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 Day to day to electrical power demand increases very rapidly with linear and 

non-linear load demands. Especially the nonlinear loads are creating the 

harmonics in the current and voltage signals. The current and voltage signal 

values are measured with the phasor measurement unit (PMU) for the proper 

magnitude and phase angle calculation even in the presence of harmonic 

components in the signals. The performance of the PMU is depending upon 

the phasor calculation technique. Different technique/methods are available 

for the phasor calculation, from the method to method there is difference in 

the accuracy, phasor computation time and complexity. In this paper various 

techniques for phasor calculation are presented. For better performance of 

PMU, more accurate and less computation time for phasor calculation 

technique is required. But in real time, accuracy and speed both may not 

satisfied with single technique. Need to find a satisfactory technique, which 

satisfies the speed of phasor computation and accuracy. In this paper it is 

proposed that direct phasor estimation technique, which gives the better 

results in terms of accuracy and time and this method, satisfies the 

requirements for the dynamic monitoring of power system according to the 

IEEE std. C37.118.1-2011. 
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1. INTRODUCTION 

For the real time power system monitoring, phasor calculation is very important [1], [2]. Because 

when the electrical power generation and load demand mismatch then there is a change in the magnitude of 

the voltage phase angle and frequency. For satisfactory operation of power system all the above variables 

should monitor properly [3], [4]. For this, phasor measurement unit (PMU) is a perfect device to measure all 

the above/mentioned parameters [5], [6]. The performance of the PMU is evaluated with the phasor 

calculation technique [7], [8]. In real time different methods are there for the phasor calculation. They are 

discrete fourier transform (DFT), least square estimation, cosine transform and zero crossing detection [9], 

[10]. The DFT further classified into full cycle DFT and half cycle DFT based on the signal used for the 

phasor computation [11], [12]. The DFT technique is also classified into two types based on the phasor 

computation process; they are recursive DFT (RDFT) and non recursive DFT (NRDFT) [13], [14]. RDFT 

takes less computation time for the phasor estimation [15], [16] but if any error is occurred in the calculation, 

then it is carried forward to the next calculations [17], [18]. The NRDFT gives the accurate values than 

RDFT [19], [20] but it takes more time for the computation [21], [22]. According to IEEE C37.118.1-2011 

for the dynamic state monitoring of the power system more time for data computation is not suitable [23], 
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[24]. To overcome above problems direct phasor estimation technique is proposed in this paper. This method 

produces better results and total vector error (TVE) also less as compared with other methods. 

 

 

2. POWER SYSTEM PHASOR ESTIMATION TECHNIQUES 

For the power system monitoring, power flow calculations the correlation among the signals is very 

important. Two real time signals “X(t)” and “Y(t)” correlation is as follows 

 

𝐶𝑥𝑦(𝑚) = ∑ 𝑋(𝑛)𝑌(𝑛 − 𝑚)

∞

𝑛=−∞

 

 
Here X(n) and Y(n-m) are the real signals in discrete form, ‘m’ represents the lag in the signal. 

Differences in the phase angles of a same frequency signals can be represented in the single complex polar 

plane with phasor. For the phasor calculation many methods are there, each method performance can be 

calculated with the %TVE [25], [26]. 

 

%𝑇𝑉 = √
(𝑃𝑟

𝑒 − 𝑝𝑟
𝑎) + (𝑝𝑖

𝑎 − 𝑝𝑖
𝑎)

(𝑝𝑟
𝑎)2 + (𝑝𝑖

𝑎)2
 

 
Here, Pr

e, Pi
e are the calculated/estimated phasor real and imaginary values. Pr

a, Pi
a is the real/true 

phasor real and imaginary values. For the real and imaginary values calculation different phasor estimation 

techniques are available. 

 

 

3. DISCRETE FOURIER TRANSFORM 

Phasor is complex form representation of the sinusoidal signal with magnitude and phase angle 

representation. In the real time many harmonics are there in the current signals due to non-linear loads. 

Consider a real time signal. 

 

X(t)=x1msin (ω1t+φ1)+x3msin (ω3t+φ3)+x5msin (ω5t+φ5) (1) 

 

Assume the peak amplitude of the signal is 325; the sampling rate is 12 samples per cycle. The 

sampling of a signal is shown in the Figure 1. By using DFT technique phasor value of a signal can be 

measured. For this half cycle DFT or full cycle DFT can be used.  

 

 

 
 

Figure 1. Half and full cycle window for DFT 

 

 

a. Full cycle DFT 

 

Signal: 𝑣(𝑡) = 𝑉𝑚 sin(𝜔𝑡𝑛 + 𝜃) (2) 

 

Sampling: 𝑉𝑚 = 𝑉𝑝 sin(𝜔𝑡𝑛 + 𝜃) 

 

Voltage phasor, 𝑉̇ =
√2

𝑀
∑ (𝑉𝑚𝑒−𝑗

2𝜋𝑛𝑘

𝑀 ) ; 0 ≤ 𝑛 ≤ 𝑀 − 1𝑀−1
𝑛=0 , k=0,1,2,3. 
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Where, M=number of samples in a cycle. 

 

𝑉𝑚 = 𝑛𝑡ℎ sample of v(t) 

 

Where k is harmonic component number, k=0 for DC component, k=1 for fundamental, k=2 for second order 

component. The real and imaginary components of the fundamental (k=1) component is: 

 

𝑉𝑟𝑒𝑎𝑙 =
√2

𝑀
∑ (𝑉𝑚 cos

2𝜋𝑛

𝑀
)𝑀−1

𝑛=0  (3) 

 

𝑉𝑖𝑚𝑎𝑔 =
√2

𝑀
∑ (𝑉𝑚 sin

2𝜋𝑛

𝑀
)𝑀−1

𝑛=0  (4) 

 

Computed phasor: 𝑉̇ = 𝑉𝑟𝑒𝑎𝑙 − 𝑗𝑉𝑖𝑚𝑎𝑔=|V|< 𝜃 

 

Were, |𝑉| = √𝑉𝑟𝑒𝑎𝑙
2 + 𝑉𝑖𝑚𝑎𝑔

2 𝜃 = − tan−1 (
𝑉𝑖𝑚𝑎𝑔

𝑉𝑟𝑒𝑎𝑙
) 

 

From (2) 𝑉𝑚 = 325 sin(100𝑡𝑛 + 30°), sampling rate of 600 Hz, M=12. Full-cycle DFT computation for 

window 1: 

 

(0.1s to 0.1183s, M=12 points) (0 ≤ 𝑛 ≤ 𝑀 − 1). 

 

V̇=√2/12[957.224–j1698.8]=229.800∠-60.600. 

 

For window 2: full-cycle DFT computation for window2 (0.1016s to 0.1112s, M=12 points), (0≤n≤M-1. 
 

V̇=
√2

12
 [1678.374–j992.588]=229.799∠-30.600. 

 

The phasor calculation values of both windows are presented in the Table 1. 
 
 

Table 1. Full cycle DFT technique phasor calculation values 
 1st window 2nd window 

Time  𝑉𝑚 
Cos 

(2πn/M) 

Sin 

(2πn/M) 
 𝑉𝑚 * Cos 
(2πn/M) 

 𝑉𝑚* Sin 
(2πn/M) 

 𝑉𝑚 
Cos 

(2πn/M) 

Sin 

(2πn/M) 
 𝑉𝑚* Cos 
(2πn/M) 

 𝑉𝑚 * Sin 
(2πn/M) 

0.1 162.5 1 0 162.5 0 - - - - - 

0.1016 277.99 √3/2 ½ 240.746 138.99 277.99 1 0 277.99 0 

0.1033 324.98 ½ √3/2 162.49 281.440 324.98 √3/2 1/2 281.440 162.49 

0.1050 281.45 0 1 0 281.458 281.45 ½ √3/2 140.729 243.749 

0.1066 168.35 -1/2 √3/2 -84.179 145.802 168.35 0 1 0 168.358 

0.1083 3.403 −√3/2 ½ -2.947 1.701 3.403 -1/2 √3/2 -1.701 2.947 

0.11 -162.5 -1 0 162.5 0 -162.5 −√3/2 1/2 140.729 -81.25 

0.1116 -
277.99 

−√3/2 -1/2 240.746 138.99 -
277.99 

-1 0 277.99 0 

0.1133 -

324.98 

-1/2 −√3/2 162.49 281.440 -

324.98 
−√3/2 -1/2 281.440 162.49 

0.1150 -

281.45 

0 -1 0 281.458 -

281.45 

-1/2 −√3/2 140.729 243.479 

0.1166 -
168.35 

1/2 −√3/2 -84.179 145.802 -
168.35 

0 -1 0 168.358 

0.1183 -3.403 √3/2 -1/2 -2.947 1.701 -3.403 1/2 −√3/2 -1.701 2.947 

0.1112 - - - - - 162.5 √3/2 -1/2 140.729 -81.25 

Summation of the complete cycle samples 957.22 1698.782 Summation of the complete 
cycle samples 

1678.374 992.588 

 

 

b. Half cycle DFT 
 

Voltage phasor, 𝑉̇ =
√2

𝑀/2
∑ (𝑉𝑚𝑒−𝑗

2𝜋𝑛

𝑀 ) ; 0 ≤ 𝑛 ≤
𝑀

2
− 1

𝑀

2
−1

𝑛=0  

 

Defining: 
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𝑉𝑟𝑒𝑎𝑙 =
√2

𝑀/2
∑ (𝑉𝑚 cos

2𝜋𝑛

𝑀
)

𝑀
2

−1

𝑛=0

 

 

𝑉𝑖𝑚𝑎𝑔 =
√2

𝑀/2
∑ (𝑉𝑚 sin

2𝜋𝑛

𝑀
)

𝑀
2

−1

𝑛=0

 

 

Computed phasor: 

 
𝑉̇ = 𝑉𝑟𝑒𝑎𝑙 − 𝑗𝑉𝑖𝑚𝑎𝑔=|V|< 𝜃 

 

Where |𝑉| = √𝑉𝑟𝑒𝑎𝑙
2 + 𝑉𝑖𝑚𝑎𝑔

2 𝑎𝑛𝑑 𝜃 = − tan−1 (
𝑉𝑖𝑚𝑎𝑔

𝑉𝑟𝑒𝑎𝑙
) 

 

From (2)  𝑉𝑚 = 325 sin(100𝑡𝑛 + 30°). For window 1: Half-cycle DFT computation for window1 

(0.1s to 0.1083s, 6 points), M=12. 

 

V=
2√2

12
 [478.61–j849.31].|V|=229.798. 

 

𝜃=tan−1(−
849.31

478.61
).|V|<𝜃=229.798<-60.99. 

 

For window 2: half-cycle DFT computation for window1 (0.1016s to 0.11s, 6points), M=12. 

 

V=
2√2

12
 [839.187–j496.|V|=229.798. 

 

𝜃=tan−1(−
496.294

839.187
).|V|<𝜃=229.99<-30.99. 

 

The calculated phasor value using halfcycle DFT is presented in the Table 2. 

 

 

Table 2. Halfcycle DFT technique phasor calculation values 
 1st window 2nd window 

Time  𝑉𝑚 
Cos 

(2πn/M) 

Sin 

(2πn/M) 
 𝑉𝑚 *Cos 
(2πn/M) 

 𝑉𝑚 *Sin 
(2πn/M) 

 𝑉𝑚 
Cos 

(2πn/M) 

Sin 

(2πn/M) 
 𝑉𝑚 * Cos 
(2πn/M) 

 𝑉𝑚 * Sin 
(2πn/M) 

0.1 162.5 1 0 162.5 0      
0.1016 277.99 √3/2 1/2 240.746 138.99 277.99 1 0 277.99 0 

0.1033 324.98 ½ √3/2 162.49 281.440 324.98 √3/2 1/2 281.440 162.49 

0.1050 281.458 0 1 0 281.458 281.458 ½ √3/2 140.729 243.749 

0.1066 168.358 -1/2 √3/2 -84.179 145.802 168.358 0 1 0 168.358 

0.1083 3.403 −√3/2 1/2 -2.947 1.701 3.403 -1/2 √3/2 -1.701 2.947 

0.11 - - - - - -162.5 -√3/2 ½ 140.729 -81.25 

Summation of the complete cycle samples 478.61 849.391 Summation of the complete cycle 

samples 

839.187 496.294 

 

 

Even in the signal harmonic content is there, but with this phasor measurement technique only 

fundamental component magnitude and phase angle is calculated. But this DFT technique will give error 

value when the signal having a DC component. Generally, the decaying component is present in the signal 

due to faults; under this condition DFT based phasor estimation may not give accurate values. 

 

 

4. DIRECT PHASOR CALCULATION TECHNIQUE 

A new approach is proposed to calculate the instantaneous phase angle and magnitude of the voltage 

signal. This method will give instantaneous phase angle and voltage values more accurately with time 

stamping according to IEEE standard C37.118.1-2011 for dynamic monitoring of the power system. The 

calculated values are time stamped with Universal Coordinated Time (UTC), with this it is possible to 
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synchronize the data from the different locations of the power system, and dynamic power flow in the lines is 

possible. The flow chart for the direct phasor calculation is shown in the Figure 2. According to the flow 

chart the phasor calculation are implementaed in the LabVIEW software. The input sampled signal, calculate 

phasor values magnitude and phase angleare shown in the Figure 3. The timereference for the phasor values 

calculation is taken from the global positioning system (GPS) module NEO-6M. The real time voltage signal 

GPS signals are interfaced to LabVIEW software through NI-MyDAQ card. The calculated phasor values are 

tabulated in the Table 3.  

 

 

 
 

Figure 2. Flowchart of direct phasor calculation technique 

 

 

  
 

Figure 3. Magnitude and phase angle measured from direct phasor estimation 

 

 

The laboratory-based experimental setup is shown in the Figure 4. Experimental results are obtained 

by using three phase system with 6ampers of load current. The sending end voltage and receiving end 

voltages, instantaneous voltage phase angles are monitored in PC using LabVIEW software. The sensed 
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signal phasor values are calculated with different phasor estimation techniques. The calculated phasor values 

magnetudes are validated with the fluke voltmeter readings.  

 

 

Table 3. Phasor values of different phasor calculation techniques 

Time 
Instantaneous 

values 

Real 

value 

Imaginary 

values 

Direct phasor 

calculation 

Recursive phasor 

calculation 

Non-recursive 

phasor calculation 

Magnitude 
Phase 

angle 
Magnitude 

Phase 

angle 

Magnitud

e 

Phase 

angle 

02-16-2022 

12:14:53.052 

0 230 0 230.01 0 229.8097 -75 229.8 0 

02-16-2022 
12:14:53.771 

100.5137 151.8727 -172.727 230.01 18 229.8097 -75 229.8 18 

02-16-2022 

12:14:53.923 

191.1884 -29.4316 -228.109 230.01 36 229.8097 -75 229.8 36 

02-16-2022 

12:14:54.111 

263.1482 -190.741 -128.521 230.01 54 229.8097 -75 229.8 54 

02-16-2022 
12:14:54.325 

309.3493 -222.467 58.38069 230.01 72 229.8097 -75 229.8 72 

02-16-2022 

12:14:54.472 

325.2691 -99.9965 207.1249 230.01 89.985 229.8097 -75 229.8 90 

02-16-2022 

12:14:54.637 

309.3493 86.36702 213.1683 230.01 108 229.8097 -75 229.8 108 

02-16-2022 
12:14:54.785 

263.1482 217.1164 75.89786 230.01 126 229.8097 -75 229.8 126 

02-16-2022 

12:14:54.931 

191.1884 200.3641 -112.935 230.01 144 229.8097 -75 229.8 144 

02-16-2022 

12:14:55.068 

100.5137 47.4913 -225.044 230.01 162 229.8097 -75 229.8 162 

02-16-2022 
12:14:55.206 

0 -137.646 -184.265 230.01 180 229.8097 -75 229.8 180 

02-16-2022 

12:14:55.358 

-100.514 -229.271 -18.3029 230.01 198 229.8097 -75 229.8 -162 

02-16-2022 

12:14:55.481 

-191.188 -165.137 160.0934 230.01 216 229.8097 -75 229.8 -144 

02-16-2022 
12:14:55.616 

-263.148 11.1858 229.7278 230.01 234 229.8097 -75 229.8 -126 

02-16-2022 

12:14:55.770 

-309.349 179.9096 143.2918 230.01 252 229.8097 -75 229.8 -108 

02-16-2022 

12:14:55.892 

-325.269 225.7825 -43.8435 230.01 269.98 229.8097 -75 229.8 -90 

02-16-2022 
12:14:56.006 

-309.349 119.0932 -196.766 230.01 288 229.8097 -75 229.8 -72 

02-16-2022 

12:14:56.134 

-263.148 -69.1297 -219.365 230.01 306 229.8097 -75 229.8 -54 

02-16-2022 

12:14:56.282 

-191.188 -210.388 -92.9354 230.01 324 229.8097 -75 229.8 -36 

02-16-2022 
12:14:56.421 

-100.514 -208.716 96.63179 230.01 342 229.8097 -75 229.8 -18 

%TVE 0.93 4.06 4.16 

 
 

 
 

Figure 4. Experimental setup for the different phasor calculation methods 
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5. CONCLUSION  

In this paper it is presented that simple dynamic state power systems direct phasor estimation 

technique. This proposed method is effective as compared with the other methods, according to IEEE Std. 

C37.118.1-2011. This method is allowing the calculation of frequency, magnitude, and phase angle of the 

real time power system signals. The working of the proposed algorithm is tested under various conditions 

like simulate signal in LabVIEW, simulate signal with noise and real-time voltage signal. With the time 

stamping of measured phasor values dynamic power flow studies also very easy and comparatively this 

method gives better results than Recursive DFT and Non-Recursive DFT phasor calculation methods. 
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