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 Several strategies have been developed for identifying power quality issues, 

monitoring them, and compensating for relevant disturbances. In this field, 

online estimate of amplitudes and phase angles of network voltages and 

currents is commonly used. The adaptive linear neuron (ADALINE)-based 

voltage sag detection algorithm with least mean square (LMS) adaptation 

allows for rapid convergence of estimate techniques based on artificial neural 

networks (ANN). This approach has the advantage of being straightforward 

to implement on hardware and based on simple calculations (essentially 

multiply and accumulate "MAC"). This paper gives a comparison of the 

performance of two ADALINE approaches ("with" and "without" error 

supervision) for detecting and estimating voltage dips. The described 

techniques and models of a two-coupled motor system were implemented in 

MATLAB/Simulink/SimPowerSystems to run simulations under various fault 

scenarios in order to create the three-phase voltage sag alarm signal. The 

simulation outcomes are presented and debated. 
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1. INTRODUCTION  

Voltage sag is defined as a momentary reduction in the "RMS" value of the nominal voltage for a 

duration ranging from 0.5 cycles to one minute [1], [2]. Voltage dips are mainly caused by power line faults 

such as short circuits and large induction motors starting [3]. Voltage sags are the main cause of disturbances 

in variable speed drives, computers, and industrial process controllers [4], [5]. Research by Wagner et al. [6], 

a case study on the monitoring of disturbances related to power quality revealed that 68% of recorded 

disturbances are voltage sags and that they represent the main cause of production shutdowns and losses. The 

above problems, as well as the increasing incidence of misdiagnosed faulty conditions in industrial robots 

(service requests based on incorrect logging of a disturbance source), are presented in a study on the influence 

of voltage dips on the continuity of operation and the life span of single-phase industrial robots [7]. In fact, as 

technology has improved and more power electronics devices have been used, the equipment used in industrial 

systems has become more sensitive to these kinds of things [8]. 

Several methods have been developed to detect power supply quality disturbances. Available 

commercial power quality analyzer instruments are based on point-by-point comparison of two adjacent power 

cycles [9]. When a certain threshold is reached, the disturbance is recognized. This method has many 

drawbacks. Firstly, it is insensitive to steady-state power quality phenomena, such as harmonics. Secondly, this 
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method is sensitive to the chosen threshold value, which means that a low threshold value will make fake 

disturbance detection and a high threshold value may overlook many serious disturbances. Another method 

has been widely used for harmonics estimation: the wavelet transforms. This method was successfully used to 

estimate the "RMS" values of voltage, current, and power quality disturbance detection as the high frequencies 

associated with power quality disturbance could be distinguished and localized in time using low scale levels 

[10], [11]. This technique, however, suffers from being dependent on the basis wavelet used for detection [12]. 

Other methods for detecting voltage dips include the Fourier transform, peak voltage detection, and 

the missing voltage method. The problem with these methods is that they use windowing techniques and, as a 

result, can be too slow when used to detect and mitigate voltage sags and swells because they use historical 

data. Nowadays, with the development of artificial intelligence techniques, artificial neural networks (ANN) 

have been used to analyse the power quality [13], [14]. Based on adaptive linear neural network (ADALINE) 

[15]-[17], a method of power quality analysis by time location is brought forward in this paper. This approach 

uses an adaptive neural network with N inputs and one output. The output is a linear combination of the N 

inputs. The ADALINE was first used as an adaptive method to estimate the amplitude and phase of the 

fundamental and harmonics of a distorted signal [18], [19]. The simplicity of this method is due to its simple 

calculations (essentially multiply and accumulate "MAC" calculations), which facilitate its implementation. 

ADALINE is fast because of its simple construction. This is an important argument when it comes to choosing 

a viable and fast method for detecting voltage sags.  

This paper is organized as follows: the theory of ADALINE applied to the detection and estimation 

of voltage dips is discussed in section 2. Algorithm examples as well as the performance of this method are 

applied to the fast detection of voltage dips and presented in section 3. Finally, section 4 concludes the paper. 

 

 

2. ADALINE ARCHITECTURE 

The problem of detecting voltage sags lies in the estimation of the amplitude of the line voltage. 

ADALINE have been successfully used to estimate the amplitude and phase of the fundamental and harmonics 

of a signal, and therefore became an interesting avenue to explore. In the case of voltage sags, only the 

amplitude and phase of the fundamental are of interest to us. 

 

2.1.  Principle of the ADALINE method 

ADALINE belongs to the family of Perceptron’s. It has a single neuron with a linear activation 

function and an input vector x(k). It was proposed and developed by Widrow and Walach [20]. The structure 

of the ADALINE network is described in Figure 1. The estimated output y(k) of the reference signal d(k) is 

given by the following linear [15]: 
 

𝑦(𝑘) = 𝑊𝑇(𝑘)𝑋(𝑘) (1) 
 

with, 
 

𝑊𝑇(𝑘) = [𝑊0(𝑘) 𝑊1(𝑘) 𝑊2(𝑘)  …… 𝑊𝑛(𝑘)] (2) 
 

and 
 

𝑋𝑇(𝑘) = [1 𝑥1(𝑘) 𝑥2(𝑘) … … 𝑥𝑛(𝑘)] (3) 
 

According to Fourier analysis, a periodic signal can be decomposed into a sum of sines and cosines. 

The estimated signal can be represented as: 
 

𝑦(𝑡) = ∑ ((𝑋𝑛 Cos(𝑛𝜔𝑡) + (𝑌𝑛 Sin(𝑛𝜔𝑡))𝑁
𝑛=1  (4) 

 

where 𝑋𝑛 and 𝑌𝑛 are the coefficients of the Fourier series of the signal y(t); n is the harmonic rank; 𝑋1 and 

𝑌1 are the Fourier coefficients of the fundamental. In matrix form, (4) can be rewritten: 
 

𝑦(𝑘) = 𝑊𝑇(𝑘)𝑋(𝑘) (5) 
 

where, 
 

𝑋𝑇(𝑡) = [Cos(𝜔𝑡) Sin(𝜔𝑡)…… Cos(𝑁𝜔𝑡) Sin(𝑁𝜔𝑡)]       𝑎𝑛𝑑        𝑊 =

[
 
 
 
 
 
 
𝑋1 
𝑌1 
.
.
.

𝑋𝑛 
𝑌𝑛 ]
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Where W is the weight matrix that must be updated at each new sampling of the signal y(t). The amplitude and 

phase of the fundamental are defined as (6): 
 

𝐴1 = √𝑋1
2 + 𝑌1

2 = √𝑊(1)𝑊(1) + 𝑊(2)𝑊(2) (6) 
 

and, 
 

𝜓1 =  atang (
𝑌1

𝑋1
) = atang (

𝑊(2)

𝑊(1)
) (7) 

 

𝑒(𝑘) = 𝑦𝑚𝑒𝑠(𝑘) − 𝑦(𝑘) is the error between estimated and measured outputs. 
 

 

 
 

Figure 1. ADALINE network structure 
 

 

For the weight adaptation algorithm, we choose the recursive least squares (RLS) algorithm [21], [22]. It is 

a quadratic method which consists in minimizing a quadratic function of error e(k) between the measured signal and 

the model. The weight matrix W (or the Fourier coefficient matrix) is updated by using (8). 
 

𝑊(𝑘) = 𝑊(𝑘 − 1) + 𝐾(1) × 𝑒(𝑘) (8) 
 

where: 
 

𝐾(𝑘) =
𝑃(𝑘−1)𝑋(𝑘)

λ +𝑋𝑇(𝑘)𝑃(𝑘−1)𝑋(𝑘)
 (9) 

 

𝑃(𝑘) = (
1

λ 
) [𝐼 − 𝐾(𝑘)𝑋𝑇(𝑘)]𝑃(𝑘 − 1) (10) 

 

Where 𝐾 is the adaptation gains matrix of the Fourier coefficients;I is the identity matrix; 𝑃 is the inverse of the 

autocorrelation matrix of the input vector X; 𝞴 is the forgetting factor; this forgetting factor allows to 

progressively forget the older samples. 

This variant of the RLS algorithm allows the identification of parameters that vary slowly over time. 

The convergence is much faster when compared to another known algorithm such as least mean square (LMS). 

 

2.2.  ADALINE algorithm 

The flow chart of the ADALINE method is shown in Figure 2. This algorithm gives results with 

acceptable accuracies in steady state. In transient mode, i.e., at the appearance of a voltage dip, this algorithm 

remains relatively slow. To improve the performance (speed and precision) of this algorithm in the presence 

of voltage dips, we propose a simple modification to the basic ADALINE algorithm shown in Figure 2. This 

modification consists in supervising the error between the measured and the estimated signals. This supervision 

verifies each time the calculated error (Figure 3). If the latter becomes greater than a previously fixed threshold, 

the inverse of the autocorrelation matrix P is reset. The flow chart of the proposed modified ADALINE method 

is presented in Figure 4.  
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2.3.  Comprehensive classification of voltage sags 

Electrical voltage sags are mainly characterized by their amplitude and phase, various classifications 

of three-phase voltage dips were presented by Bollen [1]. Voltage dips can be symmetrical or non-symmetrical 

in nature [23]-[25]. If the magnitudes of the individual phase voltages are equal and the phase shifts are exactly 

120°, the sag is symmetrical; otherwise, the sag is non-symmetrical. Figure 5 given lists the seven major types 

of voltage sags, denoted by the letters A through G. 
 

 

 

 

Figure 2. Flow chart of ADALINE algorithm Figure 3. Flow chart of modified ADALINE 
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Figure 4. Flowchart of error supervision Figure 5. Voltage sag types 
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With: V: The maximum amplitude of an electric voltage 

 d: The depth of the voltage dip 

 m: The value of the voltage drops (type C, D, F and G) 

 𝜶: The additional phase shift of the voltage that can be caused by the voltage dip 

 

 

3. PERFORMANCE OF THE ADALINE METHOD IN RAPID DETECTION OF VOLTAGE DIPS 

This section presents the performances of the two proposed ADALINE methods (“without” and 

“with” error supervision) for the estimation of harmonics amplitudes and phases. Simulations in MATLAB 

environment used a noisy voltage (synthetic signal) made of the fundamental and the 3rd, 5th, 7th and 9th rank 

harmonics. This signal is defined as follows: 

 

𝑦(𝑡) = 220 sin(𝜔𝑡 + 80°) + 11 sin(3𝜔𝑡 + 60°) + 5.5 sin(5𝜔𝑡 + 45°) + 2.64 sin(7𝜔𝑡 + 36°)
+ 1.32 sin (9𝜔𝑡 + 30°) + 𝑁(𝑡) 

 

N(t) is a random noise whose maximum value corresponds to 0.5% of the of the fundamental; and  is the 

pulsation for a frequency of 50 Hz. Tables 1 and 2 allow us to verify the accuracy of the ADALINE method in 

steady state. 
 

 

Table 1. Estimated harmonics amplitudes using ADALINE method 

 
Algorithm without error supervision Algorithm with error supervision 

Amplitudes Amplitudes 

Harmonic rank Actual [V] Estimated [V] SSE [%] Actual[V] Estimated [V] SSE [%] 

Fundamental 220 219,7611 0,108 220 219.8062 0,088 

3 11 11,0104 0,094 11 11.0089 0,080 
5 5.5 5,5676 1,229 5.5 5.5654 1,189 

7 2.64 2,4964 5,439 2.64 2.4928 5,5757 

9 1.3 1,2573 3,284 1.3 1.2540 3,538 

 

 

Table 2. ADALINE method for estimating harmonics phase angles 

 
Algorithm without error supervision Algorithm with error supervision 

Phases Phases 

Harmonic rank Actual [°] Estimated [°] SSE [%] Actual [°] Estimated [°] SSE [%] 
Fundamental 80 80.0158 0,019 80 80.0114 0,014 

3 60 59.4550 0,908 60 59.3675 1,054 

5 45 44.9325 0,15 45 44.8792 0,268 
7 36 38.1598 5,999 36 38.0598 5,721 

*SSE: sum squared error 

 

 

Estimation of the fundamental amplitude offers the best accuracy. Still talking about the fundamental, 

we note that the supervision of the error contributes to improve the accuracy of the estimator even in the steady 

state. Figures 6(a) and (b) clearly show that error supervision method improves the speed of the algorithm for 

amplitude detection. Thus, error supervision will improve the dynamic response of the algorithm for detecting 

a voltage dip. 

To verify the dynamic response speed of the two algorithms, we zoomed up the estimated and real 

amplitudes (see Figures 7(a) and (b)) and evaluated the delay and rise time during detection in critical regions; 

namely at the beginning and end of a voltage dip. The values obtained are given in Table 3. It can be noted that 

the speed of detection is not the same at the beginning and at the end of the sag. The supervision of the error 

largely contributes to improve the quickness of the ADALINE algorithm. 

 

 

Table 3. Performance comparison of the two algorithms 

Critical region 
Delay in detection 

Without error supervision (ms) Without error supervision (ms) 
Beginning of the sag 10,1 10,1 

End of the sag 12,4 12,4 
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(a) 

 

 
(b) 

 

Figure 6. Waveform of the fundamental measured and estimated, (a) without error supervision and (b) with 

error supervision 

 

 

  

(a) (b) 

  

Figure 7. Fundamental magnitude in RMS, (a) without error supervision and (b) with error supervision 

 

 

4. THREE-PHASE VOLTAGE SAG DETECTION 

Three dip detectors, one for each phase, are used to detect the voltage dip of a three-phase signal. The 

block diagram of the three-phase voltage dip detector is shown in Figure 8. In order to simulate an electrical 

distribution network, we first generated a three-phase voltage source, rated 230/380V-50 Hz, and then we 

created the different types of voltage dips using the block "fault-breaker" available in Simulink bloc libraries, 

which can introduce single-phase, two-phase and three-phase faults, which result in A, B, C and E type faults. 

Figure 9 shows the simulation scheme, which is composed of a low voltage network supplying two induction 

motors, a fault generator and the proposed voltage sag detector. 

This simulation scheme enables us to test the proposed detection method on various types of voltage 

dips. The algorithm that we developed not only allows the detection of all types of voltage sags, but it also 

provides the depth of the sag, the phase shift of the voltages, and the affected phases. 

The implementation of the estimators necessitates the creation of s-functions written in C language. 

An s-function allows Simulink users to design custom Simulink blocks. The “mex” command is then used to 
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compile this model. The proposed algorithms and models of the two-motor system were implemented in 

MATLAB/Simulink/SimPowerSystems in order to run simulations under various operating conditions. 

 

 

 
 

Figure 8. Voltage sag alarm signal generation using ADALINE method 

 

 

 
 

Figure 9. Simulation scheme 

 

 

The case studies in this paper, are limited to the simulation of voltage sags examples that can affect 

multi-motor systems that use induction motors, namely: 

a. Voltage sags caused by three-phase faults (type A) 

Presenting voltage drops of the same depth on all three phases without any additional phase shift 

(Figure 10). The voltage sag is identified when the magnitude is below a specified threshold and the alarm 

signal is set to 1. This method can detect three phase symmetrical voltage sag in real time, and it is very accurate 

in determining inception and recovery instants. 

b. Type B voltage dips (Figure 11) 

We detect the magnitude of the voltage dips as the difference between the nominal phase voltage and 

the lowest actual phase voltage. A one phase to ground fault causes the line voltage to drop while the other 

two-phase voltages remain unchanged. 

c. Dips caused by a two-phase fault (type C) 

Which result from a fault due to short-circuiting two phases, while the third phase remains unchanged. 

Figure 12 shows the result of our method for a type C voltage dip. Our algorithm accurately calculates the 

voltage drop in both phases, as well as the alarm signal, which we plan to use to develop a voltage dip 

management strategy. 
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Figure 10. Three-phase fundamental voltages, magnitude and voltage sag alarm signal for symmetrical faults 

type A 

 

 

 
 

Figure 11. Three-phase fundamental, magnitude and voltage sag alarm signal for asymmetrical faults type B 
 

 

 
 

Figure 12. Three-phase fundamental, magnitude and voltage sag alarm signal for asymmetrical faults type C 

 

 

5. CONCLUSION 

The theory of the ADALINE approach, which is used to detect and estimate voltage amplitude, has 

been presented and studied using simulation. Two algorithms, "with" and "without" error supervision, were 
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explored and compared. In steady state, the accuracy of these algorithms in calculating the amplitude of a 

voltage line's fundamental and harmonics has been demonstrated. The error supervision version does increase 

the basic amplitude estimate accuracy. The dynamic performance (reaction time) of the two algorithms was 

examined in critical zones (the beginning and end of a voltage dip). It should be noticed that the response time 

is not the same at the start and conclusion of the sag. The initial ADALINE algorithm's efficiency was 

considerably enhanced via error supervision. The simulation also examined the speed of three-phase voltage 

dips detection by the ADALINE technique (with error supervision) for type A, type B, and type C dips. The 

identification of the dip was accomplished with a time delay of less than 0.001s in all three case studies, and 

fault signals were generated. It is critical for connected multi-motor systems to identify many occurrences of 

voltage sags over long time intervals and to implement voltage dip management solutions. This will be the 

focus of future research. It is vital to note that they can continue to function prior to, during, and after the 

voltage decrease. 
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