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Distributed denial of service is a form of cyber-attack that involves sending
several network traffic to a target system such as DHCP, domain name
server (DNS), and HTTP server. The attack aims to exhaust computing
resources such as memory and the processor of a target system by blocking
the legitimate users from getting access to the service provided by the server.
Network intrusion prevention ensures the security of a network and protects
the server from such attacks. Thus, this paper presents a predicitive model
that identifies distributed denial of service attacks (DDSA) using Bernoulli-
Naive Bayes. The developed model is evaluated on the publicly available
Kaggle dataset. The method is tested with a confusion matrix, receiver
operating characteristics (ROC) curve, and accuracy to measure its
performance. The experimental results show an 85.99% accuracy in

Malware detection
SYN-flood attack

detecting DDSA with the proposed method. Hence, Bernoulli-Naive Bayes-
based method was found to be effective and significant for the protection of
network servers from malicious attacks.
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1. INTRODUCTION

Distributed denial of service attack (DDSA) is a form of security attack where the attacker attempts
to exhaust resources, such as bandwidth, memory space, or processor time of the target system. The
legitimate users are then blocked due to the unavailability of service in the network. Hence, DDSA has
become a serious issue for network security [1], [2].

To overcome the DDSA challenge, several research works have been conducted. Although there
have been lots of studies undertaken recently on the countermeasures and methods to mitigate the DDSA,
there is little work on the application of machine learning (ML) in combatting the severity of this form of
attack [2]-[23]. Network attack detection using a ML model is an automated system where a ML algorithm
determines the class of network traffic into either “normal” or “malicious” class based on the observations in
the training set. There are two network traffic classes used in training and testing the ML models which are
the “normal” traffic class and the “malicious” traffic class. The objective of this research is to propose a ML
model by employing a Bernoulli Naive Bayes algorithm to effectively detect DDSA. This study aims to
answer the following key questions:
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a. How to develop a ML model by employing a Bernoulli Naive Bayes algorithm to detect a distributed
denial-of-service attack with an acceptable level of accuracy?

b. What is the performance of Bernoulli Naive Bayes on DDSA detection?

¢. Which network traffic feature has a strong relationship to DDSA?

The remaining sections of this paper are arranged as follows: the second section presents the related
works on denial-of-service attack detection. The method is presented in section 3. The experimental results
are presented and discussed in section 4. Section 5 concludes the paper with the addition of recommendations
for future research.

2. RELATED WORK

Much research works has investigated different ways of automation of the DDSA detection using
supervised ML algorithms in literature. A thorough analysis of the literature reveals that research still needs
to be conducted to build intelligent systems using ML approaches to mitigate the DDSA. Some of the
previous research works on the automation of DDSA are discussed in this section. Some of the ML
algorithms employed on different DDSA data repositories such as KDD 99 and Kaggle include support
vector machine (SVM), decision tree (DT), random forest, artificial neural network (ANN), and Naive Bayes.
According to Kim and Cho [3], a neural network based DDSA identification model was proposed. The
proposed model is supposed to identify DDSA in web traffic such as HTTP-post traffic.

In another study by Su [4], K-nearest neighbor (KNN) based DDSA identification model was
developed. The model aims to detect flooding attacks, such as synchronize (SYN)-flood. The flooding attack
is a type of network intrusion where the attacker consumes the resources of a system in a network by sending
frequent network traffic, resulting in a denial of the resources to the legitimate users. ML approaches have
many applications in building intelligent systems that can automate network intrusion mitigation such as
distributed DDSA [5]. The applications of ML systems are vital to knowledge discovery (KD) from intrusion
data records. They are used to develop predictive models to automatically monitor network traffic in the
incidence of intrusion into the network system. Different ML algorithms such as ANN, DT, Naive Bayes, and
SVM have been used by several researchers to develop predictive models that can automatically identify
network traffic classes. According to Salunkhe and Mali [6], an ensemble based DDSA identification model
was developed. The model was implemented using ensemble classifiers, J48 and logistic regression.

In the work by Kurniabudi et al. [7], the Naive Bayes algorithm was used to develop a model for the
identification of DDSA. The authors compared the performance of different algorithms for the identification
of DDSA. The comparative result shows that KNN is a better algorithm for identification of the attack. But,
the limitation of supervised ML algorithms is that they can be implemented to detect known attacks [8]. The
algorithms are being trained using a pre-defined label as ethier normal and malicious network traffic feature.
The models usually detect an anomaly or network intrusion based on the known features in the network
traffic. According to Faroogi and Munir [9], a SVM-based DDSA identification model was proposed.
Another research by Abusitta et al. [10] was conducted to mitigate DDSA with a KNN-based DDSA
detection model. The model was proposed to mitigate UDP-flooding and IP spoofing detection.

A DT based DDSA detection model was proposed in [11] to effectively identify DDSA. The authors
used the KDD99 intrusion detection data repository. The proposed model is effective in DDSA detection
using the classification algorithm. Although, the accuracy can be improved to a better value. In another study
by Hag et al. [12], DT and random forest algorithms were employed to classify simple network management
(SNMP) datasets to detect DDSA targeted at an SNMP server. The models have different prediction
accuracy. The DT algorithm performed well as compared to the random forest algorithm.

A Naive Bayes-based predictive model was proposed for the automated detection of DDSA
[13], [14]. Feature selection is applied to extract relevant features in the dataset. As showcased in the study,
the presented feature selection approach improved the prediction accuracy of the model. Furthermore, the
feature selection approach helped in the reduction of irrelevant features from the data repository and
improved the training complexity. In Alsariera [15], a study on DDSA against HTTP flooding detection was
presented. The authors proposed a model which used a ML approach, specifically, a Naive Bayesian
algorithm. The proposed model has a high predictive performance and can be used on HTTP servers for
DDSA detection.

ML algorithms have different accuracies in DDSA detection. A comparative analysis presented in
[16], [17] on the performance of ML algorithms such as ANN, DT, and Naive Bayes on DDSA detection
shows that ANN algorithm has better performance. The accuracy of the ANN algorithm on DDSA detection
is 84.5%. Another method for DDSA detection using transport control protocol (TCP) connection
parameters, such as SYN, SYN-acknowledge (ACK), and ACK bit was proposed in [18]. The proposed
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method was proposed to detect DDSA based on the TCP connection parameters using KNN to classify the
malicious and normal TCP traffic.

According to Tally and Amintoosi [19], a new framework for the detection of a distributed denial-
of-service attack on a domain name server (DNS) was proposed which employed the random forest
algorithm. As showcased in the results and analysis section of the study, an acceptable level of accuracy was
achieved. But feature selection was not applied to the dataset and the performance of the framework could be
improved by applying feature selection to the dataset. According to Ramasamy and Eric [20], an ML system
for the detection of a distributed denial-of-service attack was proposed which employed deep learning. The
proposed model is effective in DDSA detection, especially in software-defined networks and cloud
computing environments. A SVM-based DDSA detection model was proposed in [21]. The proposed model
is designed to be applied in the cloud computing environments. The model is effective, and the performance
is acceptable but still requires improvement.

Among the various methods to strengthen network security, ML approaches plays a vital role in
automating network attack detection [22]. The ML approaches help in developing self-learning and
knowledge-based or intelligent systems which are used in mitigating the major security risks related to
distributed denial of service and other types of attacks. The study by Assegie and Nair [23], proposed a
convolutional neural network (CNN) method for DDSA detection. The other ML algorithms, namely: logistic
regressions, ANN, SVM, and CNN have better performance than the other presented algorithms.

3. METHOD

The Kaggle distributed denial of the service data repository was used in this work to create a
predictive model to detect DDSA in network traffic. The dataset used consists of 450 observations of which
213 observations are normal network traffic and 237 of the observations are malicious network traffic. Each
observation has 14 features. The dataset was divided into training and testing sets. The training set consists of
80% of the observations in the dataset and the testing set consists of 20% of the observations in the dataset.
The data repository used in this work is summarized in Table 1. For the implementation and experimental
testing, Python programming language is used for implementing the pearson’s correlation matrix, while the
test on the proposed model was implemented using the python language. The python programming language
provides many scientific libraries for handling large dataset processing and ML algorithm implementation
which is widely used by numerous researchers worldwide. The Kaggle application layer distributed denial of
service dataset was used in this research, and it consists of 10 features with 450 observations. The features of
the dataset are presented in Table 1.

Table 1. The distributed denial of service dataset description

No. Feature Description
1 Destination port The port number of the destination
2 Flow duration The duration of traffic flow
3 Total_Backward_Packets Total number of packets forwarded back
4 Total_Length_of Fwd_Packets  Total number of packets forwarded
5 Flow_Packets_Sec Number of packets transmitted per second
6 FIN_Flag_Count Number of FIN bits in the network traffic
7 SYN_Flag_Count Number of SYN bits in the network traffic
8 RST_Flag_Count Number of RST bits in the network traffic
9 ACK_Flag_Count Number of ACK bits in the network traffic
10 Class label The target feature (O=Normal traffic, 1=Dos attack)

3.1. Feature correlation analysis

Different types of DDSA are surveyed to determine the most important features of DDSA. There are
thirteen features extracted from the dataset using a person’s correlation analysis. The correlation analysis
enabled us to determine the relationship between each feature of the dataset. Based on the relationship
between features and the target feature, those features having a strong correlation with the target feature were
selected during the training. The correlation matrix of each extracted feature in the dataset is shown in Figure
1. The feature extraction helps in the identification of the features highly correlated to the target. The features
strongly correlated to the target are important for achieving better accuracy in prediction [24]-[26].
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1.0
Dest_Port -0.0037 -0.002 -0.022 -0.028 -0.16 -0.1 -0.3
Flow_D - -0.22 0.016 0.011 0.064 -0.053 0.26 0.16 -0.22 0.8
Total_FP - -0.0037 -0.0012 -0.002 -0.0015 -0.00024 -0.0024
06
Total_BP - -0.002 0.011 -0.00079 -0.0058 -0.0021 0.0018 -0.0061
Total_LFP - -0.022 0.064 -0.0096 -0.0041 -0.013 -0.023 -0.018 04
FIN_Count-  -0.028 -0.053 -0.0012 -0.00079 -0.0096 -0.04 0.059 0.07
-02
SYN_Count - -0.16 0.26 -0.002 -0.0058 -0.0041 -0.23 0.73
RST_Count - 0.1 0.16 -0.0015 -0.0021 -0.013 -0.04 -0.14 0.14 - 0.0
ACK_Count -0.00024 0.0018 -0.023 0.058 -0.23 -0.14
-=0.2
Target = -0.3 -0.0024 -0.0061 -0.018 -0.07 0.14 -0.35
1 I 1 | I 1 1
Dest_Port Flow_D Total_FP Total_BP Total_LFP FIN_Count SYN_Count RST_Count  ACK_GCount Target
Figure 1. Distributed denial of service dataset feature correlation
4, RESULTS AND DISCUSSION

The results of this research are described in this section. The predictive effectiveness of the

Bernoulli Naive Bayes model was analyzed on the testing set. Apart from the accuracy-test, other
performance measures such as confusion matrix and ROC curve were used to test the proposed model’s
efficiency for DDSA attack detection.

4.1. Accuracy analysis

The predictive accuracy of the proposed model is evaluated using an accuracy score for random tests

of the model. The experimental test results of the accuracy scores of the model for each experiment are
summarized in Table 2. The predictive accuracy of the SVM model for distributed denial of service detection
is shown in Figure 2. As shown in Figure 3, the proposed model is effective in the detection of distributed
denial of service with an accuracy score of above 84% for five random tests conducted on the model.

Table 2. Accuracy of the proposed model
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Figure 2. Accuracy of the developed model Figure 3. ROC curve of the developed model
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4.2. Receiver operating characteristics curve analysis

The ROC shows the true positive rate or the number of correct predictions of the model when the
given observation is a DDSA feature. The false positive rate or the number of correct predictions by the
model has DDSA when the given observation is a normal network traffic. The ROC curve of the proposed
distributed denial of service detection model is shown in Figure 3. The results show that model’s sensitivity
is high initially but reaches a steady state from 0.1 to 1.0.

5. CONCLUSION

In this study, a method for the DDSA detection was developed with the Bernoulli Naive method.
The method was found to be effective in the prediction of SYN-flood attacks in a network. The performance
of the developed method was evaluated with accuracy as a metric to measure the predictive performance of
SYN-flood attacks on the test set. The experimental result shows that the developed method performs well in
predicting DDSA with 85.99% accuracy. Hence, the Bernoulli Naive Bayes-based method is shown to be
effective and significant for the protection of the server from attacks. In the future, the authors would test the
Bernoulli Naive Bayes based on other datasets and develop more effective methods for the automation of
DDSA.
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