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 This paper proposed a modified algorithm for controlling a single-phase 

split-source inverter. The proposed algorithm is a modified model predictive 

control based on Harris Hawks optimization, where the AC output voltage, 

the DC-link voltage, and the DC input current are controlled within one cost 

function. Hence, the discrete time models of both AC-side and DC-side are 

obtained. For proper operation of the modified MPC, each error term within 

the cost function has a weighting factor. Harris Hawks optimization 

technique is used to determine the weighting factors at each term of the cost 

function. The proposed algorithm is validated using MATLAB/Simulink. 

Simulation results show that the system has succeeded in controlling AC 

load voltage, input current, and achieving constant DC-link voltage over a 

wide operating range. 
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1. INTRODUCTION  

The interest in single-stage topologies in the last years has been grown due to the need to reduce 

size, cost and increase the efficiency of the power converters [1], [2]. The single-stage topology must 

perform two functions: 1) controlling the dc voltage and 2) ensuring that the output AC voltage is sinusoidal 

with low THD. Z-source inverter (ZSI) is a single-stage converter with buck-boost characteristic property. 

All switching states of the VSI is used in the ZSI in addition to a shoot-through state. ZSI suffers from many 

drawbacks such as, unidirectional power flow, high inrush current during starting, and discontinuous input 

current [3]. The researchers try to solve these drawbacks in two ways. The first way, by changing the 

configuration of the impedance network [3]-[6]. The second was, by improving a proper control strategy for 

various application requirements [7]. The number of passive components in the impedance network of ZSI 

such as inductors and capacitors are relatively large. 

Split source inverter (SSI) is a single-stage boosting converter which has different circuit topologies 

in literature [8]-[12]. SSI has the capability of using the same switching states as the VSI for its basic 

operation and there is no need for extra states [8]. SSI provide advantages over the existing single-stage 

topologies as: 1) continuous dc-link voltage, 2) continuous input dc current, 3) lower passive components 

count, 4) using the same standard modulation schemes as the VSI for its basic operation. On the other hand, it 

suffers from the following disadvantages: 1) a sufficient dead band time should be generated, 2) unequal 

current distribution among the different switches [9].  

https://creativecommons.org/licenses/by-sa/4.0/
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In literature, SSI uses traditional PWM with PI controller which suffers from the low response and 

minimum phase [9]-[12]. Model predictive control (MPC) is presented with the high-performance response 

and no minimum phase problem [13]-[15]. MPC is a controller, which uses the discrete-time model of the 

system to predict the future behavior of the controlled variables for all possible voltage vectors of the 

converter. The predicted variables are then used to obtain optimal action by choosing the voltage vector that 

minimizes a predefined cost function [16]. Hence, it is more suitable for the discrete nature of the power 

electronics converters, and it lends itself easier to its application [17]-[20]. MPC has many advantages such 

as: 1) it is easy to understand, 2) it can be applied to a wide variety of systems, 3) it deals with multivariable 

cases, and nonlinearities [21], and 4) capable of using constraints [22]-[24]. 

In this paper, finite control-set model predictive control (FCS-MPC) is modified to control the AC 

and DC sides of the single-phase SSI. The cost function consists of output AC voltage error, DC-link voltage 

error, and DC input current error. Hence, only one cost function has been used to control the three variables. 

For proper operation of the modified MPC, weighting factors are used within the cost function. Harris Hawks 

optimization (HHO) technique is used to determine the optimal values of the weighting factors. 

 

 

2. FINITE CONTROL-SET MODEL PREDICTIVE CONTROL FOR SPLIT-SOURCE INVERTER 

The single-phase SSI employed in this paper is shown in Figure 1 [10]. The principle of operation is 

described with the aid of Figure 2 and Figure 3 as follows. When the switch Q5 is turned ON the inductor Ldc 

is charged (see Figure 2), and the SSI can operate with all possible output voltage (+Vinv, -Vinv, and zero). The 

inductor Ldc is discharging into the capacitor (Cdc) when the switch Q5 is turned OFF. At this moment, the 

SSI can operate with only two possible outputs (+Vinv and zero) as shown in Figure 3. The DC-link voltage 

(Vinv) is function of the duty cycle of switch Q5 and is given by (1). 

 

𝑣𝑖𝑛𝑣 =
𝑣𝑑𝑐

1−𝐷
  (1) 

 

In order to design FCS-MPC, the following steps are required: 1) the system model, 2) the discrete time 

model, and 3) the cost function.  
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Figure 1. Single-phase SSI system 
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Figure 2. Possible switching states of the single-phase SSI at charging Ldc 
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Figure 3. Possible switching states of the single-phase SSI at discharging Ldc 

 

 

2.1.    System model and discrete time model 

2.1.1. AC side model 

The governing differential equations of the LC filter variables are: 

 

𝐿𝑓
𝑑𝑖𝑓

𝑑𝑡
= 𝑣𝑖 − 𝑣𝑐 (2) 

 

𝐶𝑓
𝑑𝑣𝑐

𝑑𝑡
= 𝑖𝑓 − 𝑖𝑜 (3) 

 

where, vc is the AC load voltage, vi is the inverter output voltage which applied to the filter, if is the filter 

inductor current, io is the AC load current, Cf is the filter capacitance, and Lf is the filter inductance. 

The equations can be rewritten in a state-space system form as: 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑣𝑖 + 𝐵𝑑𝑖𝑜 (4) 

 

where, 

 

𝑥 = [𝑖𝑓 𝑣𝑐]𝑇 (5) 

 

𝐴 = [
0

−1

𝐿𝑓

1

𝐶𝑓
0
], 𝐵 = [

1

𝐿𝑓

0
], and 𝐵𝑑 = [

 0
−1

𝐶𝑓

] (6) 

 

The output voltage expressed in a vector-matrix form is given as: 

 

𝑣𝑐 = [0 1]𝑥 (7) 

 

The discrete time model is obtained from (4) for a sampling time TS and expressed as: 

 

𝑥(𝑘 + 1) = 𝐴𝑞𝑥(𝑘) + 𝐵𝑞𝑣𝑖(𝑘) + 𝐵𝑑𝑞𝑖𝑜(𝑘) (8) 

 

where, 

𝐴𝑞 = 𝑒𝐴𝑇𝑠, 𝐵𝑞 = ∫ 𝑒𝐴𝑡𝐵𝑑𝑡
𝑇𝑠
0

, and 𝐵𝑑𝑞 = ∫ 𝑒𝐴𝑡𝐵𝑑𝑑𝑡
𝑇𝑠
0

 (9) 

 

2.1.2. DC side model 

The DC side of the single-phase SSI consists of an input inductor (Ldc) and DC-link capacitor (Cdc). 

The governing equations of the DC side has two cases depending on the state of switch Q5 [25]-[27]. Case 

one, the switch Q5 is turned on and the input inductor (Ldc) is charging as shown in Figure 4(a). The dynamic 

equation of the input inductor current and the DC-link capacitor voltage can be presented as: 
 

𝑉𝑑𝑐 = 𝐿𝑑𝑐
𝑑𝑖𝑑𝑐

𝑑𝑡
 (10) 
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𝑖𝑓 = 𝐶𝑑𝑐
𝑑𝑉𝑖𝑛𝑣

𝑑𝑡
 (11) 

 

Where, Vdc is the input DC voltage, idc is the input DC current, and Vinv is the DC-link voltage. 

For first order system, the discrete time model is obtained by simple Euler approximation as: 

 
𝑑𝑥

𝑑𝑡
=

𝑥(𝑘+1)−𝑥(𝑘)

𝑇𝑠
 (12) 

 

Hence, the discrete time model of the input inductor current and the DC-link capacitor voltage are: 

 

𝑖𝑑𝑐(𝑘 + 1) = 𝑖𝑑𝑐(𝑘) +
𝑇𝑠

𝐿𝑑𝑐
𝑉𝑑𝑐(𝑘) (13) 

 

𝑉𝑖𝑛𝑣(𝐾 + 1) = 𝑉𝑖𝑛𝑣(𝑘) +
𝑇𝑠

𝐶𝑑𝑐
𝑖𝑓 (14) 

 

Case two, the switch Q5 is turned off and the input inductor (Ldc) is discharging as shown in Figure 4(b). The 

dynamic equation of the input inductor current and DC-link capacitor voltage can be presented as: 

 

𝑉𝑑𝑐 − 𝑉𝑖𝑛𝑣 = 𝐿𝑑𝑐
𝑑𝑖𝑑𝑐

𝑑𝑡
 (15) 

 

𝑖𝑑𝑐 − 𝑖𝑓 = 𝐶𝑑𝑐
𝑑𝑉𝑖𝑛𝑣

𝑑𝑡
 (16) 

 

The discrete time model of the input inductor current and the DC-link capacitor voltage are: 

 

𝑖𝑑𝑐(𝑘 + 1) = 𝑖𝑑𝑐(𝑘) +
𝑇𝑠

𝐿𝑑𝑐
(𝑉𝑑𝑐(𝑘) − 𝑉𝑖𝑛𝑣(𝑘)) (17) 

 

𝑉𝑖𝑛𝑣(𝐾 + 1) = 𝑉𝑖𝑛𝑣(𝑘) +
𝑇𝑠

𝐶𝑑𝑐
(𝑖𝑑𝑐(𝑘) − 𝑖𝑓(𝑘)) (18) 
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Figure 4. The two cases of the SSI circuits at (a) Q5 is turned on and (b) Q5 is turned off 

 

 

2.2.   Model predictive control strategy   

In this section, the MPC controller is modified to generate the switching action for the single-phase 

SSI switches according to input power, DC-link voltage, and AC output voltage. The duty cycle of switch Q5 

is determined inside the MPC controller. The modified MPC algorithm for the single-phase SSI system is 

shown in Figure 5. At any instance (k) and from knowing the current states of the DC-link voltage (Vinv) and 

DC input current (idc), these variables can be predicted in both ON state and OFF state of the switch Q5. In 

the ON state, The DC input current (idc) and the DC-link voltage (Vinv) are predicted from (13) and (14). The 

single-phase SSI can operate with all possible voltage vectors as shown in Figure 2. The cost function gon is 

used to calculate the error between each of the predicted variables and their reference values. The cost 

function consists of the AC side error, the DC-link error, and the DC input current error as in (19). Weighting 

factors are used for the proper operation of the modified MPC. Harris Hawks optimization (HHO) technique 

is used to calculate the weighting factors. The voltage vector that minimized the cost function (gon) is stored. 

In the OFF state, the DC input current (idc) and the DC-link voltage (Vinv) are predicted from (17) and (18). 

The single-phase SSI can operate with two possible voltage vectors as shown in Figure 3. The cost function 

(goff) is used to obtain the optimal voltage vector at OFF state as in (20). In both ON and OFF states the 

output AC voltage is predicted from (8). The optimal voltage vector from the ON state is compared with the 

optimal vector of the OFF state, and the vector that has minimal error is chosen to apply in the next sample.  
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𝑔𝑜𝑛 = 𝑤1|𝑣
∗
𝑐 − 𝑣𝑐(𝑘 + 1)| + 𝑤2|𝑉𝑖𝑛𝑣

∗ − 𝑉𝑖𝑛𝑣(𝑘 + 1)| + 𝑤3|𝑖𝑑𝑐
∗ − 𝑖𝑑𝑐(𝑘 + 1)| (19) 

 

𝑔𝑜𝑓𝑓 = 𝑤1|𝑣
∗
𝑐 − 𝑣𝑐(𝑘 + 1)| + 𝑤2|𝑉𝑖𝑛𝑣

∗ − 𝑉𝑖𝑛𝑣(𝑘 + 1)| + 𝑤3|𝑖𝑑𝑐
∗ − 𝑖𝑑𝑐(𝑘 + 1)| (20) 

 

where, w1 is the weighting factor of the AC load voltage error, w2 is the weighting factor of the DC-link 

voltage error, and w3 is the weighting factor of the DC input current error. 
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Figure 5. FCS-MPC algorithm 

 

 

3. HARRIS HAWK OPTIMIZATION 

Harris Hawks optimization (HHO) technique is used to obtain the weighting factors of the cost 

function. The integration of absolute error (IAE) of AC load voltage error, evac, the DC-link voltage error, evdc 

and the error current in the DC input current, eidc, are used as the objective function (21). As shown in Figure 6, 

HHO mimics the Harris hawks’ cooperation behavior in chasing the prey, which is called surprise pounce [28]. 

The optimized values of the weighting factor are the prey that hawks tend to catch. As any optimization 

technique, HHO consists of the exploration and exploitation phases. In the exploration phase, the hawks intend 

to detect and track the prey by searching in some random areas. As the prey energy decreases, the algorithm 

transits from exploration phase to exploitation phase. In the exploitation phase, the Hawks attack the intended 

prey detected in the previous phase by performing the surprise pounce [29].  

 

𝐼𝐴𝐸 = ∫ |𝑒𝑣𝑎𝑐(𝑡)|𝑑𝑡
∞

0
+ ∫ |𝑒𝑣𝑑𝑐(𝑡)|𝑑𝑡

∞

0
+ ∫ |𝑒𝑖𝑑𝑐(𝑡)|𝑑𝑡

∞

0
 (21) 

 

where, 

 

𝑒𝑣𝑎𝑐 = 𝑣𝑐
∗ − 𝑣𝑐, 𝑒𝑣𝑑𝑐 = 𝑉𝑖𝑛𝑣

∗ − 𝑉𝑖𝑛𝑣, and 𝑒𝑖𝑑𝑐 = 𝑖𝑑𝑐
∗ − 𝑖𝑑𝑐  (22) 
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Figure 6. Pseudo code of Harris Hawks optimization  

 

 

4. SIMULATION RESULTS 

The single-phase SSI, shown in Figure 1, is simulated using MATLAB/Simulink. The system 

parameters shown in Table 1. The modified MPC is used to control the single-phase SSI where all the five 

switches (Q1-Q5) are controlled. The AC output reference voltage is chosen to be 220 V, 50 Hz. The DC-

link reference voltage and the input reference current are chosen to be 500 V, and 8.5 A (1200 W) 

respectively. The weighting factors (in (19) and (20)) are obtained by HHO and equal to w1=1, w2=0.16, and 

w3=0.11. The AC output voltage waveform (vc) is shown in Figure 7. The output voltages are sinusoidal with 

low THD of 1.49% and peak value equal to 311 V as shown in Figure 8. Figure 9 shows the load currents 

(io), which equals 5.5 A rms. The load consumed nearly 1200 W from the supply. The DC-link voltage (Vinv) 

is shown in Figure 10, and equal to 495 V with low ripples (less than 2%). The DC input inductor current 

(idc) is shown in Figure 11 and has average value equals 8.5 A. The results show that more than one variable 

can be controlled with MPC with proper selection of weighting factors. And this is the most important feature 

of the MPC over other controllers. 

The dynamic behavior of the single-phase system is investigated by applying sudden change in the 

load from 40 Ω to 20 Ω (100% load change) at 11.05 sec as shown in Figure 12. The figure shows that the 

current undergoes increase from 5.5 A to 11 A (rms) and take 0.1 msec to reach its steady-state value. The 
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load power increases from 1200 W to 2380 W. The output voltage (vc) waveform is shown in Figure 13. The 

figure shows that there is a slight effect on the load voltage due to this sudden load change. The THD of the 

output voltages is 1.55% as shown in Figure 14. The DC-link capacitor voltage (vinv) is shown in Figure 15. 

The figure shows that the DC-link voltage is slight affected by load change. The boosting inductor current 

(idc) is shown in Figure 16, which its average value has increased from 8.5 A to 17 A. 
 

 

Table 1. Single-phase SSI system parameters 
AC side 

Reference output voltage vc
* 220 V rms 

Frequency f 50 Hz 

Switching Frequency fc 10 KHz 
Output filter inductor Lf 5 mH 

Output filter capacitor Cf 100 uF 

Load resistance Rl 40 Ω 
Load inductance Ll 10 mH 

DC-Link side 

DC-source 140 V 
DC-link voltage 500 V 

DC-link capacitor Cdc 2000 uF 

DC-link input inductor Ldc 3 mH 

 

 

 
 

Figure 7. The AC load voltage (vc) 
 

 

 
 

Figure 8. THD of the AC load voltage (vc) 
 

 

 
 

Figure 9. The AC load current (io) 
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Figure 10. The DC-link voltage (Vinv) 

 

 

 
 

Figure 11. The DC input current (idc) 

 

 
 

Figure 12. The AC load current (io) at 100% step load change 

 

 

 
 

Figure 13. The AC load voltage (vc) at 100% step load change 
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Figure 14. THD of the AC load voltage (vc) at 100% step load change 

 

 

 
 

Figure 15. The DC-link voltage (Vinv) at 100% step load change 

 

 
 

Figure 16. The DC input current (idc) at 100% step load change 

 

 

5. CONCLUSION 

In this paper single-phase split-source inverter (SSI) has been controlled by a modified FCS-MPC 

based on Harris Hawks optimization. The AC load voltage, the DC-link voltage, and the DC input current are 

controlled simultaneously. Weighting factors determine the importance of each term within the cost function 

and are obtained using Harris Hawks optimization technique. The SSI performance is validated under a 

certain load, which consume 1200 W. The results show that the AC load voltage is well regulated with low 

THD (1.49%), and the input power is controlled while maintaining the DC-link voltage content with low 

ripples (2%). The system is also simulated under 100% load change, which the load consumes 2380 W. The 

results show that FCS-MPC has a high-performance response. In both cases, the DC input current has high 

ripples (8.5 A ripples) as it has a low weighting factor. As the DC input current weighting factor increases, as 

the THD of the AC voltage and ripples of the DC-link voltage increases too. The FCS-MPC algorithm 

sacrifices the DC input current to regulate the AC and DC voltages. 
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