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 One of the most effective ways for estimating the impact and severity of line 

failures on the static security of the power system is contingency analysis. 

The contingency categorization approach uses the overall performance index 

to measure the system's severity (OPI). The newton raphson (NR) load flow 

technique is used to extract network variables in a contingency situation for 

each transmission line failure. Static security is categorised into five 

categories in this paper: secure (S), critically secure (CS), insecure (IS), 

highly insecure (HIS), and most insecure (MIS). The K closest neighbor 

machine learning strategy is presented to categorize these patterns. The 

proposed machine learning classifiers are trained on the IEEE 30 bus system 

before being evaluated on the IEEE 14, IEEE 57, and IEEE 118 bus systems. 

The suggested k-nearest neighbor (KNN) classifier increases the accuracy of 

power system security assessments categorization. A fuzzy logic approach 

was also investigated and implemented for the IEEE 14 bus test system to 

forecast the aforementioned five classifications. 
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1. INTRODUCTION 

The primary goal of any electric power system is to provide sufficient electrical power supply to 

customer premises without violating frequency limitations or voltage levels. So that any huge interconnected 

power system needs a high level of security. Overloading of transmission equipment and insufficient voltage 

levels at system buses are the two most common operational difficulties in power systems. Therefore, 

determining whether the system is secure (normal) or insecure (emergency) is essential. 

Contingency analysis is one of the most important methods to know the security status of the power 

system. The main methods for selecting and ranking contingencies are ranking and screening methods based 

on an approximate order of the overall performance index (OPI) determined from load flow solutions. It is 

infeasible for real-time applications due to its computational complexity. Artificial intelligence approaches 

and machine learning algorithms can be utilised to solve this challenge. 

Support vector machine-based pattern classification (SVMBPC) was proposed by Kalyani and 

Swarup [1] as a method of categorizing the security status of power systems as secure, critically secure, 

unsecure, and severely insecure. Patidar and Sharma [2] developed a hybrid decision tree-based technique for 

online voltage contingency screening and ranking in energy management systems. Malbasa et al. [3] reported 

an active learning solution for improving existing machine learning applications by enhancing the offline 

training and online prediction processes. Nandanwar et al. [4] developed probabilistic fuzzy decision tree 

https://creativecommons.org/licenses/by-sa/4.0/
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(PFDT) technique for voltage security assessment which consider load management. Zheng et al. [5] 

forecasted power system stability margins using a regression tree-based technique. Thamizhelvan and 

Ganapathy [6] discussed core vector machine (CVM) as a data classifier for assessment of static security of 

power system. Authors in [7] and [8] presented a support vector machine-based binary classification for static 

and transient security evaluation. 

Machine learning and other related automatic learning approaches, such as decision tree induction, 

multilayer perceptrons, and nearest neighbour classifiers, are being developed by Wehenkel [9] in a 

framework that is tailored to the specific needs of power system security assessment. Saeh and Mustafa [10] 

investigated the use of a data mining approach for static security evaluation. Authors in [11] and [12] created 

LV-SVM for contingency classification and ranking in a large power system, as well as probabilistic neural 

networks and the least square support vector machine for transient stability assessment (LV-SVM). For static 

security assessment of power systems, decision tree, random forest, and ensemble classification approaches 

were reported [13]-[15]. For contingency analysis, a fuzzy logic technique and artificial neural networks are 

used [16]-[21]. 

Labed and Labed [22] attempted to reduce the overload and monitor power flow in transmission 

lines. To solve this problem, a unified power flow controller device was used, and then an extreme learning 

machine technique was used because of its exceptionally quick training and good generalization 

performance. The transmission line alleviation is the main point. Ray et al. [23] used independent component 

analysis and support vector machines for power quality analysis in a solar PV integrated microgrid.  
Sahani et al. [24] reported an online sequential extreme learning machine for real-time power quality event 

recognition. Turovic et al. [25] applied machine learning methods to power quality applications in 

distribution networks. Liao et al. [26] discussed the use of deep learning to estimate voltage sag in power 

systems with sparse monitoring. Vantuch et al. [27] applied a multi-objective optimization forecasting model 

for off-grid systems. Power system voltage stability and transient stability analysis are addressed [28]-[34]. 

With the advancement of artificial intelligence in recent years, classification-type machine learning 

algorithms such as k-nearest neighbor (KNN), SVM, and DT ensemble approaches and deep learning 

algorithms have been increasingly popular for power system security assessment. In this paper, the KNN 

machine algorithm is proposed for the classification of static security assessments. For each line outage, the 

suggested KNN classifier is employed for multi-classification based on the calculation of the OPI. Secure, 

critically secure, insecure, very insecure, and most insecure are the five stages of continuous OPI values. 

With this evaluation, the operator can figure out the state of the system's stressed lines in case a line goes 

down. The classification approach is tested on IEEE 14 bus, IEEE 30 bus, IEEE 57 bus and IEEE 118 bus 

systems and results are validated with a fuzzy logic-based assessment technique. 

 

 

2. CONTINGENCY ANALYSIS 

The effect of line outages, transformer breakdowns, and other contingencies on the Power System 

model is determined through contingency analysis. It is one of the most effective approaches for determining 

the severity of line outages and their impact on power system security. To quantify the severity of the system, 

the contingency classification technique uses the OPI. Newton raphson load flow method (NRLF) is used to 

obtain the network variables under contingency case. 

To determine the severity of the contingency, the following performance indices are used: real 

power flow performance index (PIp): this PIp equation determines the over loading status of transmission 

lines. 

 

PIP =  ∑ (
w

2n
) (

Pl

Plmax
)NL

l=0

2n

 (1) 

 

Voltage performance index (PIv): This PIv equation determines the extent of bus voltage limit violations 

 

PIV =  ∑ (
W

2n
)Nb

i=1 {(|Vi| − |Visp|) / ΔViLim
}2n (2) 

 

Here, the minimum voltage limit is taken Vmin=0.95 pu and the maximum voltage limit is 

Vmax=1.05 pu. The OPI is calculated by adding the PIp and PIv. Based on the value OPI, the system security 

is identified. If the value of OPI is more, the insecurity of the system is higher. So that, in contingency 

ranking first priority is given to the line for which the OPI is high. By performing NRLF solution the system 

parameters are obtained for each N-1 line outage contingency. 
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3. MACHINE LEARNING BASED CONTINGENCY ANALYSIS 

Traditional contingency analysis is difficult to utilise for real-time applications due to its 

computational complexity. To solve this problem, a combination of traditional methodologies based on 

security indices and machine learning algorithms is used to come up with a viable solution. 

The KNN machine learning approach is developed in this research for online security assessment 

classification based on the calculation of OPI for each line outage. The OPI values are classified into five 

levels. From this online assessment the operator knows the status of security of the system and can take 

immediate corrective actions. The classification approach is tested on IEEE 14 bus, IEEE 57 and IEEE 118 

bus test system and IEEE 14 bus system results are compared with fuzzy logic. 

 

3.1.  KNN algorithm 

The KNN is a supervised learning-based machine learning algorithm. KNN algorithm stores the 

available data and classifies the data into different categories based on the similarities. When new data is 

given, KNN algorithm identifies the category of the new input according to the similarities. K value gives the 

number of neighbors to be considered to classify the category of the new input. K neighbors are selected 

based on the Eucledian distance from the new input. Among KNN, the algorithm identifies the most common 

class or category of the new input to perform the classification. The KNN algorithm can be adjusted by 

changing the number of neighbors. In this paper, to find thenearest neighbors the Eucledian distances are 

evaluated by considering the value of K is 1. 

 

3.2.  Mathematical model of KNN 
In this subsection, KNN algorithm mathematical model was presented, where KNN uses local prior 

probabilities for classification. For a given value of xt, KNN algorithm predicts the class as: 

 

yt =
arg max

c ∈ {c1, c2, … . , cm} ∑ E(yi, c)xi∈N(xt,K)  (3) 

 

Where xt is the new input to be tested and yi is the predicted class for the given new input, m is the number 

of presented classes in the training data. 

 

E(a, b) = {
1    if a = b
0      else      

 (4) 

 

N(x, k) = Set of k nearest neighbor of x 

 

In (3) can also be written as 

 

yt = arg max {
∑ E(yi, c1),xi∈N(xt,k) ∑ E(yi, c2)xi∈N(xt,k) , …

, ∑ E(yi, cm)xi∈N(xt,k)
}         (5) 

 

yt = arg max {
∑

E(yi,c1)

k
,xi∈N(xt,k) ∑

E(yi ,c2)

kxi∈N(xt,k) , …

, ∑
E(yi,cm)

kxi∈N(xt,k)

}              (6) 

 

And it is familiar that 

 

p(cj)(xt,k)
= ∑

E(yi,cj)

kxi∈N(xt,k)  (7) 

 

Where p(cj)(xt,k)
 is the probability of occurrence of jth class in the neighbourhood of xt. Hence (4) turns to 

be 

 

yt = arg max{p(c1)(xt,k), p(c2)(xt,k), … , p(cm)(xt,k)} (8) 

 

From (7), it is cleared that, to identify the class of the new input, prior probabilities are used by the KNN 

algorithm. It doesn't take into account the distribution of classes in the area surrounding the new input point. 
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4. GENERATION OF DATA FOR CONTINGENCY ANALYSIS IN ORDER TO TRAIN THE 

KNN MODEL 

For the IEEE 30 bus system, data is generated to train the KNN model by executing Newton 

Raphson load flow for each line outage. PIV and PIP are calculated for each line outages. Then OPI is 

determined by adding PIV and PIP and it is normalized between 0.1 to 0.9 for each case of line outage. As 

seen in Table 1, the normalised data is separated into five classes. The OPI range of categorization is fixed 

according to international literatures, but the following classification is much more acceptable when 

compared to performance.  

 

 

Table 1. Overall performance index classification 
Class Secure Critically secure Insecure Highly insecure Most insecure 

OPI range 0.1-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.9 

 

 

4.1.  Normalization of OPI data 

OPI data is normalized as shown in (9). The input and output of training data set and testing data set 

is scaled in the range of 0.1-0.9. Before implementing the KNN classifier, each value of the input and output 

parameter P is normalised as Pn. 

 

Pn=(0.8 × (P-Pmin)/(Pmax-Pmin)+0.1) (9) 

 

The maximum and minimum values of the data parameter are Pmax and Pmin, respectively. 

Based on the classification as stated in Table 1, the normalised OPI is classified into five classes: 

secure, critically secure, insecure, highly insecure, and most insecure. By using the normalised OPI as input 

and Class(X) as output, this IEEE 30 bus data is used to train the KNN model. At base load and 10% of base 

load the performance indices PIp and PIv are calculated for IEEE 30 bus system to train the KNN model. 

 

 

5. FUZZY BASED FORMULATION 

Lotfi Zadeh is the father of fuzzy logic and the rules are set in natural language. Fuzzy logic is the 

study of reasoning systems that consider both true and false statements, whereas classical mathematics 

exclusively considers absolutely true statements. 

 

5.1.  Choosing the input 

To validate the results with the suggested KNN classifier, a fuzzy logic technique is used for the 

identical IEEE 14 test systems. Figure 1 shows the normalised values of PIp, PIv, and OPI provided to the 

fuzzy logic. 

 

 

 
 

Figure 1. Fuzzy toolbox input and output 

 

 

5.2.  The shape of the membership function 

The shape of the membership function is significant in categorization. As shown in Figure 2,  

Figure 3, and Figure 4, trapezoidal type membership functions, namely trapmf, are employed for both input 

and output. 
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Figure 2. Membership function for the input Piv 

 

 

  
 

Figure 3. Membership function for the input Pip 

 

Figure 4. The output OPI of the fuzzy logic system 

 

 

5.3.  Fuzzy rules 
For fuzzy classification, with all possible combinations 15 rules are framed as shown below in  

Table 2. One input PIp is having 3 MFs (small, medium, high), and another input PIv having 5 MFs (LV, 

NV, HV, VHV and OV). 

 

 

Table 2. Fuzzy classification rules 
PIp\PIv Voltage performance index (PIv) 

Active power index 

(Pip) 

Low voltage 

(LV) 

Normal voltage 

(NV) 

High voltage 

(HV) 

Very high voltage 

(VHV) 

Over voltage 

(OV) 

Small S CS IS HIS MIS 
Medium S CS IS HIS MIS 

High S CS IS HIS MIS 

 

 

Voltage performance index (PIv) assessed as: S: secure; CS: critically secure; IS: insecure; HIS: highly 

insecure; MS: most insecure 

 

 

6. RESULTS AND DISCUSSION  

Static security assessments are simulated and tested for the IEEE-14 bus using the KNN and fuzzy 

algorithms. Table 3 summarizes the simulation findings of an IEEE 14 bus system utilizing the KNN method 

with newton raphson load flow. According to the results, the KNN classifier accurately predicts all classes 

except for the line outage 4-9. It predicts very insecure rather than most insecure. It has an accuracy of 

92.86%. Table 4 displays the mismatched findings of the IEEE 57 and IEEE 118 bus systems. Except for line 

outages 28-29 and 15-45 on the IEEE 57 bus system, the KNN classifier accurately predicts all classes. It 

predicts very insecure rather than most insecure. It has a 97.67% accuracy rating. Except for line failures  

27-115, the KNN classifier accurately predicts all classes for the IEEE 118 bus system. It predicts critically 

secure rather than secure. It has a 99.46% accuracy rate. 

Table 5 displays the findings of the fuzzy logic system. The KNN method's indexes and line outage 

categorization are compared to the fuzzy algorithm. The categorisation of line outages is clearly consistent in 

both techniques. 

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 11, No. 6, December 2022: 3091-3098 

3096 

Table 3. Test results of IEEE 14 bus system for contingency classification 
S. 

No 
Line outage PIp PIv OPI Normalized OPI (Pn) Predicted class by KNN classifier 

Classification by 

load flow 

1 1-2 0.3486 1.2447 1.5933 0.1 Secure Secure 

2 1-5 0.1055 1.9081 2.0136 0.456791 Insecure Insecure 

3 2-3 0.141 1.8201 1.9611 0.412224 Insecure Insecure 
4 2-4 0.1116 1.965 2.0766 0.510272 Highly insecure Highly insecure 

5 2-5 0.1085 2.0482 2.1567 0.578268 Highly insecure Highly insecure 

6 3-4 0.0978 2.2117 2.3095 0.70798 Most insecure Most insecure 
7 4-5 0.1048 1.9515 2.0563 0.493039 Insecure Insecure 

8 4-7 0.1199 2.1429 2.2628 0.668336 Most insecure Most insecure 

9 4-9 0.0917 2.1337 2.2254 0.636587 Highly insecure Most insecure 
10 5-6 0.133 2.4027 2.5357 0.9 Most insecure Most insecure 

11 6-11 0.0934 1.9517 2.0451 0.483531 Insecure Insecure 

12 6-12 0.0932 1.9553 2.0485 0.486418 Insecure Insecure 
13 6-13 0.0977 1.5524 1.6501 0.148217 Secure Secure 

14 7-8 0.0925 1.9143 2.0068 0.451019 Insecure Insecure 

15 7-9 0.1182 1.6585 1.7767 0.255688 Secure Secure 
16 9-10 0.093 2.0502 2.1432 0.566808 Highly insecure Highly insecure 

17 9-14 0.0953 2.005 2.1003 0.53039 Highly insecure Highly insecure 

18 10-11 0.0927 2.1482 2.2409 0.649745 Most insecure Most insecure 
19 12-13 0.0924 2.1694 2.2618 0.667487 Most insecure Most insecure 

20 13-14 0.0935 2.0782 2.1717 0.591002 Highly insecure Highly insecure 

 

 

Table 4. Mismatched results of IEEE 57 and IEEE 118 for contingency classification 
S. 

No 
Bus system 

Line 

outage 
PIp PIv OPI 

Normalized 

OPI (Pn) 

Predicted class by KNN 

classifier 

Classification by 

load flow 

1 IEEE  57 28-29 0.1795 38.3895 38.569 0.613825 Highly insecure Most insecure 

2 IEEE 57 15-45 0.1837 38.3713 38.555 0.612756 Highly insecure Most insecure 
3 IEEE118 27-115 1.7699 9.1996 10.9695 0.298616 Critically secure Secure 

 

 

Table 5. Result of IEEE 14 bus system static security assessments of KNN and fuzzy algorithms 
 Secure Critically insecure Insecure Highly insecure Most insecure 

KNN 1,13,15 - 2,3,7,11,12,14 4,5,9,16,17,20 6,8,10,18,19 
Fuzzy 1,13 15 2,3,7,11,12,14 4,5,16,17,20 6,8,9,10,18,19 

 

 

The suggested KNN method appears to be suitable for power system contingency categorization on 

a real-time scale. The KNN classifier is trained with the data of higher bus systems to classify the security 

status of a power system. Then, the trained classifier is used to classify the security status of any power 

system, which has a lower number of buses than the trained bus system. In this work, the IEEE 30 bus system 

is used to train the classifier and the security status of the IEEE 14, IEEE 57 and IEEE 118 bus systems are 

tested. The accuracy of the fine KNN algorithm is good and is giving better results even though the training 

data is less. It is quite a convenient algorithm to find the security status of the power system without 

complexity. 

 

 

7. CONCLUSION 

The KNN classifier is used to determine the online security status of power system contingencies. 

The proposed classifier was trained using a dataset generated using the Newton-Raphael load flow technique 

for power system contingency analysis. Following that, the trained KNN classifier is tested on the IEEE 14, 

IEEE 57, and IEEE 118 bus systems. The correctness of the KNN algorithm is determined by comparing its 

findings to the results of the existing Newton-Raphson load flow technique. In addition, the classification 

accuracy for the IEEE 14 bus system is evaluated by contrasting the KNN method with the fuzzy logic 

technique. This is done to demonstrate that the results are accurate. Finally, the simulation results reveal that 

the KNN model is successful in identifying the power system's security situation. The KNN approach may be 

utilized for live classification of power system contingencies based on simulation findings. 
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