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 Designing ideal analogue circuits has become difficult due to extremely 

large-scale integration. The complementary metal oxide semiconductor 

(CMOS) analog integrated circuits (IC) could use an evolutionary method to 

figure out the size of each device. The CMOS operational transconductance 

amplifier (CMOS OTA) and the CMOS current conveyor second generation 

(CMOS CCII) are designed using advanced nanometer transistor technology 

(180 nm). Both CMOS OTA and CMOS CCII have high performance, such 

as a wide frequency, voltage gain, slew rate, and phase margin, to include 

very wide applications in signal processing, such as active filters and 

oscillators. The optimization approach is an iterative procedure that uses an 

optimization algorithm to change design variables until the optimal solution 

is identified. In this study, different sorts of algorithms the genetic algorithm 

(GA), particle swarm optimization (PSO), and cuckoo search (CS) are 

employed to boost and enhance the performance parameters. While 

decreasing the time required to develop a conventional operation amplifier's 

settling time. Some studies decrease the value of the power utilized at 

various frequencies. Others operate at extremely high frequencies, but their 

power consumption is greater than that of those operating at lower 

frequencies. 
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1. INTRODUCTION 

The two main types of integrated circuits (IC) implementation are bipolar and complementary metal 

oxide semiconductor (CMOS) [1]. In comparison to CMOS technology, bipolar technology is known for 

having lower noise, better performance at high frequencies, and greater transconductance [2], [3]. Bipolar 

technology is better than CMOS technology because it has a higher input resistance, uses less power, and can 

be made on a smaller area of silicon [4]. Using CMOS technology to make an IC is an art form in the field of 

electronics [5]. 

Analog IC designers could, for instance, use simulators of circuits such as simulation software with 

an IC emphasis (SPICE) to evaluate electrical qualities that can be enhanced by adjusting CMOS transistor 

sizes, and this can be done using an optimization strategy [5], [6]. Increasing CMOS amplifier slew rate, 

decreasing noise, power, voltage, and layout area, CMOS power gain and other forms of improvement [7], [8]. 

One of the most important and fundamental things about CMOS is that it can process information very 

quickly, especially in versions made with modern technology at 180 nanometers, 350 nanometers, and  

https://creativecommons.org/licenses/by-sa/4.0/
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130 nanometers, as well as its small size, low energy use, and other important characteristics and factors  

[9]–[11]. 

In previous years, the bipolar operational transconductance amplifier (OTA) was launched 

commercially [12]. In both open and closed loop electrical circuits, CMOS OTA has emerged as a crucial 

component [13]. Operational Transparency According to their input and output, amplifiers are categorized 

into four groups [14]. The OTA with a single input and a single output, OTA with a differential input, and 

OTA with a balanced input and differential output [15], [16]. In addition, the current mode technique offers 

more potential, a wider dynamic range, a simpler circuit design, the lowest power consumption, and a wider 

signal bandwidth than the voltage mode approach, owing towards its enhanced linearity (bipolar and CMOS 

technologies) to establish the existing transport circuits [3], [4]. 

In the sector of analog communications signal processing, current conveyor (CC) circuits are 

gradually replacing operational amplifiers (op-amps) [17], [18]. Current conveyor second generation (CCII) 

is a well-known current mode circuit utilized in several applications, including filters and oscillators. In terms 

of low power consumption, high gain, and other essential characteristics, the work of CMOS amplifiers 

manufactured using contemporary technologies yields favorable results; nevertheless, this parameter can be 

enhanced by using methods that have never been utilized in this field before [8], [19]. Using circuit 

simulators such as SPICE and MATLAB to evaluate the electrical features associated with CMOS 

technology, metaheuristics have been shown to be beneficial for enhancing analog IC [20]–[22]. The 

performance parameters of different CMOS OTAs and CMOS CCIIs designs were summarized in this paper. 

The comparsion of these designs illustrates that low consumption power and wide bandwidth product could 

be obtained using 0.18 µm CMOS technology and algoritmic process. 

 

 

2. FUNDAMENTAL OF FOLDED CASCADE CMOS OTA 

The Op-amps are advantageous for applications with low frequency, such as video and audio 

systems [6]. Many analog and mixed-signal circuits, such as Gm-C filters, data converters, regulators, and 

other high-frequency applications, employ the CMOS OTA as a fundamental building block [23]. Optimising 

analog IC, especially OTA, remains the most fascinating and demanding task in the world of circuit design 

[24]. The ideal CMOS OTA is a voltage-controlled current source with constant transconductance and 

infinite input and output impedances, an example of an OTA is the folded cascade OTA (FCOTA) [10]. 

Figure 1 illustrates the FCOTA circuit layout (6). It consists of two stages: an NMOS differential pair input 

stage and a cascade output stage. 

 

 

 
 

Figure 1. The CMOS OTA folding cascade architecture [25] 

 

 

An ideal transconductance amplifier is a voltage-controlled current source with infinite input and 

output impedance that can drive tiny capacitive loads at high frequencies and has an infinite bandwidth [6]. 

High linearity, high frequency, and low power are the major issues of CMOS OTA [26]. For various 

purposes, a number of CMOS OTAs with various topologies have been documented [27]. The CMOS 

FCOTA has a DC gain >80 dB, unity-gain frequency >200 MHz, slew rate >100 V/s, phase margin >50 o, 
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and a power consumption of 3. The value of the passive components (capacitors and resistors), the length and 

width of the transistor, and the bias current magnitude and bias voltages are all design factors [19].  

− DC in an open loop gain 

The open-loop voltage gain of a two-stage op-amp is given by (1): 

 

𝐴𝑉 =
𝑔𝑀1

𝑔𝑑𝑠2 +𝑔𝑑𝑠4
.

𝑔𝑀6

𝑔𝑑𝑠7 +𝑔𝑑𝑠6
 (1) 

 

the transconductance of transistors M1 and M6 are 𝑔𝑀1 and 𝑔𝑀6. The output conductance is 𝑔𝑑𝑠2 , the 

transistors transconductance output of (M2, M4, and M7) is 𝑔𝑑𝑠2 , 𝑔𝑑𝑠4,𝑔𝑑𝑠7 . Respectively. 

 

− Bandwidth-gain 

The gives the unity-gain bandwidth (2): 

 

𝐺𝐵𝑊 =
𝑔𝑚1

𝐶𝑐
 (2) 

 

where 𝐶𝑐 is the capacitance of compensation.  

 

− Phase margin 

The total of phase shifts provided by the no dominating poles (p1 and p2) and zeros (z) at the unity-

gain frequency determines the phase margin of an operational amplifier (3): 

 

PM = ∓180 − tan−1 (
𝐺𝐵𝑊

p1
) − tan−1 (

𝐺𝐵𝑊

p2
) − tan−1 (

𝐺𝐵𝑊

z
) (3) 

 

− Slew rate 

 The slew rate of this operational amplifier is given by (4): 

 

𝑆𝑅 =
𝐼5

𝐶𝑐
 (4) 

 

where 𝐼5 denotes the current flowing through the transistor M5.  

 

− Power consumption 

 The power consumption of a two-stage operational amplifier has the form (5): 

 

𝑃 = (𝑉𝐷𝐷 −  𝑉𝑆𝑆)(𝐼5 + 2𝐼7) (5) 

 

where 𝑉𝑆𝑆 and 𝑉𝐷𝐷 are the operational amplifiers power supply and 𝐼7 is the current that flows through 

transistor M7.  

 

− Area 

The sum of the transistor and capacitor areas determines the operational amplifier's area A (6): 

 

𝐴𝑟𝑒𝑎 = ∑ 𝑊𝑖 . 𝐿𝑖
𝑘
𝑖=1 0 (6) 

 

where 𝑊𝑖  and 𝐿𝑖 are lengths and widths of MOSFET gate transistors [19]. 

 

 

3. FUNDAMENTAL OF CMOS CCII 

Figure 2 depicts a current conveyor with three active ports: X, Y, and Z. Its primary purpose is to 

generate a current follower between ports Z and X using the translinear loop formed by transistors M1-M4 

[28]. Current mirrors M5-M6 and M7-M8 can be used to create a voltage follower between ports Y and X. 

The current conveyor topology is the most preferred due to its higher performance and the need to implement 

a translinear loop [29]. As a consequence, the optimization of the CCII's design takes into account its primary 

functions: parasitic resistance at port X(𝑅𝑋) and cutoff frequency (f-3dB) [30]. Remember that the purpose is 

to get low input resistance by lowering the first objective and large bandwidth by optimizing the second [31]. 

L and W is the length of channel and width of gate respectively are the geometrical dimensions that define all 

transistors. The design challenge can be stated as follows: 𝑅𝑋(𝑋) 𝑎𝑛𝑑 𝑓−3𝑑𝐵(𝑋) (7). 
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𝑋 = {𝑊𝑛 , 𝑊𝑝, 𝐿𝑛, 𝐿𝑝 , 𝐼0} (7) 
 

subject to (8): 

 

𝑔1,2(𝑋) ≤ 0 (8) 

 

the resistance 𝑅𝑋 is (9): 

 

𝑅𝑋 =
1

𝑔𝑚𝑛 +𝑔𝑚𝑝 
=

1

√2𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

 𝐼0+√2𝜇𝑝𝐶𝑜𝑥
𝑊𝑝

𝐿𝑝
 𝐼0

 (9) 

 

where 𝑔𝑚𝑛 𝑎𝑛𝑑 𝑔𝑚𝑝  the NMOS and PMOS transistors transconductances respectively, 𝐶𝑜𝑥 is the gate oxide 

capacitance. The bias current is 𝐼0. 𝜇𝑛 the electrons mobility and 𝜇𝑝 the holes mobility.  

The cut–off frequency is (10): 

 

𝑓−3𝑑𝐵(𝑋) =  
𝜔−3𝑑𝐵

2𝜋
 (10) 

 

The saturation constraints are 𝑔1 and 𝑔2 are shown in by:  

− The constraint of M2 and M8 transistors (11): 

 

𝑔1 = 𝑉𝑆𝑆 − 𝑉𝑋(𝑚𝑖𝑛) + 𝑉𝑡𝑛 + √
2𝐼0

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

 + √
2𝐼0

𝜇𝑝𝐶𝑜𝑥
𝑊𝑝

𝐿𝑝

  (11) 

 

− The constraint of M4 and M5 transistors (12): 
 

𝑔2 = 𝑉𝑋(𝑚𝑎𝑥) − 𝑉𝐷𝐷 − 𝑉𝑡𝑝 + √
2𝐼0

𝜇𝑛𝐶𝑜𝑥
𝑊𝑛
𝐿𝑛

 + √
2𝐼0

𝜇𝑝𝐶𝑜𝑥
𝑊𝑝

𝐿𝑝

  (12) 

 

The threshold voltage of (NMOS) , (PMOS), and supply voltages are (𝑉𝑡𝑛) (𝑉𝑡𝑝), (𝑉DD), (𝑉𝑆𝑆) 

respectively and 𝑊𝑛 (𝑊𝑝), 𝐿𝑛(𝐿𝑝). Are the gate width and the length of channel for (p channel) (n-channel) 

transistor, respectively. The 𝑉𝑋(𝑚𝑖𝑛) , 𝑉𝑋(𝑚𝑎𝑥) is the minimum and maximum value of voltage. These is 

mathmetical for CMOS current conveyor second generator CCII. After this the famus algorithm that it used 

with such teqnique is discussed. 
 

 

 
 

Figure 2. CMOS current conveyor second generator CCII [32] 

 

 

4. SMART ALGORITHMS 

One important way to improve many performance parameters, like unit product gain, reducing power 

consumption, and slew rate, is to use smart algorithms [5], [33]. Based on these algorithms can be performance 

parameters optimization of CMOS analog signal processing circuits. The main ones are the particle swarm 

optimization (PSO) and cuckoo search (CS) algorithms. Which have high performance of some parameter. 
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5. PARTICLE SWARM OPTIMIZATION ALGORITHM  

The social behavior of fish and birds is described by a mathematical model based on the basic 

properties used to describe complex systems of self-regulation [12], [34]. This model was developed by 

Kennedy and Eberhart in 1995 and called PSO. Currently, the PSO is used to solve optimization problems 

significantly and successfully because of a single goal algorithm [15]. The PSO algorithm is represented by a 

finite search space that contains a set of randomly distributed particles that have a certain velocity and 

position that are represented by simple mathematical models. These models represent every movement of the 

particles to be the best place in the search space or the best place as an individual, in addition, there are 

different rules for updating different variables [35]. The main idea is to provide a search space containing an 

array of particles, and in addition to setting the initial velocity vector, it gives them a suitable initial position 

[36]. Depending on certain parameters randomly in order to set the velocity, and during this process, the 

particle position is changed in each iteration [27]. Each particle has the ability to determine best position and 

whether its current location is superior to the positions of other particles. According to the math in (13) and 

(14), the positions and speeds of the particles must be changed based on what is shown in Figure 3. 

 

vi(t + 1) = vi(t) + c1rand()(pbest(t) − pi(t)) + c2rand()(gbest(t) − pi(t)) (13) 

 

pi(t + 1) = pi(t) + vi(t + 1) (14) 

 

where pi (t+1) and vi (t+1) represent the particle position and velocity in the ith iteration, respectively. A 

function that returns the value of a real random regular number between 0 and 1 is rand (). gbest and pbest 

represent the best global position among all the particles and the particles' best position; c1 and c2 are 

parameters representing the particle dependence (perception) and social behavior in the swarm, respectively. 

These constants are the most closely related in (13), and as shown a number of tests have shown that the 

convergence is faster the higher the value of the constants [37]. The values of c1 and c2 are important in 

improving performance depending on the type of problem. The best performance of the PSO algorithm is if 

the value of the constants c1=c2=2 is set as shown in Figure 3 [6], [15]. 

 

 

 
 

Figure 3. The PSO algorithm flowchart [34] 
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6. CUCKOO SEARCH ALGORITHM 

The CS algorithm is comparable to other algorithms, such as differential evolution (DE), PSO, and 

genetic algorithm (GA) which are classified as being random [4], [6], [38]. It is one of the algorithms that rely 

heavily on population. In this algorithm, each individual element is connected to the cuckoo egg, and each 

pattern is associated with the nest [39]. This algorithm uses a special approach that is similar to the HS 

algorithm, in which the mechanism of selection or elitism is utilized [40]. Based on several typical 

measurement functions, the CS algorithm was proposed, and its performance was compared to that of the PSO 

and DE algorithms in [11], [37]. In randomization, the performance of the CS algorithm was shown to be 

superior to that of the DE and PSO algorithms [34], [41]. In addition, the researchers observed that the number 

of parameters that the CS algorithm must adjust is far lower than the number of parameters required by other 

types of algorithms [42]. The common operation of the CS algorithm is represented by the following (15): 

 

Xg + 1, i = Xg, i + α ⊗ 𝐿é𝑣𝑦(λ) (15) 

 

Here, the ith cuckoo of the current solution is Xg of iteration g, Xg+1,i is the ith cuckoo of the new solution, and 

g is the current generation number [36], [39]. α is the size of step which depends on interests problem 
scales. Lévy(λ) is a random path generated by Lévy flight, and Lévy is obtained from a Lévy distribution 

with an infinite mean and an infinite variance, as shown in (16) [43]. The random walk algorithm is more 

efficient than the PSO algorithm. "Product" refers to the multiplication performed inside [10], [44]. 

 

𝐿é𝑣𝑦 ~ 𝑢 =  𝑡 − 𝜆 (16) 

 

where u is normal distribution and t is CS generation, λ is considered in the range (1, 3). The Mantegna 

algorithm is used to produce the Lévy path. Following a random walk is the size of the steps [45]. With a 

force law distribution featuring heavy tails [27]. 

 

 

7. LITRECHURE REVIEW  

The following Tables 1-3 illustrates the OTA's performance for the years (2012-2021) with and 

without using various algorithms, and for overall references from 2012–2022 of CCII. These tables content 

important parameters with are used in high frequency application, as DC gain (dB), bandwidth of unity gain 

(MHz), phase margin (degree), type of algorithm, slew rate(mV/μs), chip area μm2, consumption power mw, 

and technology (channel length) (μm). In Table 1, there are numerous publications, each of which focuses on 

or is interested in a specific aspect, such as power consumption, slew rate, and gain bandwidth product. To 

reduce power consumption, the authors in [9] employs the CS algorithm, where power consumption is as low 

as possible compared to other research. As for bandwidth, the search results using the PSO algorithm are 

excellent, and packets have been significantly enhanced in [2]. The majority of research uses high 

frequencies at the expense of energy. 

Table 2 displays the research group that does not employ a specific algorithm. The lowest value of 

energy consumed was 144.3 nanowatts in 2010 study, and the maximum bandwidth they were able to achieve 

was 485 MHz in 2013. Several researches are listed in Table 3, some of which depend on a certain type of 

algorithms and others on the sort of technology used to nationalize the system. In comparison to other studies, 

research conducted in 2013 is regarded as the most effective in terms of reducing energy consumption. 

 

 

Table 1. Presented a summary of the performance parameters of several types of CMOS OTA designs based 

on algorithmic processes for the years 2012-2020 
Refrences DC 

gain 

(dB) 

Bandwidth

of unity 

gain (MHz) 

Phase 

margin 

(degree) 

Type of 

algorithm 

Slew rate 

(mV/μs) 

Chip 

Area 

μm2 

Consump-

tion 

power mw 

Technology 

(channel len-

gth) (μm) 

Samir Barra et al. [1] 96 2,5 70° MOGA 2,25 89 0.047 0.18 
B.Mohammad et al. [2] 84.33 543.3 51.34° PSO 534 ----- 1.2 0.18 

Benhala and Ahaitouf [9] 85.58 ----- ----- GA 3.676 ----- 5.23 0.5 

Dendouga et al. [12] 76 1.5 70° MOGA 2250 559 0.047 0.18 
Prajapati and Shah [13] 59.19 20.03 63.53° PSO 18350 28.52 0.184 0.18 

Prajapati and Shah [13] 50.49 16.38 50.09° PSO 20130 97.81 0.349 0.35 

Prajapati and Shah [14] 91.39 0.14555 68.87° PSO 11900 4839.8 0.01492 0.18 
Motlak and Mohammed [15] 82 6.27 89.6° PSO 3155 ----- 0.485 ----- 

Salhi et al. [16] 88.95 83.653 55.202 IWO 27.5 ----- 0.5796 ----- 

Prajapati and Shah [17] 76.17 0.02021 45.43° CS 22060 5409.4 0.000278 0.18 
Prajapati and Shah [17] 85.04 0.06004 73.69° CS 12430 3458 0.000863 0.35 
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Table 2. Different OTA designs were summarized without the use of an algorithm 

Refrences 
DC 
gain 

(dB) 

Bandwidth 
of unity 

gain (MHz) 

Phase 
margin 

(degree) 

Slew 
rate 

(mV/μs) 

Chip 
area 

(mm2) 

consumption 
power 

(mW) 

Technology 
(channel length) 

(μm) 

Mukahar and Jubadi [20] 48.8 9.32 ----- ----- 0.089 4.88 0.5 

Pereira-Arroyo et al. [44] ----- ----- ----- 3.676 ----- 0. 1443 ----- 
Laajimi et al. [45] 57 55 62° 0.1 ----- 2.27 ----- 

Bakawale et al. [30] ----- ----- 55° ----- 0.025 14.2 ------- 

Lee et al. [46] 87 485 70° ------ ----- 8 0.35 
Yodtean [37] 76 423 86° ----- 0.4 0.00458 0.18 

Mirković et al. [47] 57.6 140 83° 190000 ----- 9.77 0.350 

Daoud et al. [26] 46 14 85° ----- ----- 0.028 0.18 
Abdelfattah et al. [48] 46 3.6 56° ----- ----- ----- 0.35 

Akbari and Hashemipour [38] 96 11 76° 96 ----- 0.4 0.18 

Garradhi et al. [43] 42.58 247.3 92° ------ ----- 0.5 0.090 
Yang and Roberts [49] 52 4,8 57° 5 ----- 3.72 130 

Patel and Thakker [27] 44.5 18.7 60.5° ----- ----- ----- ----- 

Sabry et al. [50] 32 3.95 70° ----- ----- ----- 0.18 

Dong et al. [51] ----- 9.76 71.7° 2.76 0.213 29.46 ----- 

 

 

Table 3. Illustrate the overall references from 2012–2022 of CCII 
Refrences Type of 

algorithms 
Technology  

(channel length) (μm) 
Supply 

voltage (V) 
Bias 

current (μA) 
Maximum 

frequency (MHz) 
Consumption 
power (mW) 

Bakawale et al. [30] ---- ---- 1.12 ----- 25 14.2 

Broomandnia et al. [31] ----- 0.18 ±0.6 ----- 0.006 0.191 
Gajjar and Patel [32] ----- 0.18 1.8 4 ----- 0.070 

M'Harzi et al. [52] ----- 0.35 ±1.5 100 ----- 1.28 

Garbaya et al. [53] RBF-PSO ----- ----- ----- ----- ----- 
Yakout and Alawadi [54] ----- 0.8 ±2.5 300 ----- 4.86 

Lberni et al. [55] NSGA II 

and MOGA 

0.18 ±1.8 80 6600 ----- 

Mallick et al. [56] CRPSO 0.18 ±2.5 ----- ----- ----- 

 

 

8. CONCLUSION 
Numerous applications utilize high frequencies, and compared to low frequencies, their power 

consumption is greater; however, some studies underestimate the power consumed at various frequencies. 

High bandwidth, phase margin, spin rate, and voltage gain, which are performance parameters for CMOS 

OTA and CMOS CCII. This parameter was enhanced by the use of cutting-edge (180 nm) nanoscale 

transistor technology. Second, different types of algorithms such as CS, PSO, and GA are utilized. Using 

PSO, the maximum bandwidth available is equal to 543.3 MHz. The minimum power consumption in CMOS 

OTA is 278 uW, whereas in CMOS CCII it is 70 uW. 
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