective in terms of identification accuracy and 

speed. 
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