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 Induction motors (IM) attracted many researchers in the last few decades. In 

this field, various applications are implemented, such as servo motor drives 

and electric vehicles. This work applies a sensorless direct torque controller 

(DTC) to control a three-phase IM. System dynamics of the IM were 

derived. A nonlinear dynamic model had introduced with white noise. Given 

the complexity of the dynamics, the Jacobean Linearization technique has 

been used to obtain the linear model for a control task. A DTC technique is 

employed to control the motor speed of the system with a combination of 

two controllers. The fuzzy proportional-integral (PI) controllers are applied 

to obtain the reference torque based on an optimization process against the 

speed error raise. The optimizer is called grey wolf optimizer (GWO) and is 

implemented to achieve the centre values of the two output memberships for 

the fuzzy PI controllers. Then the extended Kalman filter (EKF) is used to 

evaluate the direct and quadratic components of the rotor flux and rotor 

speed from the observation of stator voltages and currents. The system is 

tested employing MATLAB simulation software and determines the targeted 

results. The outcomes are evaluated to improve the control performance. 
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1. INTRODUCTION 

Most industrial drive applications employ induction motors (IM). Many control algorithms of IM 

have constituted two main categories; scalar control and vector control. Scalar control contains an open-loop 

voltage and or frequency control, slip hesitation with voltage control, and frequent slip with the current 

controller [1]. The vector controls are costly and high-rendition drives whose objective is controlling the 

quantity and the voltage phase or the current vectors. The control vector is categorized into two types; the 

field orientation control (FOC) and the direct torque control (DTC) strategies [2]. FOC provides a behaviour 

of the IM that is identical to that of the DC motor with a separation between the flux and torque. This 

decoupling supplies rapid torque action, a high-pace control ambit and summit performance for a broad load 

domain. Nonetheless, the controller furthermore has a heightened sensibility from the parametric contrasts 

for the apparatus [2]. The torque is controlled by adjustment of the quadratic ingredient of the stator current. 

In the direct FOC, a flux estimator is considered, on the other hand, a mechanic pace sensor is required. This 

approach is quite a detector of the constant rotor duration. 

The basic concepts of the FOC method were chosen by Manias [3]. Research by Takahashi and 

Noguchi [4], a conventional proportional-integral (PI) compared to that of the PI-like fuzzy is designed to 
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control IM speed [5], while the FOC with that of use PI and I-P controllers had established using MATLAB 

simulation. The FOC approach is employed to design the I-P controller, and comparison has been taken into 

account to obtain a better performance. The DTC control techniques are categorized into two varieties typical 

and modern DTC strategies. Modern DTC is classifieds into adjusted switching table, neural network 

controller, fuzzy logic controller, genetic algorithm, model predictive controller, space vector modulation, 

and sliding mode controller based [6]-[9]. The amendments are executed in the essentially switching table by 

applying all the voltage vectors based on a suitable concatenation. These are performed by subjected to two 

approaches namely; six-sector and twelve-sector tables [10], [11]. The sensorless control design of an IM 

means that the proposed controller has been applied without any speed sensor. Speed estimation techniques 

are classified as: slip calculation (calculate the speed from slip frequency), direct synthesis from state 

equations (estimates the motor speed from rotor fluxes), luenberger observer (LO) technique, the observer 

namely sliding mode observer (SMO), extended Kalman filter (EKF), and optimized model reference 

adaptive controller (MRAC). 

In model reference adaptive systems (MRAS), the response of the reference model is compared with 

the required outcomes of the adaptive model till the error between them becomes zero. To estimate the speed 

error PI-control is applied [12]. However, PI tuning parameters are hard to achieve with time consumption 

appears. The adaptive flux observer LO that uses for the sensorless IM model is an observer to handle it. 

Considerable of this device model and a feedback loop with calculated stator current and rotor flux. 

Nevertheless, based on Lyapunov stability, the gaining matrix of the top-order observer has to be designed. 

Therefore, the observer has to be faster than the monitored system. The LO is an adaptive flux observer without 

noise. A discrete EKF (DEKF) in [13]; is employed to estimate the system state of the synchronous motor with 

a two-phase permanent magnet (PMSM). The linearized model is applied, and the errors eliminated to 

overcome the system uncertainty and noise. The functional order PI-controller for PMSM is employed [14], 

considering particle swarm optimization and superior performance obtained. Research by Wang et al. [15], the 

stability of the observer is proved based on Lyapunov theory. The SMO estimates the system states in the form 

of precisely converging with that of the actual outcomes of the plant. Consequently, the capability to generate a 

sliding motion for the error between the measured and the observer outcomes is improved. 

In this paper, the EKF is an optimum stochastic observer applied to estimate the state variables of 

nonlinear systems; recursively. The EKF noise sources considered lack of accuracy obtained from the system 

modelling and measurements. In the scenario of the error reduction, the estimation process of the EKF is 

achieved recursively to demonstrate the story of the error approaching zero. The form of the EKF may be 

considered a continuous, discrete, or hybrid type. The filter operation depends on the prediction process and 

correction process. While the noise of the system and observation noise is white Gaussian form. When the 

error covariance matrices are recognized EKF works properly. The system states have extended due to the 

linearization of nonlinearity by using Jacobian linearization [16]. This paper is structured as pursues;  

i) introduction, ii) DTC strategy, iii) the IM mathematical model, iv) provide an EKF, v) points to a fuzzy-PI 

control system designed and introduced along simulation, vi) presents a grey wolf optimizer (GWO),  

vii) provides simulation results and analysis, and viii) targets the conclusion with future works. 

 

 

2. RESEARCH METHOD 

2.1.  The DTC strategy 

The DTC scheme has clarified in Figure 1. To handle the designed torque for the dynamic model, 

the inverter states are selected such that the vector of stator flux is in the form of stopped, deaccelerated, or 

accelerated. The output signal of the torque hysteresis controller (δT) is with values of -1, 0, and 1. The 

output signal of the flux hysteresis controller (δλ) has values of 0 and 1. The d-q plane shown in Figure 2 

separates into six sectors [2]. The control design of the torque is the chosen values of the inverter state that 

rely on the sector values of the stator vector plane. Then the direction of rotation of the motor is shown in 

Table 1 [2]. 

The control design of the flux hysteresis is in charge of displacing the stator flux over the 

nomination path depending on the imposes of the voltage vector for the stator (V1-V6). By consideration, 

hysteresis control torque obtains the period for the zero-value voltage vectors (V0, V7) that retain the torque 

in the known hysteresis tolerance boundary. This hysteresis band-related flux control is responsible for the 

limitations of the high flux value. The torque ripple is influenced by the torque hysteresis boundary's width 

only while staying independently of the stator part of the flux hysteresis boundary's width [17]. When the 

band of the torque hysteresis reduces, then the frequency of the switching rises and the losses for the inverter 

switching is going to increase. The stator measurement of the current and the voltage are imported from the 

motor stator that converted into double phase fixed frame coordinates. An intelligent controller is 

implemented in [18] to eliminate the outcomes' ripples of the motor system. 
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Figure 1. DTC scheme 
 

 

 
 

Figure 2. Stator voltage vectors 
 

 

Table 1. The inverter of voltage vectors 
𝛿𝜆 𝛿𝑇 𝚂1 𝚂2 𝚂3 𝚂4 𝚂5 𝚂6 

1 1 𝚅2 𝚅3 𝚅4 𝚅5 𝚅6 𝚅1 

1 0 𝚅0 𝚅7 𝚅0 𝚅7 𝚅0 𝚅7 

1 -1 𝚅6 𝚅1 𝚅2 𝚅3 𝚅4 𝚅5 

0 1 𝚅3 𝚅4 𝚅5 𝚅6 𝚅1 𝚅2 

0 0 𝚅7 𝚅0 𝚅7 𝚅0 𝚅7 𝚅0 

0 -1 𝚅5 𝚅6 𝚅1 𝚅2 𝚅3 𝚅4 

 

 

2.2.  Modelling of induction motor 

According to the motor equivalent circuit in the dq frame, the rate of change of rotor flux 

components is described by [19], [20]. 
 

d

dt
(λdr) = −

Rr

Lr
λdr − ω λqr −

LmRr

Lr
(ids) (1) 

 
d

dt
(λqr) = −

Rr

Lr
λqr +  ω λdr +

LmRr

Lr
(iqs) (2) 

 

Where: 

λqr and λdr are the rotor flux quadratic and direct component 

Lr is the inductance of the system rotor 

Lm is the mutual rotor inductance 

Ls and Rs are both inductance and resistance of the stator 

 iqs and ids are the stator current quadratic and direct components 

Vqs and Vds are the stator voltage quadratic and direct components 

iqr and idr are the rotor current quadratic and direct components 

The rate of change of stator currents components are given by [19], [20]. 
 

d

dt
(ids)  = −(

Lm
2 Rr+Lr

2Rs

𝜎LsLr
2 ) ids + (

Lm Rr

𝜎LsLr
2) λdr + (

Lmω

𝜎LsLr
) λqr + 

1

𝜎Ls
 Vds   (3) 
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d

dt
(iqs) = −(

Lm
2 Rr+Lr

2Rs

𝜎LsLr
2 ) iqs + (

Lm Rr

𝜎LsLr
2) λqr − (

 Lmω

𝜎LsLr
) λdr + 

1

𝜎Ls
 Vqs  (4) 

 

Where Rr is the resistance of the rotor; p is the poles number; and ω is the angular rotor pace. 

The angular acceleration of the model rotor is equivalent to the torques summation that influences 

the rotor divided by the inertia of the rotor, where the speed is as (5): 
 

d

dt
(ω) =  

1

J
(Te − TL) (5) 

 

where TL and Te are the load and the developed torques, respectively and J is the moment of inertia for the 

rotor. Developed torque may be calculated by [19], [20]: 
 

Te = (
p Lm

3Lr
) (iqsλdr − idsλqr)  (6) 

 

2.3.  Extended Kalman filter 

The EKF is an estimator filter employed to recognize the speed and position rotor relying on measured 

values such as stator currents and stator voltages. The motor model is nonlinear with random white noise (w), while 

the nonlinear observation is with random white noise (v). The nonlinearity in the motor system and its observation 

needs an extension in the filter states based on Jacobean linearization. The motor model is described by: 
 

x̂n+1 = A x̂n + B un + w  (7) 
 

yn = H xn + v (8) 
 

where the state xT = [ids  iqs  λdr  λqr 𝜔] and the output yT = [ids  iqs], as well as un
T = [ Vds  Vqs]. 

The matrices of the discrete–time system is: 
 

An =

[
 
 
 
 
Α11 0 𝖠13 𝖠14 𝖠15

0 𝖠22 𝖠23 𝖠24 𝖠25

𝖠31 0 𝖠33 𝖠34 𝖠35

0 𝖠42 𝖠43 𝖠44 𝖠45

0 0 0 0 1 ]
 
 
 
 

, B = T

[
 
 
 
 
B1 0
0 B1

0 0
0 0
0 0 ]

 
 
 
 

, H = [
1 0 0 0 0
0 1 0 0 0

] 

 

A11 = A22 = 1 −
T

σ
( 
Rs

Ls

+
1 − σ

τr

) 

 

A13 = A24 =
ε

τr

 A31 = A42 = Lm T/τr 

  

A14 = −A23 = ε ω A15 = ε λqr 
  

A25 = −ε λdr A34 = −A43 = −Tω 
  

A33 = A44 = 1 −  T/τr  
  

A35 = −T λqr A45 = T λdr 
  

τr = 
Lr

Rr

 σ = 1 −
Lm
2

LrLs

 

  

ε =
LmT

σLsLr

 B1 =
1

σLs

 

 

The EKF procedure steps are [21]: 

Step 1: prediction of state 
 

xn
′ = Φ x̂n    (9) 

 

where Φ is the transfer function defined from (1) to (6) 

Step 2: prediction of error covariance matrix  
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P′ = AnPAn
T + Q    (10) 

 

where Q is the system covariance matrix (E(wwT)) 

Step 3: determine the Kalman filter’s gain (𝐾) 
 

𝐾 = P′𝐻 (𝐻P′𝐻𝑇 + 𝑅)−1  (11) 
 

where R is the observation covariance matrix (E(vvT)) 

Step 4: modification of the state estimation 
 

x̂n+1 = x̂n + 𝐾 ([
ids

iqs
] − 𝐻xn

′ )  (12) 

 

Step 5: correction of the covariance matrix error 
 

P = P′  (13) 

 

2.4.  Fuzzy PI controller 

The PI fuzzy controllers were commonly studied recently to handle nonlinear systems. The control 

law is identified based on a principle of knowledge and a fuzzy logic conclusion technique. The knowledge 

part includes a string of the expression (IF. . .THEN) rules with ambiguous files. The fuzzy PI controller is 

applied to promote the outcomes of the IM system via tuning the PI control gains and then matching the 

desired response. PI rules are similar to FLC in design and have shown in Table 2. 

The proposed fuzzy PI controller has five fuzzy sets with functions united and spread out on each 

(normalized) world. The input membership functions are a triangular type for the error signal. However, the 

other five memberships are for the error rate. The output memberships are two: one for and the second in 

[22], [23]. The input and output memberships have clarified in Figure 3. 
 
 

Table 2. Rules for determination of Kp and Ki respectively 
𝑑𝑒/𝑒 𝑁𝐵 𝑁𝑀 𝑍 𝑃𝑀 𝑃𝐵 
𝑁𝐵 𝖦 𝖯 𝖦 𝖯 𝖦 
𝑁𝑀 𝖦 𝖦 𝖦 𝖦 𝖦 
𝑍 𝖦 𝖦 𝖦 𝖦 𝖦 

𝑃𝑀 𝖦 𝖦 𝖦 𝖦 𝖦 
𝑃𝐵 𝖦 𝖯 𝖦 𝖯 𝖦 
𝑁𝐵 𝖦 𝖦 𝖦 𝖦 𝖦 

𝑁𝑀 𝖯 𝖦 𝖦 𝖦 𝖯 

𝑍 𝖯 𝖯 𝖦 𝖯 𝖯 

𝑃𝑀 𝖯 𝖦 𝖦 𝖦 𝖯 

𝑃𝐵 𝖦 𝖦 𝖦 𝖦 𝖦 

 

 

 
 

Figure 3. Input and output memberships 
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2.5.  Grey wolf optimizer 

Grey wolves (GWs) live in a group and chase prey with a plan. GWs are categorized into four 

classes. The wolf leaders, called alphas, are mainly in charge of making decisions and yet permit mating in 

the bundle. The betas have enhanced the alpha in making decisions. The beta wolf is the superior nominate to 

become the alpha. The beta wolf must consider the alpha besides commanding the rest of the lower-level 

wolves. The omega is considered the minimum ranking of GWs and occupies the position of the scapegoat. 

Omegas always have to give in to all the other controlling wolves. Nevertheless, delta wolves are subject to 

alphas and betas, and both govern the omega. The candidate solutions of GWO are alpha, beta, and delta, 

respectively. GWs encircle victims during the chase, as illustrated in Figure 4. The wolf position vector is 

updated according to the prey position vector 𝑋̅𝑃 by [24], [25]: 
 

𝑋̅(𝑡 + 1) = 𝑋̅𝑃(𝑡)  − 𝐴̅. | 𝐶 ̅.  𝑋̅𝑃(𝑡)  −  𝑋̅(𝑡) | (14) 
 

where, the present iteration is t, 𝐴̅ and 𝐶̅ are the vectors of the coefficient computed underneath. 
 

𝐴̅ = 2𝑎 ̅.  r̅1  −  𝑎̅ 
 

𝐶̅ = 2 .  r̅2. 
 

𝑎̅ = 2 − 2
t

Maximum Iterations
 reduced from 2 to 0, where r1 and r2 are incidental vectors in [0,1] 

 

 

 
 

Figure 4. Position update in GWO 
 

 

The GWs can acknowledge the place of victims and then surround them. Ordinarily, the alpha is in 

charge of guiding the chasing process. Furthermore, beta and delta as well as participated in chasing on 

occasion. Nonetheless, in a search space, the optimum position of the (prey) isn't predefined. Assume that the 

alpha considered a better prospect solution, while the delta and beta wolves have supreme wisdom regarding 

the position of the potential prey. Thus, keep the initial three most profitable outcomes gained yet and 

enforce the rest mechanisms comprising the omegas to revamp their places due to the location of the most 

acceptable agent. The suggested formulas are in the following consideration. 
 

𝐷̅𝛼 = |𝐶1̅𝑋̅𝛼 − 𝑋̅|, 𝐷̅𝛽 = |𝐶2̅𝑋̅𝛽 − 𝑋̅|,  
 

𝐷̅𝛿 = |𝐶3̅𝑋̅𝛿 − 𝑋̅|   (15) 

 

𝑋̅1 = 𝑋̅𝛼 − 𝐴̅1. (𝐷̅𝛼),  𝑋̅2 = 𝑋̅𝛽 − 𝐴̅2. (𝐷̅𝛽), 
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𝑋̅3 = 𝑋̅𝛿 − 𝐴̅3. (𝐷̅𝛿) (16) 
 

𝑋̅(𝑡 + 1) =
1

3
(𝑋̅1 + 𝑋̅2 + 𝑋̅3) (17) 

 

The GWO algorithm steps are [25]: 

Step 1: initialization 

Initialize population of GWs is 𝑋𝑖  (𝑖 = 1, 2, … , 𝑛) preface an a, A, and C 

Step 2: compute the suitability per tracking agent 

𝑋̅𝛼=the best search agent 

𝑋̅𝛽=the second best search agent 

𝑋̅𝛿=the third best search agent 

Step 3: recalculate the location of the present search agent 

Step 4: renew each of a, A, and C 

Step 5: compute the comprehensive fitness of whole search agents 

Step 6: update the 𝑋𝛼 , 𝑋𝛽 , 𝑎𝑛𝑑 𝑋𝛿 

Step 7: end the procedure if (t < Max number of iterations) 

Step 8: go to Step 3 

 

 

3. RESULTS AND ANALYSIS  

The Simulink model of DTC of three-phase IM has displayed in Figure 5. This model is used to 

overcome the load variation and ripple minimization by using an intelligent (PI) controller. Utilized motor 

parameters are proposed in Table 3. The IM is loaded at instant t=2 s and unloaded at t=4 s. The error signals 

obtained for the flux value of the stator and the electromagnetic torque with their estimated magnitudes, 

respectively. Then the error values are submitted to the hysteresis controllers. A proper voltage vector has 

chosen by relying on the inverter potential Table 1. In the voltage inverter, the pulses (SA), (SB), and (SC) 

are in charge of controlling the switching power as well as established from the switching table. 

The PI controllers supply feedback signals to the system. GWO with (10) search agents and (40) 

iterations considered the best solutions are (110.869) and (4.189). The minimum fitness has been deemed the 

value (0.002351). The speed response obtained is clarified in Figure 6. It is clear that the PI controllers 

overcome the overshoot during startup, overcome the loading effect, and decline the steady-state error. The 

proper tuning of the EKF gives a better estimation of speed, stator currents, rotor position, and torque which 

are illustrated in Figures 7-10, respectively. The estimated parameters are with minimum ripple.  
 
 

 
 

Figure 5. Sensor less DTC of IM simulation 
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Table 3. Motor parameters 
Parameters Rated value 

Voltage 250 V 
Frequency 50 Hz 
No. of poles 6 
Stator resistance 6.75 Ω 
Rotor resistance 6.21 Ω 
Stator inductance 0.5192 H 
Rotor inductance 0.5192 H 
Mutual inductance 0.2848 H 
Moment of inertia 0.018 kg.m2 
Coefficient of viscous friction 0.003 N. s/rad 

 

 

 
 

Figure 6. Speed responses due to PI controllers 

 

 

 
 

Figure 7. Speed estimated by EKF 
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Figure 8. Estimated stator currents Îd and Îq 
 

 

 
 

Figure 9. Estimated rotor angle (θ̂) 
 
 

 
 

Figure 10. Estimated torque 
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4. CONCLUSION 

The fuzzy PI controller proposed to eliminate the ripples in motor states and makes the system 

overcome the load changes. A satisfy tuning, the system parameters and observation covariance matrices will 

uncover a better estimation of the required system states. The DEKF is very sensitive to the sampling time, Q 

matrix, and R matrix. Easy implementation of the GWO is due to a simple structure and smaller storage 

required. Because of little of the decision variables and the continuous decrease of search space, in GWO the 

convergence is more rapid. Moreover, two base parameters are only must be taken into consideration to be 

adjusted. 
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