
Bulletin of Electrical Engineering and Informatics

Vol. 11, No. 5, October 2022, pp. 2903~2921

ISSN: 2302-9285, DOI: 10.11591/eei.v11i5.3698  2903

Journal homepage: http://beei.org

The impact of training data selection on the software defect

prediction performance and data complexity

Benyamin Langgu Sinaga1,2, Sabrina Ahmad1, Zuraida Abal Abas1, Antasena Wahyu Anggarajati3
1Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

2Department of Informatics, Universitas Atma Jaya Yogyakarta, Yogyakarta, Indonesia
3PT Setiap Hari Dipakai, Bandung, Indonesia

Article Info ABSTRACT

Article history:

Received Feb 15, 2022

Revised May 16, 2022

Accepted Jul 19, 2022

 Directly learning a defect prediction model from cross-project datasets

results in a model with poor performance. Hence, training data selection

becomes a feasible solution to this problem. Limited comparative studies

investigating the effect of training data selection on the prediction

performance have presented contradictory results. Those studies also did not

analyze why a training data selection method underperforms. This study

aims to investigate the impact of training data selection on the defect

prediction model and data complexity measures. The method is based on an

empirical comparison between prediction performance and data complexity

measure before and after selection. This study compared 13 training data

selection methods on 61 projects using six classification algorithms and

measured the data complexity using six complexity measures focusing on

overlap class, noise level, and class imbalanced ratio. Experimental results

indicate that the best method for each dataset varies depending on the dataset

and classifiers. The training data selection most affects noise rate and class

imbalance. We concluded that critically selecting the training data method

could improve the performance of the prediction model. We recommend

dealing with noise and unbalanced classes when designing training data

methods.

Keywords:

Software defect prediction

Cross-project defect prediction

Comparative study

Data complexity measure

Training data selection

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sabrina Ahmad

Fakulti Teknologi Maklumat dan Komunikasi, Universiti Teknikal Malaysia Melaka

St. Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

Email: sabrinaahmad@utem.edu.my

1. INTRODUCTION

Software review and testing are increasingly important in software organizations due to the strong

demand for high-quality software [1]. Such demand requires the software developer to thoroughly review and

test each software module to detect and correct possible defects. However, this approach is impractical since

the software quality assurance (SQA) team has limited resources and time. Several studies found that only a

tiny portion of the software modules caused most software errors [2], [3]. Therefore, the SQA teams must

allocate limited resources effectively to the part of a software product that is most likely to contain defects

[4], [5]. Using a software defect prediction (SDP) model lets the SQA team focus on prudently reviewing or

testing the high defect-prone modules.

Although it looks promising, the lack of historical data makes it challenging to create the SDP

model. Recent studies examined the feasibility of developing an SDP model using historical data from the

other projects cross-project defect prediction (CPDP). However, CPDP has a disadvantage in that merely

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2904

using cross-project datasets to build the SDP model produces a model with unsatisfactory predictive

performance. It is because the training and testing datasets have different data distributions. [6], [7].

Numerous solutions to this problem have been proposed, including data transformation

[6], [8]–[12], data normalization [6], and training data selection [13]–[18]. Data transformation and

normalization use all training instances to train an SDP model, which may contain irrelevant and noisy data.

Zhang et al. [19] found it difficult to choose a transformation for a given pair of training and testing

instances. Prior studies [6], [20] show that the effect of the transformation on the model performance varies

on the same dataset. Studies [16], [18], [21] reported that the prediction model developed using selected

cross-project data has a satisfied predictive performance. Therefore, selecting the relevant data for training an

SDP model becomes an important and challenging task [16]. This study focused on the training data selection

method and its corresponding performance on cross-project data.

Many studies have proposed various training data selection methods. Several of them [4], [16], [18],

[22]-[24] compared the performance of the training data selection method to a baseline model, an SDP model

built using all available training data, to examine the effectiveness of the method. The results are

contradictory. Some researchers [22], [25] found that the SDP model built using selected training data

performs better than the baseline model. However, the others discovered the opposite result: the baseline

model outperforms the SDP model built using selected training data [23], [24]. One possible explanation for

this conflicting result is that each study used a different experimental setting, such as different datasets,

classifiers, performance metrics, or levels of analysis. This result raises an intriguing question: does the

training data selection positively impact defect prediction performance?

Li et al. [22] also found a minor improvement in defect prediction model performance. It indicates

that a defect prediction model built with selected training data is not necessarily better than one built with all

training data. The findings motivate us to investigate the other factors that may affect the efficacy of the

training data selection method. Ho and Baso [26] proposed data complexity measures to characterize the

underlying complexity of a classification problem. The metrics reflect various data characteristics, such as

class overlap, class separability, and decision boundary complexity. Cano [27] found that the complexity

measures strongly relate to the performance of the classification algorithm. An SDP can be a classification

problem that predicts whether an unseen instance is defective or not. We used complexity measures proposed

in [26], [28] to investigate the selected cross-project datasets to understand how the findings in [22]–[24]

could happen. No dedicated SDP research has investigated the impact of training data selection on training

data complexity, to the best of our knowledge. We raise a question: Does the selection of training data affect

the training data complexity?

Given the question mentioned above, we conducted a large-scale comparison of 13 training data

selection methods, trained on 61 datasets from three dataset repositories (i.e., PROMISE, Markov decision

process (MDP), AEEEM) using six classification algorithms. Unlike [25], our study focused on the

approaches for selecting training data. We further build on [22], [23] by comparing 13 training data selection

methods combined with six classifiers over 61 datasets from three repositories, i.e., AEEEM, PROMISE, and

MDP. This research aims to determine how training data selection and classifier selection affect defect

prediction performance and data complexity. To accomplish the intended goal, we proposed three research

questions:

RQ1: How does the impact of selecting training data on the SDP models?

Selecting training data could impact the SDP model on most dataset releases. The effect of training

data selection varies across dataset releases and the best training data selection method tends to be different

for each dataset release. In addition, no single method consistently appears as the best method for selecting

training data in all dataset releases. It confirms the no-free lunch theorem. When looking at cumulative

performance on each dataset repository, Herbold [16] and Peters et al. [29] are the best-performing training

data selection methods on the AEEEM and PROMISE datasets, despite their statistical insignificance

compared to the baseline model.

RQ2: Does the choice of classification algorithms impact the performance of an SDP model?

The classification algorithm affects the prediction performance on most training data selection

methods, with Naive Bayes (NB) being the top-performing classifier. No single method consistently

performs best when paired with any classifier.

RQ3: How does the impact of selecting training data on the complexity of training data?

Selecting training data may affect data complexity measures, especially in noise rate and class

imbalance, but the effect is not necessarily positive. The defect datasets are deemed to be complex data,

which may cause some selection methods to have unsatisfied performance.

This study contributes in three ways. This study provides: i) a large-scale and comprehensive

comparative research on training data selection, encompassing 13 approaches and 61 dataset releases from

three dataset repositories (i.e., PROMISE, MDP, and AEEEM) using six classifiers, ii) a detailed analysis of

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2905

the impact of selecting training data on prediction performance at two levels of analysis: dataset release and

dataset repository level, iii) a detailed analysis of how selecting training data affects training data complexity.

To our best knowledge, this is the first study that examines the effect of training data selection on training

data complexity in the SDP area. This paper is structured as follows: section 2 reviews the related works,

section 3 outlines the methodology, section 5 presents the results and discussion, and section 5 draws on the

conclusion and highlights future research.

2. RELATED WORKS

2.1. Training data selection

Training data selection is a method for selecting the appropriate training instances based on the target

instances. Correct identification of suitable training data is critical since irrelevant training instances degrade

the performance of an SDP model. Many methods for selecting training data have emerged, classified into

several groups (i.e., instance, project, and multi-granularity) based on training data granularity [30].

Several studies have proposed training data selection methods at the instance level using the k-

nearest neighbors (kNN) algorithm [18], [31], [32]. In [18], [32] employ testing instances to select the

training data, while Peters et al. [31] use source instances to guide the selection. Turhan et al. [18] found that

the defect prediction model has predictive performance close to those built using within-project data. Peters

et al. [31] concluded that their proposed filter outperforms the within-project and Turhan filters. Later, He et

al. [32] considered the similarity of both datasets and the defect count of each training data instance to select

the relevant data. They concluded that their method is better than the Peters filter. Kawata et al. [33]

introduced a cluster-based selection using density-based spatial clustering of applications with noise

(DBSCAN), which merges the source dataset with the target dataset. The method then partitions the

combined dataset into clusters and it selects as training instances the source instances found in a cluster

containing at least one target instance. They concluded that the proposed method outperforms Turhan et al.

and Peter's filter regarding G-measure and area under the curve (AUC). Menzies et al. [34] proposed a local

filter that developed a model for separately predicting defects for each cluster.

Other studies investigated the selection of training data at the project level. Most methods use data

characteristics to assess the closeness of the source and target datasets. Herbold [16] employs the kNN

algorithm to choose the appropriate source data. The source and target data similarity were measured using

the Euclidean distance based on mean and standard deviation. Herbold found that predictive performance

improves significantly based on success rate and recall. Unlike Herbold, He et al. [17] do not use

distributional features to calculate the similarity of training and testing datasets. Instead, they use

performance accuracy to calculate the distance between the training and testing datasets. Selected training

data are instances from datasets that exceed a pre-defined cutoff in terms of accuracy.

Studies [4], [22] proposed multi-granularity approaches that combine project and instance-level

methods. They used Herbold's method at the project level to filter out the source data. At the instance level,

He et al. [4] proposed two strategies that adopt the Burak filter and Peter filter, while Li et al. [22] used

K-means to create clusters of similar instances. Clusters with at least one target instance are combined to

form training data instances. Li et al. found that their filter defeated Herbold, Burak filter, and Peter filter.

Many methods for selecting data have been proposed; therefore, it is necessary to compare their

performances. Several comparative studies compared the effectiveness of training data selection on the SDP

performance Table 1. Li et al. [22] studied five methods for training data selection on 44 datasets and

observed that selecting training data can improve the SDP models. Their analysis focused on the dataset

release level. Bin et al. [23] compared nine methods on 33 datasets from PROMISE. The baseline method

outperformed the defect prediction model built using selected training data. Herbold et al. [25] compared the

cross-project defect prediction model. They included several approaches to dealing with distribution

divergences, such as training data selection, transformation, and normalization. Herbold et al. compared nine

training data selection methods. Luo et al. [24] conducted an experimental study on eleven datasets using

ranking-oriented CPDP for nine training data selection methods. Their findings are similar to [23].

Table 1 displays inconsistent findings from several comparative studies. It could be because of the

different experimental setups, such as different datasets, classifiers, or levels of analysis. Given the above

contradictory findings, we compared the performance of 13 training data selection methods, trained on 61

datasets from three dataset repositories (i.e., PROMISE, MDP, and AEEEM) using six classification

algorithms. The impact of training data selection is evaluated at two granularity levels: dataset release and

dataset repository level. We also investigate the data complexity measure of the selected cross-project

datasets to understand better how the findings in [22]-[24] could have occurred.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2906

Table 1. Comparative studies on training data selection method for cross-project defect prediction
Author(s) TDS

methods

Number of datasets

(repositories)

Classifiers Analysis Findings

Li et al.

[22]

5 44 (PROMISE) NB, SVM Performance at dataset re-

lease level

Data filtering could improve

the performance of SDP model.

Bin et al.
[23]

9 33 (PROMISE) RF Performance at data repo-
sitory level

Using all source data as
training data provided bet-ter

prediction accuracy.

Herbold
et al. [25]

9 67 (PROMISE, MDP,
AEEEM, RELINK,

and NETGENE)

DT, LR, RBF
Net, NB, RF,

SVM

Performance at data repo-
sitory level

LACE2 [29] using NB was the
best training data selection

methods.

Luo et al.
[24]

9 11 (PROMISE) LTR Performance at data repo-
sitory level

Selecting training data did not
affect the performance of

ranking oriented CPDP.

Proposed
study

13

61 (PROMISE, MDP,
and AEEEM)

DT, LR,
MLP, NB,

RF, SVM

Performance at dataset re-
lease and data repository,

impact on data complexity

2.2. Data complexity measures

Data complexity measures are widely utilized to assess the dataset's underlying characteristics, i.e.,

class overlap, linear separability, and neighborhood among instances. These metrics are applied to investigate

the inherent difficulty of a classification problem within a given dataset. Ho and Baso proposed the initial

version of the data complexity metric [26]. Lorena et al. [28] then standardized the measures so that each

measure is in the range [0, 1], with a high value indicating highly complex data.

Many studies have investigated the use of data complexity measures in various areas of research,

such as class imbalance [35], feature selection [36], [37], classifier recommendation [38], and prediction of

classifier performance [39]. We used data complexity measures to study why the SDP model built with

selected training data performs similarly to or even worse than the one built with all training data. This study

used the standardized version of the complexity measures categorized into three groups: feature overlap,

linear separability, and neighborhood measure, as presented in Table 2.

Table 2. Data complexity measures
Symbol Name Description

Feature overlap

F1 Fisher's discriminant ratio This measure computes feature overlap across classes. F1's original version
holds the highest discriminant ratio of all features. The standardized version

adopts the inverse formulation of the original.

F2 Volume of overlapping region This measure calculates feature value distributions within classes.
F3 Feature efficiency This measure computes the efficiency of each feature. It checks for value

overlap between instances of different classes for each feature. If there is an

overlap region, it counts the instances in that region. It divides the number of
instances in the overlap region by the number of all instances. F3 takes the

smallest.
Linear separability

L1 Sum of the error distance by linear

programming.

This measure uses SVM to create a linear boundary and calculates the sum of

distances between the incorrectly classified instances and the boundary.
L2 Error rate of linear classifier This measure calculates the error rate of the linear SVM.

L3 Non-linearity of a linear classifier. This measure interpolates pairs of training examples of the same class to create

a new test dataset. A linear SVM is built using the original datasets and then
applied to the test dataset. L3 has the error rate.

Neighborhood

N1 Fraction of borderline point This measure first builds a minimum spanning tree (MST). The proportion of
vertices incident to edges that connect instances of opposite classes in the

generated MST is used to calculate the N1 values.

N2 Ratio of intra/extra class nearest
neighbor distance

This measure calculates the ratio between intra-class and inter-class distances.
Intra-class distance is the sum of the distances between an instance and its

nearest neighbor. Inter-class distance is the sum of the distances between an

instance and its nearest enemy.
N3 Error rate of the nearest neighbor

classifier

This measure estimates the error rate of a 1NN classifier using leave-one-out.

N4 Non-linearity of the nearest
neighbor classifier

This measure is similar to L3, but it utilizes an NN classifier rather than a linear
SVM.

Class Imbalanced

C2 Imbalance Ratio This measure assesses the imbalance ratio.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2907

The improvement in the defect prediction performance is small [22]. Studies [23], [24] also found

that the SDP model constructed from selected training data underperforms the baseline model. It encourages

us to investigate the factors that may affect the efficacy of the training data selection method. We used data

complexity measures to investigate the selected training dataset characteristics to understand how the

findings in [22]–[24] could have occurred. No dedicated study has examined the impact of selecting training

data on the data complexity in software defect prediction.

3. METHOD

3.1. Experimental datasets

 We experimented on 61 dataset releases from three different repositories, namely: PROMISE, MDP,

and AEEEM, since they have been widely used in defect prediction studies [25], [40]–[42]. Table 3 and

Table 4 present the description of each release. The PROMISE dataset [43] contains several projects with

various releases. Each release (version) has 20 independent attributes and a dependent attribute representing

the number of defects found in that release. Herbold [16] did not use proprietary datasets to avoid the

influence of mixing open-source and proprietary datasets on the experimental results. He also eliminated

small projects by only choosing versions having at least 100 instances. Following his arguments, we select 44

releases from 14 projects available from this repository.

The MDP has 12 releases from six different projects, each of which has a different number of

metrics, and they share 17 static metrics in common. We used the cleaned version of the MDP dataset [44]

since prior studies identified inconsistency issues and mislabeled data in the original version of this dataset

[44]–[46]. We used all releases from this dataset repository. The AEEEM dataset [47] has five releases. This

dataset contains 61 metrics. We used this dataset since D'Ambros et al. [47] pointed out that prediction

methods using various metrics result in the best performance. We used all releases from this repository.

Table 3. Description of characteristics of benchmark datasets
Dataset Projects Releases Level Language Metrics

AEEEM 5 5 class Java 61

PROMISE 14 44 class Java 20
MDP 6 12 class Java, C/C++ 21, 39, 40

Table 4. Statistical description of benchmark datasets
Dataset No release #instances #defective %defective No release #instances #defective %defective
PROMISE 1 ant-1.3 125 20 16 23 lucene-2.2 247 144 58
 2 ant-1.4 178 40 22 24 lucene-2.4 340 203 60

 3 ant-1.5 293 32 11 25 poi-1.5 237 141 59

 4 ant-1.6 351 92 26 26 poi-2.0 314 37 12
 5 ant-1.7 745 166 22 27 poi-2.5 385 248 64

 6 arc 234 27 12 28 poi-3.0 442 281 64

 7 camel-1.0 339 11 3 29 redaktor 176 27 15
 8 camel-1.2 608 216 36 30 synapse-1.0 157 16 10

 9 camel-1.4 872 145 17 31 synapse-1.1 222 60 27

 10 camel-1.6 965 188 19 32 synapse-1.2 256 86 34
 11 ivy-1.1 111 63 57 33 tomcat 858 77 9

 12 ivy-1.4 241 16 7 34 velocity-1.4 196 147 75

 13 ivy-2.0 352 40 11 35 velocity-1.5 214 142 66
 14 jedit-3.2 272 90 33 36 velocity-1.6 220 78 35

 15 jedit-4.0 306 75 25 37 xalan-2.4 723 110 15

 16 jedit-4.1 312 79 25 38 xalan-2.5 803 387 48
 17 jedit-4.2 367 48 13 39 xalan-2.6 885 411 46

 18 jedit-4.3 492 11 2 40 xalan-2.7 909 898 99

 19 log4j-1.0 135 34 25 41 xerces-init 162 77 48
 20 log4j-1.1 109 37 34 42 xerces-1.2 440 71 16

 21 log4j-1.2 205 189 92 43 xerces-1.3 453 69 15

 22 lucene-2.0 195 91 47 44 xerces-1.4 588 437 74
MDP 1 cm1 344 42 12 7 mw1 264 27 10

 2 jm1 9593 1759 18 8 pc1 759 61 8

 3 kc1 2096 325 16 9 pc2 1585 16 1
 4 kc3 200 36 18 10 pc3 1125 140 12

 5 mc1 9277 68 1 11 pc4 1399 178 13

 6 mc2 127 44 35 12 pc5 17001 503 3
AEEEM 1 lucene 691 64 9 4 eclipse 997 206 21

 2 pde 1497 209 14 5 equinox 324 129 40

 3 mylyn 1862 245 13

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2908

3.2. Training data selection methods

We used strict CPDP [48] since it is prevalent in defect prediction studies [25]. This approach does

not require a labeled target dataset, which an organization may not have when building an SDP model. The

representative training data selection methods were chosen based on their frequent use in SDP comparative

studies [22]–[24], the granularity of the training data, and the selection strategy, Table 5 lists the methods.

Table 5. Overview of the included training data selection methods
Ref Granularity Characteristics Selection methods Label Name

[18] Instance-level K-nearest neighbors Distance to target instances, using
Euclidean.

Turhan09

[31] Instance-level K-nearest neighbors Distance to target instances, one source

instance per target instance.

Peters13a

[49] Instance-level K-nearest neighbors Distance to target instances, using

Hamming.

Ryu15

[29] Instance-level K-nearest neighbors Distance to nearest unlike neighbors. Peters15

[34] Instance-level Clustering local cluster-based selection. Menzies11

[33] Instance-level Clustering instances in the same cluster as target

instance.

Kawata15

[50] Instance-level Ranking-based 10% source instances with highest power. Peters13b

[16] Project-level K-nearest neighbors Distance to target dataset, based on data

characteristics.

Herbold13

[17] Project-level Ranking-based Top 10 datasets rank based on predictive

accuracy.

ZHe13

[22] Multi-

granularity

K-nearest neighbors

+ clustering

Distance to target datasets (Herbold13) +

instances in the same cluster as target

instance.

YLi17

[4] Multi-

granularity

K-nearest neighbors

+ clustering

Distance to target datasets (Herbold13) +

instances in the same cluster as target

instance (Peters13a).

PHe0214

[4] Multi-

granularity

K-nearest neighbors

at both level

Distance to target datasets (Herbold13) +

distance to target instances (Turhan09).

PHe0114

3.3. Classification algorithms

We used six classifiers to evaluate the effectiveness of training data selection on the prediction

performance [25], [40]. We considered different families of successful classifiers in finding defects [51]. The

used classifiers are C4.5 (decision tree), Naive Bayes (probabilistic), LR (regression function), random forest

(ensemble method), multi-layer perceptron (neural networks), and support vector machine.

Tantithamthavorn et al. [52] found that optimizing classifier parameters has little effect on AUC. Thus, we

used the WEKA classifiers with default parameters.

3.4. Performance measure

We used the AUC for the prediction measure since the AUC is unaffected by the imbalanced class

problem, threshold-independent [52], and is widely used in SDP research [53]. The AUC has a maximum

value of one. A value close to 0.5 indicates that the model behaves similarly to a random model.

3.5. Experimental settings

This study utilized a multi-source strict CPDP approach [6], [25], [48]. It creates a prediction model

from multiple source training datasets and tests it on a single target dataset. We used this approach since

several methods [4], [16], [17], [22] select the training instances based on the similarity between training and

the testing dataset at the project level, which required multiple source training data. Such an experimental

setup enables us to execute the experiment only once for each pair of training data selection and classifier

[54], except for methods with a random component (i.e., Menzies11, Peters13b, Peters15, and ZHe13). For

such methods, we experimented ten times and calculated the mean performance value.

Figure 1 shows the procedure of this comparative study. First, we set up training and target datasets

using leave-one-out multi-source CPDP. For each repository, i.e., AEEEM, PROMISE, and MDP, each

dataset release is selected as the target dataset. For example, when using the MDP dataset, if PC1 is the target

dataset, the remaining releases are used as candidate training datasets, excluding those from the same project

(i.e., PC2–PC5). Second, we apply each training data selection method to the candidate training datasets.

Third, we train an SDP model using six classifiers on the selected training dataset. Fourth, we evaluate the

model on the target dataset. Lastly, we calculate the complexity measure of the training datasets. Procedure 1

presents the steps of the prediction process with a sample of MDP datasets.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2909

Figure 1. Defect prediction process using training data selection

Procedure 1 Cross-project defect prediction with training data selection
Input: ▪ datasets = {CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5}

▪ methods = {ALL, Herbold13, Kawata15, Menzies11, Peters13a, Peters13b,

Peters15, PHe0114, PHe0214, Ryu15, Turhan09, YLi17, ZHe13}

▪ dcm = {F1, F2, F3, L1, N1, C2}

▪ classifiers = {DT, LR, MLP, NB, Rf, SVM}

Output: AUC_values, data_complexity_measures

0 performance_values = , data_complexity_values = 
 for dataset in datasets do

1 # Leave one out multi-source cross-project (LOO-MS CP)

 test.data = dataset

 train.data = instances from other projects ## if test.ds = PC1, train.ds are all

instances from CM1, JM1, KC3, MC1, MC2, MW1

 for method in methods do

2 train. datamethod = apply_selection (method, train.data)

3 SDP.model = train (train. dsmethod, classifiers)

4 AUCtrain.ds, method, classifiers = evaluate (SDP.model, test.data)

 AUC_values = AUC_values  AUCtrain.ds, method, classifiers
5 dcvtrain.ds, method, dcm = calculate_complexity (train. datamethod, dcm)

 data_complexity_measures = data_complexity_measures  dcvtrain.ds, method, dcm
 end for

 end for

6 return performance_values, data_complexity_measures

4. RESULTS AND DISCUSSION

This section presents the results and discussions on the impact of selecting training data on the

prediction performance and data complexity measure and the impact of the classifier on the SDP model.

4.1. RQ1: how does the impact of selecting training data on the SDP models?

We perform the evaluation in two-level analysis, dataset release level, and dataset repository level. We

present two evaluation points at each level of analysis, i.e., the impact of applying training data selection and the

best-performing method. At the dataset release level, we aim to identify the effect of applying training data

selection and determine the best method for each dataset release. To reach this objective, we calculate the

performance average, in terms of the AUC, of the training data selection methods across different classifiers. We

then run the Wilcoxon and effect size tests to quantify the difference between training data selection and baseline

methods. We choose the method with the highest performance average as the best training data selection method.

At the dataset repository level, we aim to determine the overall effect of selecting training data for each

dataset group. The Friedman test is used to compare the performance of various training data selection

methods. If the test rejects the null hypothesis, we then conducted the post-hoc Nemenyi test. We also use the

Wilcoxon test to compare the performance of each training data selection method to that of the baseline.

4.1.1. Dataset release level

Table 6 (see in appendix) shows the performance average of training data selection methods across

six machine learning classifiers for each dataset release. All represents a defect prediction model built using

all training datasets, i.e., the baseline. The bold value indicates the best training data selection method for a

dataset release. A "+" sign in the parentheses indicates that a training data selection method improves the

baseline with a certain magnitude, while "--" suggests the opposite. S, M, L, N represents the magnitude of

the delta, denoting small, medium, large, and negligible, respectively. For example, for the eclipse dataset

release, Herbold13 has 0.7247 (+, M), meaning that Herbold13 has the highest average performance, i.e.,

0.7247, and improves the performance of the baseline with a medium effect size. Column "%impr" indicates

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2910

the improvement achieved using the optimal method. The optimal method was Herbold13, with an

improvement of 7.35%. Figure 2 graphically summarizes the impact of training data selection methods on

each dataset release based on the number of methods that successfully improve the baseline method.

Table 6 (in appendix) and Figure 2 show that training data selection could enhance the defect prediction

performance since at least one method performs better than the baseline in most dataset releases. The impact of

selecting training data differs across dataset releases. The improvement obtained by the best method for each dataset

ranges between 0 (no improvement, i.e., ant-1.3, ivy-1.4, redactor, kc1, and mw1) and 21.87% (PC2). None of the

methods perform optimally on ant-1.3, ivy-1.4, redactor, kc1, and mw1. It might be because a particular dataset is

more difficult to learn from than others [54]. Hosseini et al. [55] also identified several datasets that are hard to

predict using their proposed method. From a different perspective, we suspect that datasets such as ant-1.3, kc1, and

mw1 are easier to learn (i.e., AUC value larger than 0.7100). It is demonstrated by the fact that the prediction results

obtained using the baseline method (without training data selection) are better than that using the data selection

method.

Figure 2 also implies that training data selection does not necessarily improve the baseline model on

each dataset release. Figure 3(a) confirms this result. On the one hand, Herbold13 and PHe0114 improve the

baseline in at least 40% of dataset releases in the AEEEM dataset. Herbold13, Kawata15, Peters13b,

PHe0114, and Turhan09 perform optimally in the PROMISE dataset, as they upgrade the baseline in over

40% of dataset releases. The same holds for Peters13b and Turhan09 in the MDP dataset. On the other hand,

several training data selection methods are consistently inferior to the baseline method. For example,

Menzies11, Peters13b, Ryu15, Turhan09, and YLi17 do not perform optimally in all AEEEM datasets.

Similarly, the same is true for Menzies11, Kawata15, and Ryu15 in the MDP dataset. Menzies11 and Ryu15

perform better than the baseline in only four and three out of 44 dataset releases in the PROMISE dataset.

Figure 3(b) shows that Herbold13 reaches the best performance on four out of five dataset releases on the

AEEEM dataset. For the PROMISE dataset, the best-performing method on a dataset release is varied.

Eleven methods, including ALL, have ever been the best method. Herbold13, Peters13b, and Turhan09 are

the most often cited techniques. Peters13b is the method that frequently outperforms all others on the MDP

dataset. The remaining five methods, including ALL, ever perform optimally on MDP datasets as well. There

is no training data selection method having the best performance across all dataset releases.

Figure 2. The number of training data selection methods performs better than the baseline on each dataset

release. Red, green, and blue colors represent dataset release from AEEEM, PROMISE, and MDP datasets

(a) (b)

Figure 3. Improvement of training data selection over the baseline (a) the percentage of times a training data

selection method improves the baseline model across all studied datasets and (b) the distribution of the best

training data selection method across all studied datasets

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2911

4.1.2. Dataset repository level

Tables 7-9 compare each training data selection method to the baseline (i.e., ALL) using the

Wilcoxon test for six classifiers. Each value (AUC̅̅ ̅̅ ̅̅) represents the mean AUC of the training data selection

method paired with a classifier across all dataset releases. For each classifier, bold values denote that the

mean AUC of the corresponding method is higher than the baseline. The underlined value represents the

highest mean AUC (i.e., the best performing method). A training data selection method statistically performs

better or worse than the baseline if the p-values (p_val) are less than the significance level (i.e., 0.05). For

instance, on the AEEEM dataset, Herbold13 combined with DT substantially outperforms the baseline since

the p-value (0.0317) is less than 0.05. Herbold13 is the best method when paired with DT.

Tables 7-9 show that training data selection could improve the defect prediction performance since,

for each method, there exists at least one classifier that performs better than the baseline. Herbold13 and

PHe014 are better than the baseline in three classifiers on the AEEEM dataset. For the PROMISE dataset,

Kawata15 and Peters13b dominantly outperform the other methods since they are better than the baseline in

five and four classifiers, respectively. However, no method could outperform the baseline in more than two

classifiers for the MDP dataset.

Table 7. Performance of training data selection method on different classifiers on the AEEEM dataset
Method DT LR MLP NB RF SVM

 AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val

ALL 0.5684 0.7252 0.6986 0.7180 0.7298 0.5005

Herbold13 0.6200 0.0317 0.6985 0.6905 0.6546 0.3095 0.7087 0.5476 0.7376 1.0000 0.6633 0.0097

Kawata15 0.5608 0.5284 0.7253 0.9166 0.6721 0.5476 0.7184 0.9166 0.7252 1.0000 0.5000 0.4237
Menzies11 0.5807 0.4206 0.5835 0.0079 0.5765 0.0159 0.6195 0.0317 0.5881 0.0079 0.4999 0.2330

Peters13a 0.5495 0.6905 0.6827 0.0556 0.6341 0.2222 0.6931 0.2222 0.7237 0.8413 0.5000 0.4237

Peters13b 0.5334 0.3095 0.7191 0.6905 0.6754 0.3095 0.7041 0.6905 0.5990 0.0079 0.5000 0.4237
Peters15 0.5566 0.3095 0.6573 0.0556 0.5767 0.0159 0.7398 0.5476 0.6994 0.3095 0.5000 0.4237

PHe0114 0.5721 0.5476 0.7353 0.6905 0.6349 0.3095 0.7512 0.4206 0.6959 0.2222 0.5000 0.4237

PHe0214 0.5425 0.4206 0.6917 0.5476 0.5980 0.0556 0.7436 0.6905 0.6900 0.4206 0.5000 0.4237
Ryu15 0.5374 0.0952 0.5729 0.0079 0.5451 0.0079 0.5948 0.0159 0.5383 0.0079 0.4996 0.1812

Turhan09 0.5807 0.4206 0.5835 0.0079 0.5765 0.0159 0.6195 0.0317 0.5881 0.0079 0.4999 0.2330

YLi17 0.5894 0.4206 0.6146 0.0159 0.5743 0.0317 0.6955 0.5476 0.6794 0.3095 0.5129 0.0449

ZHe13 0.5959 0.8413 0.5816 0.0079 0.5881 0.0317 0.6291 0.0556 0.6558 0.0317 0.6107 0.0097

Table 8. Performance of training data selection method on different classifiers on the PROMISE dataset
Method DT LR MLP NB RF SVM

 AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val

ALL 0.5805 0.6945 0.6673 0.6943 0.6707 0.5072

Herbold13 0.5339 0.0106 0.6317 0.0043 0.6091 0.0035 0.6844 0.5846 0.6438 0.1180 0.5856 0.0000

Kawata15 0.5763 0.7543 0.6967 1.0000 0.6688 0.8258 0.6954 0.9468 0.6745 0.8453 0.5075 0.8248
Menzies11 0.5775 0.8347 0.5875 0.0000 0.5742 0.0000 0.5832 0.0000 0.5890 0.0000 0.5095 0.0454

Peters13a 0.5503 0.1476 0.6318 0.0017 0.5727 0.0000 0.6770 0.4016 0.6521 0.3764 0.5000 0.0041

Peters13b 0.6328 0.0013 0.6946 0.9567 0.6749 0.6037 0.6901 0.7480 0.6554 0.7734 0.5049 0.7763
Peters15 0.5694 0.5178 0.6647 0.0733 0.6011 0.0003 0.6944 0.9570 0.6467 0.1698 0.5000 0.0026

PHe0114 0.5719 0.5259 0.7035 0.9503 0.6188 0.0078 0.7115 0.4470 0.6532 0.3227 0.5166 0.9215

PHe0214 0.5694 0.3457 0.6651 0.0720 0.5901 0.0001 0.7018 0.7429 0.6474 0.1759 0.5000 0.0041
Ryu15 0.5600 0.1672 0.5869 0.0000 0.5624 0.0000 0.6161 0.0000 0.5582 0.0000 0.4994 0.0261

Turhan09 0.5766 0.8773 0.7010 0.8806 0.6206 0.0148 0.7101 0.4723 0.6547 0.4087 0.5184 0.9353

YLi17 0.5509 0.1160 0.6382 0.0210 0.5981 0.0006 0.6872 0.6980 0.6289 0.0902 0.5176 0.0167
ZHe13 0.6027 0.1506 0.6089 0.0000 0.5939 0.0004 0.6160 0.0000 0.6197 0.0068 0.5887 0.0000

Table 9. Performance of training data selection method on different classifiers on the MDP dataset
Method DT LR MLP NB RF SVM

 AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val AUC̅̅ ̅̅ ̅̅ p_val

ALL 0.7065 0.7301 0.7355 0.7462 0.7055 0.5000

Herbold13 0.5427 0.0000 0.7182 0.7125 0.6467 0.4095 0.7229 0.2913 0.7029 0.8428 0.6091 0.0000

Kawata15 0.6578 0.1409 0.7362 0.8428 0.6977 0.7553 0.7237 0.2189 0.7106 0.9323 0.5000 1.0000
Menzies11 0.5315 0.0000 0.5255 0.0000 0.5228 0.0000 0.5513 0.0000 0.5345 0.0003 0.5002 0.3593

Peters13a 0.6133 0.0086 0.6592 0.2415 0.6046 0.0887 0.6729 0.0684 0.6731 0.3777 0.5000 1.0000

Peters13b 0.7039 0.8398 0.7225 0.9774 0.7296 0.9323 0.7327 0.3474 0.6744 0.6297 0.5000 1.0000
Peters15 0.5452 0.0006 0.7249 0.5899 0.6128 0.0173 0.7706 0.7125 0.6795 0.1978 0.5000 1.0000

PHe0114 0.5593 0.0002 0.6985 0.4776 0.6671 0.1277 0.7721 0.6297 0.7263 0.6297 0.5000 1.0000

PHe0214 0.5361 0.0002 0.6962 0.4095 0.6212 0.0205 0.7732 0.5137 0.7286 0.7553 0.5000 1.0000
Ryu15 0.5245 0.0000 0.5345 0.0000 0.5022 0.0000 0.6357 0.0007 0.5132 0.0000 0.4994 0.1471

Turhan09 0.6216 0.0072 0.7666 0.4883 0.7011 0.3474 0.7692 0.7125 0.6991 0.6297 0.5000 1.0000

YLi17 0.6255 0.1409 0.7328 1.0000 0.7228 0.7125 0.7355 0.4776 0.7264 0.6707 0.5000 1.0000
ZHe13 0.6512 0.1409 0.5981 0.0056 0.5991 0.0068 0.6066 0.0001 0.6294 0.0597 0.5688 0.0000

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2912

It is also difficult for Peters13 and Ryu15 to outperform the baseline as no classifier paired with

these methods successfully enhances the prediction performance in all dataset repositories. All methods are

inferior to the baseline when paired with MLP on the AEEEM and MDP datasets. The same results also

happen on the MDP dataset when the training data selection methods are combined with the DT.

Nevertheless, the results show that the prediction model trained on selected training data is viable for

predicting the defect in a cross-project setting correctly.

To find the overall performance of each method on each dataset group, we calculate the average

performance of the training data selection method across different classifiers and dataset releases. We ran the

Friedman test and found a significant difference in performance average between pairwise training data

selection methods. We then conducted the Nemenyi test, which is presented in Figure 4.

Figure 4(a) compares different training data selection methods using the Nemenyi test on the

AEEEM dataset. It displays the mean performance rank of each method with a critical distance (CD) equal to

8.16. Herbold13 is the most optimal method for selecting training data since it achieves the best mean rank. It

is the only method better than the baseline, despite their statistically insignificant margin. It enhances the

baseline model in 80% of the AEEEM dataset releases with a significant difference in 60% of dataset

releases, i.e., eclipse, equinox, and lucene see Table 6 (in appendix). All remaining methods fail to increase

the prediction performance of the baseline.

Figure 4(b) compares different training data selection methods using the Nemenyi test on the

PROMISE dataset. The critical distance is CD 2.75. The Nemenyi test identifies four groups. We find that

the baseline method belongs to the first and second groups (from right to left), significantly outperforming

Peters13a, Ryu15, and Menzies11 and comparable to the remaining methods. Peters13b has the highest

impact on the prediction model on the PROMISE dataset. It is comparable to Kawata15, Turhan09,

PHe0114, and the baseline and significantly outperforms the others. Peters13b achieves a mean AUC of

0.6421, whereas the baseline is 0.6358. Peters13b successfully outperforms the baseline in 31 out 44 dataset

releases; however, the performance differences between both approaches are significant only in 15 dataset

releases, with the small (S) and medium (L) effect size.

Figure 4(c) displays the Nemenyi test results on the MDP dataset. The critical distance is 5.27. The

Nemenyi test identifies four groups. We find that the baseline model belongs to the first group, significantly

outperforming ZHe13, Ryu15, and Menzies11 and comparable to the remaining methods. No method

positively impacts the prediction performance of the baseline. Table 6 (in appendix) shows that Peters13b

performs better than the baseline in five dataset releases (CM1, JM1, KC3, MC2, PC1); the differences,

however, are statistically insignificant (the effect size magnitude is negligible). On the contrary, the baseline

is superior to Peters13b in seven dataset releases, on three of which (PC2, PC3, PC4), the prediction

performances of the two approaches differ statistically.

As for the best method, statistical testing found no significant difference between the best training

data selection method and the baseline. However, the mean rank value shows that Herbold13 and Peters13b

outperform the baseline on the AEEEM and PROMISE datasets, respectively. Thus, Herbold13 is the best

method for selecting training data for the AEEEM, while the best method for the PROMISE dataset is

Peters13b, with an improvement of 1% and 3.6%, respectively the last three rows in Table 6 (in appendix).

(a) (b) (c)

Figure 4. Nemenyi test for the comparison of training data selection methods for different dataset repositories

(a) AEEEM datasets, (b) PROMISE datasets, and (c) MDP datasets

Answer to RQ1: the above analysis found that selecting training data could impact the SDP model

on most dataset releases. The effect of training data selection varies across dataset releases and the best

training data selection method tends to be different for each dataset release. In addition, no single method

consistently appears as the best method for selecting training data in all dataset releases. It confirms the no-

free lunch theorem. When looking at cumulative performance on each dataset repository, Herbold13 and

Peters13b are the best-performing training data selection methods on the AEEEM and PROMISE datasets,

despite their statistical insignificance compared to the baseline model.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2913

4.2. RQ2: Does the choice of classification algorithms impact the performance of an SDP model?

We present two evaluations to answer this research question: the impact of classifiers on training

data selection performance and the best classifier for each dataset repository. For the former, we calculate the

performance average of each classifier across training data selection methods on every dataset repository.

While for the latter, we run the Friedman test. Suppose there is a significant difference in average

performance between pairwise methods we conduct the post-hoc Nemenyi test.

Results for RQ2: For each classifier, we calculate the performance average of each training data selection

method across all dataset releases. Figures 5(a)-(c) compare the performance different classifiers paired with

different training data selection methods for each repository. We observed that the classifier affects the

performance of the training data selection methods. The eleven methods for selecting training data exhibit a nearly

similar pattern of performance average on the AEEEM, PROMISE, and MDP datasets. Since the imbalanced

dataset, support vector machine (SVM) seems to fail to predict the defect. Except for Herbold13 and ZHe13, Their

AUC values are close to 0.500, indicating that SVM behaves like a random model.

(a) (b) (c)

Figure 5. Performance comparisons of different classifiers paired with different training data selection

methods, based on mean AUC (a) AEEEM, (b) PROMISE, and (c) MDP

Figure 5 shows that the NB is the best-performing classifier in most training data selection methods.

For the AEEEM dataset, NB outperforms the other classifiers when paired with seven training data selection

methods, i.e., Menzies11, Peters15, PHe1014, PHe0214, Ryu15, Turhan09, and YLi17. For the PROMISE

dataset, the NB provides the best performance for eight training data selection methods, i.e., Herbold13,

Peters13a, Peters15, PHe0114, PHe0214, Ryu15, Turhan09, and YLi17. While on the MDP dataset, NB

outperforms all other classifiers, except for Kawata15, Peters13a, and ZHe13.

We ran the Friedman test to validate these results and found a significant difference in the average

performance between pairwise classifiers. Figure 6(a)-(c) compare the performances of six classifiers using

the Nemenyi for AEEEM, PROMISE, and MDP dataset. The NB always has the lowest mean rank in all

datasets. It is consistently better or significantly better than the other classifiers across all evaluated datasets.

(a) (b) (c)

Figure 6. Nemenyi test for the comparison of classifiers for different dataset repositories (a) AEEEM

datasets, (b) PROMISE datasets, and (c) MDP datasets

Menzies et al. [56] discovered that reducing training data does not affect NB performance. It is

confirmed in our experiment. Our experiment reveals that the retention rate of the training data selection

method varies. When applied to the PROMISE datasets, Peters15, Turhan09, and Kawata15 achieve retention

rates of 1.95 percent, 14.8 percent, and 93.1 percent, respectively, indicating that the number of training data

is significantly different. Despite the disparate retention rates, NB performs relatively consistently across the

three methods. Yu et al. [57] studied the prediction performance in the imbalanced class and concluded that

NB is more stable in imbalanced datasets. Catal [58] also pointed out that NB is the robust classifier for

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2914

supervised learning. Based on the findings of these studies, we believe this is why NB performs well in this

study. This finding also substantiates the statement that simple classifiers, such as NB perform well when

building models to predict defects [53].

SVM seems problematic in predicting the defect. It consistently performs poorly in all training data

selection methods except Herbold13 and ZHe13. Their performance values are close to 0.500, indicating that

SVM behaves like a random classifier. The possible explanation is that the used datasets have imbalanced

nature, with more non-defect than defect modules. Bowes et al. [54] pointed out that the SVM classifier is

sensitive to highly imbalanced datasets. As a result, most SVM-based training data selection methods

underperform when trained on such unbalanced datasets. Herbold13 and ZHe13 are the exceptions. Both

approaches deal with the imbalanced dataset using under-sampling and weighting. Therefore, in the case of

imbalanced datasets, both methods could improve the SVM-based SDP models.

Answer to RQ2: the above analysis concludes that the classification algorithm affects the defect

prediction performance on most training data selection methods, with the NB being the top-performing

classifier. Furthermore, no single method consistently performs best when paired with any classifier.

4.3. RQ3: How does the impact of selecting training data on the complexity of training data?

Table 6 (in appendix) shows that training data selection can improve prediction performance.

However, most performance improvements have negligible or minor effects. It confirms the findings in [22].

It motivates us to investigate further the causes of such findings. This experiment deal with three CPDP

challenges: class imbalance, noisy dataset, and class complexity. We studied whether selecting training data

addresses this problem by studying the impact of selecting training data on the complexity of the defect

datasets and relating the complexity with the performance of the prediction model.

We compared the data complexity measures of the training dataset before and after selection. We

only focus on data complexity measures representing CPDP problems, such as N1, which is sensitive to noise

in the dataset [36], [59], [60], and C2, which is related to imbalanced data. We also identify the complexity of

the defect dataset used. We did not include all related measures because some of them, i.e., L2, L3, and N3,

is based on a specific classifier's error rate that was not used in this experiment. Thus, we compute only F1,

F2, F3, L1, N1, and C2 to detect class overlap (F1-F3), class separability (L1), presence of noise (N1), and

class imbalance (C2). We used the standardized complexity measures (available in R package Ecol)

proposed by Lorena et al. [28]. We quantify the impact of data selection on data complexity as the difference

between the pre-selection and post-selection data complexity measures. Figure 7 shows the quartile box plot

representing the difference between the pre-selection and post-selection data complexity measures. The

positive boxplot denotes that the complexity of all datasets is reduced after being selected by a particular

method. The negative boxplot means the opposite. The box plot spanning from positive to negative y-axis

shows the effect of data selection on data complexity measures can be positive or negative. We present

several observations:

F1 and F2 are the least affected complexity measures. No training data selection method could

reduce this complexity measure, except for F2 in PROMISE datasets. It is reasonable since class overlap, and

class separability have a stronger relationship with feature relevancy [36], not instance relevancy, likewise

for L1, where most median values have the value 0.

C2 is the most impacted data complexity measure. Two training data selection methods, Herbold13

and ZHe13, consistently produce positive values for all corpus data, indicating that they successfully reduce

class imbalance levels. It is understandable since both methods employ under-sampling and weighting to

compensate for the unbalanced dataset. The improvement of C2 in the other methods is dependent on the

imbalanced ratio of the training data. The more unbalanced the training data, the more likely C2 will have a

better value after selection. The MDP datasets have a high imbalanced ratio, whereas the PROMISE dataset

has a low ratio. The improvement of C2 is evident in the MDP dataset. For PROMISE datasets, the impact on

this measure for methods other than Herbold13 and ZHe13 is unclear, as C2 can be either positive or

negative. If training data selection is not appropriately handled, better result on the imbalanced class level

after selecting training data is not guaranteed.

In general, training data selection has no positive effect on N1. Except for Ryu15, the median value

of N1 is negative in all dataset corpora. It has two causes. First, the N1 values of Ryu are always positive

since Ryu15 is the only training data selection method that performs noise filtering. Ryu15 measures the

distance between a data instance and the entire data distribution using the Mahalanobis distance. Second, the

training data selection method selects appropriate training instances based on the target instances. The

methods select training data based on target and training dataset similarity. The target dataset in CPDP is

unlabeled, so the similarity is calculated solely on metric values, excluding class information. This situation

increases the likelihood of selecting duplicates or inconsistent instances, especially for methods that ignore

redundant data instances during data selection. In addition, methods such as Herbold13, PHe0114, and

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2915

PHe0214 that select training data at the project level granularity are more susceptible to including redundant

instances. It is because the similarity between the training and target datasets is measured using the distance

between their data distributions, which means that datasets are selected in aggregate rather than instance by

instance. This condition prevents the detection of redundant instances. We see that Herbold13, ZHe13,

PHe0114, and PHe0214 have a higher difference in N1 than other methods.

Figure 7. The impact of training data selection on the data complexity measures

Figure 8 (a)-(c) display the trend of the average value of F3, L1, N1, and C2 for each training data

selection method for AEEEM, PROMISE, and MDP dataset, respectively. TRN represents the baseline

method that uses all training data to build the prediction model. We observed that L1 and F3 tend to have

constant values, especially in AEEEM and PROMISE. For N1 and C2, higher values indicate a more

complex classification problem, resulting in lower performance. Except for Ryu15, the AUC tends to

decrease as the values of N1 and C2 increase. It shows that N1 and C2 are suitable measures of the

complexity of the defect data produced by data selection.

(a) (b) (c)

Figure 8. Average value of selected data complexity measures along with the AUC (a) AEEEM,

(b) PROMISE, and (c) MDP

Based on the previous two-level analysis, training data selection could improve the baseline model.

However, in Tables 6 (in Appendix), most improvements in prediction performance are statistically insignificant in

that the improvement is relatively small. The training data selection methods also performed better on the

PROMISE dataset than on the other datasets, see Figure 3(a). We suspect these statistically insignificant impacts

relate to the complex characteristics of the defect datasets. The analysis reveals that the training datasets are

essentially complex problems. They have high overlapping (high F3) and noisy instances and are highly

imbalanced (high C2 for AEEEM and MDP). It makes such datasets more challenging to learn [54]. Hosseini et al.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2916

[55] confirm this since they identified several datasets that are hard to predict using their proposed method. In our

case, the analysis found that selecting training data did not necessarily reduce the complexity of the training data,

and even the selection could increase the data complexity, Figure 7. It may result in insignificant performance

gains. In some cases, after data selection, the prediction performance of the model even degrades. The imbalanced

class ratio has a more significant effect on model performance than the noise ratio. As illustrated in Figure 3, the

percentage of times a training data selection method improves the baseline methods in PROMISE is greater than

the percentages for AEEEM and MDP. Figure 8 shows that the PROMISE datasets have lower C2 than the

AEEEM and MDP datasets.

Focusing on training (TRN) dataset before selection, we can highlight several points in Figure 8:

i) F3 is always a high value. A high F3 value indicates high overlap, ii) AEEEM and PROMISE have a high

imbalanced rate, iii) the noise ratio is relatively high, at or above 20%. It implies that defect datasets are a

complex problem because they present three challenges to CPDP: class imbalance, noisy dataset, and class

overlapping. We suspect that these issues cause some selection methods to perform suboptimally. Answer to

RQ3: training data selection may affect the data complexity measure, especially in N1 and C2, but the effect

is not necessarily positive. The defect datasets are deemed to be complex data, which may cause some

selection methods to have unsatisfied performance.

5. CONCLUSION

This study examined the impact of training data selection on the performance of an SDP model. We

compared 13 training data selection methods using 61 releases of software from three dataset repositories

(i.e., AEEEM, PROMISE, and MDP). We analyze in three dimensions: performance at a dataset release

level, dataset repository level, and impact on data complexity. The results of the study are as follows:

selecting training data could positively impact the defect prediction performance on most dataset releases.

The best training data selection methods are different for each dataset release. When looking at cumulative

performance on each dataset repository, most training data selection methods do not improve the baseline

model, particularly the MDP dataset. We discovered that Herbold13 and Peters13b are the best methods on

the AEEEM and PROMISE datasets. The classification algorithm affects the prediction performance on most

training data selection methods, with the NB being the best-performing classifier. In addition, no single

training data selection method consistently outperforms the others when paired with any classifier. Training

data selection affects the data complexity measure, especially in N1 and C2, but the effect is not necessarily

positive. The defect datasets are deemed to be complex data, which may cause some selection methods to

have unsatisfied performance. Experimental results indicate that the best method for each dataset varies

depending on the dataset and classifiers. For future works, an investigation on a recommendation system to

select a suitable training data selection method for a particular dataset. We recommend dealing with noise

and unbalanced classes when designing training data methods.

ACKNOWLEDGEMENTS

This study has been supported by the Faculty of Information and Communication Technology

Universiti Teknikal Malaysia Melaka, Malaysia, and the Technical Implementing Service unit of Information

System, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta, Indonesia.

APPENDIX

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the

target or testing dataset instead of the training dataset

No Release* ALL Herbold13 Kawata15 Menzies11 Peters13a Peters13b Peters15

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 eclipse 0.6751 0.7247 (+, M) 0.6757 (+, N) 0.6319 (--, S) 0.6713 (--, N) 0.6486 (--, S) 0.6794 (+, N)

2 equinox 0.6669 0.7019 (+, S) 0.6600 (--, N) 0.5736 (--, L) 0.5625 (--, L) 0.6145 (--, M) 0.6038 (--, M)

3 lucene 0.6362 0.7075 (+, L) 0.6268 (--, N) 0.5478 (--, L) 0.6390 (+, N) 0.6327 (--, N) 0.5659 (--, M)

4 mylyn 0.6487 0.6110 (--, S) 0.6375 (--, N) 0.5509 (--, L) 0.6255 (--, S) 0.5768 (--, M) 0.6144 (--, S)

5 pde 0.6569 0.6572 (+, N) 0.6515 (--, N) 0.5692 (--, L) 0.6545 (--, N) 0.6365 (--, N) 0.6445 (--, N)

6 ant-1.3 0.7261 0.6799 (--, S) 0.7182 (--, N) 0.6212 (--, L) 0.6501 (--, M) 0.7165 (--, N) 0.6053 (--, L)

7 ant-1.4 0.5457 0.5334 (--, S) 0.5397 (--, N) 0.5203 (--, L) 0.5211 (--, L) 0.5475 (+, N) 0.5724 (+, L)

8 ant-1.5 0.6792 0.7134 (+, S) 0.6666 (--, N) 0.6057 (--, M) 0.6144 (--, S) 0.7115 (+, S) 0.6430 (--, S)

9 ant-1.6 0.7188 0.7297 (+, N) 0.7140 (--, N) 0.6196 (--, L) 0.6838 (--, S) 0.7296 (+, N) 0.6721 (--, S)

10 ant-1.7 0.6962 0.7029 (+, N) 0.6932 (--, N) 0.6087 (--, L) 0.6893 (--, N) 0.7126 (+, N) 0.6874 (--, N)

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2917

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the

target or testing dataset instead of the training dataset (continue)

No Release* ALL Herbold13 Kawata15 Menzies11 Peters13a Peters13b Peters15

(1) (2) (3) (4) (5) (6) (7) (8) (9)

11 arc 0.6526 0.6550 (+, N) 0.6625 (+, N) 0.5984 (--, M) 0.6363 (--, N) 0.6437 (--, N) 0.6744 (+, S)

12 camel-1.0 0.6350 0.5837 (--, S) 0.6439 (+, N) 0.5986 (--, S) 0.5121 (--, L) 0.6417 (+, N) 0.5754 (--, M)

13 camel-1.2 0.5525 0.5426 (--, S) 0.5450 (--, S) 0.5216 (--, L) 0.5365 (--, M) 0.5528 (+, N) 0.5433 (--, S)

14 camel-1.4 0.6347 0.5751 (--, M) 0.6313 (--, N) 0.5498 (--, L) 0.5866 (--, M) 0.6396 (+, N) 0.6234 (--, N)

15 camel-1.6 0.5528 0.5734 (+, M) 0.5596 (+, N) 0.5302 (--, M) 0.5494 (--, N) 0.5724 (+, S) 0.5610 (+, N)

16 ivy-1.1 0.6528 0.6255 (--, S) 0.6345 (--, N) 0.5528 (--, L) 0.6072 (--, M) 0.7090 (+, M) 0.5941 (--, M)

17 ivy-1.4 0.6854 0.6308 (--, M) 0.6831 (--, N) 0.6059 (--, L) 0.5858 (--, L) 0.6842 (--, N) 0.5611 (--, L)

18 ivy-2.0 0.7085 0.7105 (+, N) 0.7003 (--, N) 0.6307 (--, L) 0.6618 (--, S) 0.7080 (--, N) 0.6991 (--, N)

19 jedit-3.2 0.7033 0.6091 (--, M) 0.7077 (+, N) 0.6125 (--, L) 0.6311 (--, M) 0.7108 (+, N) 0.6823 (--, N)

20 jedit-4.0 0.6769 0.5885 (--, L) 0.6776 (+, N) 0.6033 (--, L) 0.6313 (--, M) 0.6674 (--, N) 0.6382 (--, S)

21 jedit-4.1 0.7096 0.5908 (--, L) 0.7199 (+, N) 0.6540 (--, M) 0.6786 (--, S) 0.7200 (+, N) 0.6575 (--, M)

22 jedit-4.2 0.7460 0.6328 (--, L) 0.7638 (+, N) 0.6824 (--, M) 0.6998 (--, S) 0.7607 (+, N) 0.6980 (--, S)

23 jedit-4.3 0.5812 0.5044 (--, L) 0.6005 (+, S) 0.5418 (--, L) 0.5361 (--, L) 0.5836 (+, N) 0.6023 (+, S)

24 log4j-1.0 0.7114 0.6983 (--, N) 0.7004 (--, N) 0.5895 (--, L) 0.6584 (--, S) 0.7056 (--, N) 0.6406 (--, M)

25 log4j-1.1 0.6984 0.7099 (+, N) 0.7045 (+, N) 0.5844 (--, L) 0.5685 (--, L) 0.6889 (--, N) 0.7098 (+, N)

26 log4j-1.2 0.5353 0.5574 (+, M) 0.5569 (+, S) 0.5437 (+, N) 0.4861 (--, L) 0.5580 (+, S) 0.5694 (+, S)

27 lucene-2.0 0.6417 0.7058 (+, L) 0.6492 (+, N) 0.5583 (--, L) 0.6629 (+, S) 0.6719 (+, S) 0.6288 (--, N)

28 lucene-2.2 0.5842 0.6244 (+, L) 0.5838 (--, N) 0.5305 (--, L) 0.5948 (+, N) 0.6058 (+, S) 0.5658 (--, S)

29 lucene-2.4 0.5972 0.6371 (+, M) 0.6057 (+, N) 0.5372 (--, L) 0.5610 (--, S) 0.6091 (+, N) 0.5971 (--, N)

30 poi-1.5 0.6365 0.6384 (+, N) 0.6335 (--, N) 0.5537 (--, L) 0.6235 (--, N) 0.6402 (+, N) 0.5703 (--, M)

31 poi-2.0 0.5718 0.4833 (--, L) 0.5522 (--, S) 0.5550 (--, S) 0.5703 (--, N) 0.5549 (--, S) 0.6350 (+, M)

32 poi-2.5 0.6586 0.6261 (--, S) 0.6987 (+, S) 0.5714 (--, L) 0.6413 (--, N) 0.6907 (+, S) 0.6510 (--, N)

33 poi-3.0 0.6752 0.6602 (--, N) 0.6911 (+, N) 0.5546 (--, L) 0.6783 (+, N) 0.7286 (+, S) 0.6980 (+, N)

34 redaktor 0.6569 0.5897 (--, M) 0.6480 (--, N) 0.5923 (--, M) 0.5962 (--, M) 0.6280 (--, S) 0.5150 (--, L)

35 synapse-1.0 0.6939 0.6623 (--, S) 0.6823 (--, N) 0.5704 (--, L) 0.5739 (--, L) 0.6964 (+, N) 0.6073 (--, L)

36 synapse-1.1 0.6127 0.6474 (+, S) 0.6113 (--, N) 0.5218 (--, L) 0.5431 (--, M) 0.6382 (+, S) 0.6218 (+, N)

37 synapse-1.2 0.6642 0.6886 (+, S) 0.6642 (+, N) 0.5454 (--, L) 0.6280 (--, S) 0.6885 (+, S) 0.6431 (--, S)

38 tomcat 0.6827 0.6986 (+, N) 0.6895 (+, N) 0.6457 (--, S) 0.6716 (--, N) 0.7338 (+, S) 0.5839 (--, M)

39 velocity-1.4 0.4313 0.4682 (+, S) 0.4307 (--, N) 0.4609 (+, M) 0.4663 (+, S) 0.4248 (--, N) 0.4881 (+, L)

40 velocity-1.5 0.5698 0.5119 (--, M) 0.5712 (+, N) 0.5105 (--, L) 0.5223 (--, M) 0.6058 (+, M) 0.5912 (+, S)

41 velocity-1.6 0.6352 0.5759 (--, M) 0.6306 (--, N) 0.5360 (--, L) 0.5718 (--, M) 0.6491 (+, N) 0.5937 (--, M)

42 xalan-2.4 0.6657 0.6599 (--, N) 0.6695 (+, N) 0.5959 (--, L) 0.6560 (--, N) 0.6696 (+, N) 0.6458 (--, S)

43 xalan-2.5 0.5657 0.5464 (--, M) 0.5620 (--, N) 0.5372 (--, L) 0.5388 (--, M) 0.5683 (+, N) 0.5589 (--, N)

44 xalan-2.6 0.5931 0.5952 (+, N) 0.5701 (--, S) 0.5613 (--, M) 0.6120 (+, S) 0.5853 (--, N) 0.5894 (--, N)

45 xalan-2.7 0.6998 0.7434 (+, S) 0.6771 (--, S) 0.5869 (--, L) 0.5734 (--, L) 0.7260 (+, S) 0.6142 (--, M)

46 xerces-1.2 0.4836 0.4618 (--, M) 0.4862 (+, N) 0.5211 (+, L) 0.5051 (+, M) 0.5236 (+, M) 0.4792 (--, N)

47 xerces-1.3 0.6977 0.6056 (--, L) 0.7028 (+, N) 0.5835 (--, L) 0.6561 (--, S) 0.5802 (--, M) 0.6789 (--, N)

48 xerces-1.4 0.6839 0.5824 (--, L) 0.6826 (--, N) 0.5604 (--, L) 0.6873 (+, N) 0.4997 (--, L) 0.7121 (+, S)

49 xerces-init 0.4695 0.4904 (+, M) 0.4920 (+, L) 0.5213 (+, L) 0.4230 (--, L) 0.5711 (+, L) 0.4805 (+, S)

50 CM1 0.6893 0.6287 (--, M) 0.6895 (+, N) 0.5234 (--, L) 0.6493 (--, S) 0.7022 (+, N) 0.6130 (--, L)

51 JM1 0.6484 0.5541 (--, L) 0.6477 (--, N) 0.5389 (--, L) 0.6395 (--, N) 0.6509 (+, N) 0.6486 (+, N)

52 KC1 0.7116 0.6200 (--, M) 0.7053 (--, N) 0.5306 (--, L) 0.6566 (--, M) 0.7048 (--, N) 0.6391 (--, M)

53 KC3 0.6451 0.5701 (--, L) 0.6311 (--, N) 0.5023 (--, L) 0.5858 (--, L) 0.6473 (+, N) 0.5685 (--, L)

54 MC1 0.7902 0.7916 (+, N) 0.7862 (--, N) 0.5184 (--, L) 0.7768 (--, N) 0.7860 (--, N) 0.8030 (+, N)

55 MC2 0.6339 0.6256 (--, N) 0.6106 (--, S) 0.5326 (--, L) 0.5573 (--, L) 0.6363 (+, N) 0.6240 (--, N)

56 MW1 0.7114 0.6006 (--, L) 0.6959 (--, N) 0.4980 (--, L) 0.5830 (--, L) 0.6930 (--, N) 0.5940 (--, L)

57 PC1 0.6864 0.6913 (+, N) 0.6849 (--, N) 0.5608 (--, L) 0.5152 (--, L) 0.7004 (+, N) 0.6198 (--, M)

58 PC2 0.6459 0.7574 (+, L) 0.5637 (--, S) 0.5237 (--, L) 0.5121 (--, M) 0.6075 (--, S) 0.5492 (--, M)

59 PC3 0.6626 0.7082 (+, M) 0.6446 (--, N) 0.5235 (--, L) 0.6246 (--, S) 0.6400 (--, S) 0.5996 (--, M)

60 PC4 0.6064 0.6048 (--, N) 0.6005 (--, N) 0.5076 (--, L) 0.6237 (+, S) 0.5595 (--, M) 0.6187 (+, N)

61 PC5 0.8166 0.7325 (--, S) 0.7918 (--, N) 0.5715 (--, L) 0.7225 (--, M) 0.7982 (--, N) 0.7885 (--, N)

mean AEEEM 0,6568 0,6805 0,6503 0,5747 0,6305 0,6219 0,6216

mean PROMISE 0,6358 0,6148 0,6365 0,5701 0,5973 0,6421 0,6127

mean MDP 0,6873 0,6571 0,6710 0,5276 0,6205 0,6772 0,6388

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the

target or testing dataset instead of the training dataset (continue)

No Release* PHe0114 PHe0214 Ryu15 Turhan09 YLi17 ZHe13 %impr

(1) (2) (10) (11) (12) (13) (14) (15) (16)

1 eclipse 0.6448 (--, S) 0.6832 (+, N) 0.5323 (--, L) 0.6319 (--, S) 0.6636 (--, N) 0.6408 (--, S) 7,35

2 equinox 0.6757 (+, N) 0.5903 (--, M) 0.5508 (--, L) 0.5736 (--, L) 0.5419 (--, L) 0.6718 (+, N) 5,24

3 lucene 0.6322 (--, N) 0.6008 (--, S) 0.5727 (--, L) 0.5478 (--, L) 0.6305 (--, N) 0.5580 (--, L) 11,21

4 mylyn 0.6688 (+, N) 0.6464 (--, N) 0.5356 (--, L) 0.5509 (--, L) 0.5734 (--, L) 0.5832 (--, L) 3,10

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2918

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the

target or testing dataset instead of the training dataset (continue)

No Release* PHe0114 PHe0214 Ryu15 Turhan09 YLi17 ZHe13 %impr

(1) (2) (10) (11) (12) (13) (14) (15) (16)

1 eclipse 0.6448 (--, S) 0.6832 (+, N) 0.5323 (--, L) 0.6319 (--, S) 0.6636 (--, N) 0.6408 (--, S) 7,35

2 equinox 0.6757 (+, N) 0.5903 (--, M) 0.5508 (--, L) 0.5736 (--, L) 0.5419 (--, L) 0.6718 (+, N) 5,24

3 lucene 0.6322 (--, N) 0.6008 (--, S) 0.5727 (--, L) 0.5478 (--, L) 0.6305 (--, N) 0.5580 (--, L) 11,21

4 mylyn 0.6688 (+, N) 0.6464 (--, N) 0.5356 (--, L) 0.5509 (--, L) 0.5734 (--, L) 0.5832 (--, L) 3,10

5 pde 0.6195 (--, S) 0.6176 (--, S) 0.5487 (--, L) 0.5692 (--, L) 0.6457 (--, N) 0.5972 (--, L) 0,05

6 ant-1.3 0.6542 (--, M) 0.6087 (--, L) 0.5418 (--, L) 0.6500 (--, M) 0.6973 (--, S) 0.5954 (--, L) 0,00

7 ant-1.4 0.5214 (--, M) 0.5371 (--, N) 0.5334 (--, S) 0.5139 (--, M) 0.5284 (--, M) 0.5125 (--, L) 4,90

8 ant-1.5 0.6514 (--, S) 0.5973 (--, M) 0.6023 (--, M) 0.6332 (--, S) 0.6622 (--, N) 0.6362 (--, S) 5,04

9 ant-1.6 0.6616 (--, S) 0.6358 (--, M) 0.6152 (--, L) 0.6797 (--, S) 0.6786 (--, S) 0.6782 (--, S) 1,52

10 ant-1.7 0.6774 (--, N) 0.6795 (--, N) 0.6104 (--, L) 0.6864 (--, N) 0.6724 (--, S) 0.7061 (+, N) 2,36

11 arc 0.6990 (+, S) 0.7034 (+, M) 0.5287 (--, L) 0.6848 (+, S) 0.6256 (--, S) 0.5859 (--, L) 7,78

12 camel-1.0 0.6236 (--, N) 0.5464 (--, L) 0.5428 (--, L) 0.6405 (+, N) 0.6280 (--, N) 0.6211 (--, N) 1,39

13 camel-1.2 0.5573 (+, N) 0.5328 (--, L) 0.5280 (--, L) 0.5786 (+, M) 0.5545 (+, N) 0.5345 (--, M) 4,72

14 camel-1.4 0.6367 (+, N) 0.6148 (--, S) 0.5498 (--, L) 0.6344 (--, N) 0.6317 (--, N) 0.5963 (--, M) 0,77

15 camel-1.6 0.5524 (--, N) 0.5725 (+, S) 0.5283 (--, M) 0.5766 (+, M) 0.5670 (+, S) 0.5668 (+, S) 4,31

16 ivy-1.1 0.6336 (--, N) 0.6407 (--, N) 0.5606 (--, L) 0.6494 (--, N) 0.6132 (--, S) 0.6361 (--, S) 8,60

17 ivy-1.4 0.6101 (--, L) 0.5942 (--, L) 0.5629 (--, L) 0.6200 (--, M) 0.6590 (--, S) 0.6108 (--, L) 0,00

18 ivy-2.0 0.6655 (--, S) 0.6891 (--, N) 0.5778 (--, L) 0.6645 (--, S) 0.6631 (--, S) 0.6828 (--, S) 0,29

19 jedit-3.2 0.7182 (+, N) 0.6623 (--, S) 0.6386 (--, M) 0.7004 (--, N) 0.4814 (--, L) 0.6789 (--, S) 2,11

20 jedit-4.0 0.6946 (+, S) 0.6620 (--, N) 0.6172 (--, M) 0.7114 (+, S) 0.5726 (--, L) 0.6877 (+, N) 5,10

21 jedit-4.1 0.6858 (--, S) 0.6608 (--, S) 0.6013 (--, L) 0.6948 (--, N) 0.5658 (--, L) 0.6906 (--, S) 1,47

22 jedit-4.2 0.7576 (+, N) 0.6953 (--, S) 0.6500 (--, L) 0.7699 (+, S) 0.6002 (--, L) 0.7098 (--, S) 3,20

23 jedit-4.3 0.5987 (+, S) 0.5813 (+, N) 0.4887 (--, L) 0.6156 (+, M) 0.5626 (--, S) 0.6165 (+, L) 6,07

24 log4j-1.0 0.6991 (--, N) 0.6318 (--, M) 0.5727 (--, L) 0.7081 (--, N) 0.7114 (+, N) 0.6588 (--, M) 0,00

25 log4j-1.1 0.7139 (+, N) 0.7260 (+, S) 0.5529 (--, L) 0.7008 (+, N) 0.7202 (+, N) 0.6369 (--, M) 3,95

26 log4j-1.2 0.5351 (--, N) 0.5952 (+, L) 0.5009 (--, L) 0.5504 (+, S) 0.5660 (+, S) 0.5715 (+, M) 11,18

27 lucene-2.0 0.6498 (+, N) 0.6134 (--, S) 0.5454 (--, L) 0.6446 (+, N) 0.6358 (--, N) 0.6488 (+, N) 9,99

28 lucene-2.2 0.5689 (--, S) 0.5886 (+, N) 0.5439 (--, M) 0.5798 (--, N) 0.5580 (--, S) 0.5968 (+, S) 6,88

29 lucene-2.4 0.6070 (+, N) 0.6078 (+, N) 0.5378 (--, L) 0.5961 (--, N) 0.6600 (+, M) 0.6295 (+, M) 10,52

30 poi-1.5 0.6288 (--, N) 0.6082 (--, S) 0.5674 (--, L) 0.6216 (--, N) 0.6336 (--, N) 0.5940 (--, M) 0,57

31 poi-2.0 0.6038 (+, S) 0.6124 (+, M) 0.5654 (--, N) 0.6362 (+, M) 0.5127 (--, M) 0.5660 (--, N) 11,26

32 poi-2.5 0.6457 (--, N) 0.6380 (--, N) 0.5796 (--, L) 0.6190 (--, S) 0.6408 (--, N) 0.5296 (--, L) 6,09

33 poi-3.0 0.6756 (+, N) 0.6891 (+, N) 0.5825 (--, L) 0.6628 (--, N) 0.6619 (--, N) 0.6106 (--, M) 7,90

34 redaktor 0.5948 (--, M) 0.4816 (--, L) 0.5265 (--, L) 0.5364 (--, L) 0.4933 (--, L) 0.5290 (--, L) 0,00

35 synapse-1.0 0.6594 (--, S) 0.6381 (--, S) 0.6275 (--, M) 0.6630 (--, S) 0.6837 (--, N) 0.5340 (--, L) 0,36

36 synapse-1.1 0.5829 (--, S) 0.6317 (+, S) 0.5396 (--, L) 0.5873 (--, S) 0.6379 (+, S) 0.5664 (--, M) 5,67

37 synapse-1.2 0.6618 (--, N) 0.6489 (--, N) 0.5772 (--, L) 0.6509 (--, N) 0.6248 (--, S) 0.5885 (--, L) 3,67

38 tomcat 0.6358 (--, S) 0.6759 (--, N) 0.6101 (--, M) 0.6248 (--, S) 0.7063 (+, N) 0.6885 (+, N) 7,49

39 velocity-1.4 0.4906 (+, L) 0.4834 (+, L) 0.4745 (+, L) 0.5130 (+, L) 0.3988 (--, S) 0.3923 (--, M) 18,94

40 velocity-1.5 0.5862 (+, S) 0.5898 (+, S) 0.5230 (--, M) 0.5800 (+, N) 0.6022 (+, S) 0.6265 (+, L) 9,95

41 velocity-1.6 0.6068 (--, S) 0.5582 (--, L) 0.5553 (--, L) 0.6107 (--, S) 0.5830 (--, M) 0.5953 (--, M) 2,19

42 xalan-2.4 0.6732 (+, N) 0.6296 (--, S) 0.5891 (--, L) 0.6769 (+, N) 0.6494 (--, N) 0.6583 (--, N) 1,69

43 xalan-2.5 0.5806 (+, S) 0.5582 (--, S) 0.5384 (--, L) 0.5891 (+, M) 0.5544 (--, S) 0.5544 (--, S) 4,14

44 xalan-2.6 0.5802 (--, S) 0.5730 (--, S) 0.5831 (--, N) 0.5936 (+, N) 0.5884 (--, N) 0.5782 (--, S) 3,19

45 xalan-2.7 0.7165 (+, N) 0.5920 (--, L) 0.6481 (--, M) 0.7274 (+, S) 0.6865 (--, N) 0.6682 (--, S) 6,23

46 xerces-1.2 0.4887 (+, N) 0.4818 (--, N) 0.5030 (+, M) 0.4762 (--, S) 0.4792 (--, N) 0.5252 (+, L) 8,60

47 xerces-1.3 0.7056 (+, N) 0.6824 (--, N) 0.6063 (--, L) 0.7162 (+, N) 0.5517 (--, L) 0.6104 (--, L) 2,65

48 xerces-1.4 0.6900 (+, N) 0.6991 (+, N) 0.5656 (--, L) 0.7091 (+, N) 0.5697 (--, M) 0.6400 (--, M) 4,12

49 xerces-init 0.5078 (+, L) 0.4933 (+, L) 0.5148 (+, L) 0.4524 (--, M) 0.4805 (+, S) 0.4754 (+, N) 21,64

50 CM1 0.6492 (--, S) 0.5760 (--, L) 0.5298 (--, L) 0.6435 (--, S) 0.6542 (--, S) 0.6431 (--, M) 1,87

51 JM1 0.6306 (--, S) 0.6358 (--, N) 0.5548 (--, L) 0.6452 (--, N) 0.5942 (--, M) 0.5122 (--, L) 0,38

52 KC1 0.6817 (--, S) 0.6797 (--, S) 0.5357 (--, L) 0.6930 (--, N) 0.6790 (--, S) 0.5796 (--, L) 0,00

53 KC3 0.5940 (--, M) 0.5850 (--, M) 0.5286 (--, L) 0.6102 (--, S) 0.6314 (--, N) 0.5790 (--, L) 0,35

54 MC1 0.7196 (--, S) 0.7385 (--, S) 0.5584 (--, L) 0.7920 (+, N) 0.7666 (--, N) 0.7518 (--, S) 1,62

55 MC2 0.6457 (+, N) 0.5986 (--, S) 0.5640 (--, L) 0.6132 (--, S) 0.6192 (--, S) 0.5838 (--, M) 1,86

56 MW1 0.6689 (--, S) 0.6408 (--, M) 0.5104 (--, L) 0.6578 (--, S) 0.6779 (--, S) 0.5873 (--, L) 0,00

57 PC1 0.6325 (--, M) 0.6318 (--, M) 0.5133 (--, L) 0.6901 (+, N) 0.6489 (--, S) 0.6470 (--, S) 2,04

58 PC2 0.6437 (--, N) 0.6765 (+, N) 0.5271 (--, L) 0.6977 (+, S) 0.7872 (+, L) 0.6990 (+, S) 21,87

59 PC3 0.5651 (--, L) 0.5837 (--, L) 0.5212 (--, L) 0.6287 (--, S) 0.6474 (--, N) 0.5511 (--, L) 6,88

60 PC4 0.6454 (+, S) 0.6180 (+, N) 0.5153 (--, L) 0.6205 (+, N) 0.5488 (--, M) 0.6059 (--, N) 6,42

61 PC5 0.7706 (--, S) 0.7460 (--, S) 0.5603 (--, L) 0.8234 (+, N) 0.8311 (+, N) 0.5664 (--, L) 1,78

mean AEEEM 0,6482 0,6276 0,5480 0,5747 0,6110 0,6102 3,61

mean PROMISE 0,6293 0,6123 0,5638 0,6302 0,6035 0,6050 1,00

mean MDP 0,6539 0,6425 0,5349 0,6763 0,6738 0,6089 0,00

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2919

REFERENCES
[1] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal defect prediction model with rank transformed

predictors,” Empirical Software Engineering, vol. 21, no. 5, pp. 2107–2145, Oct. 2016, doi: 10.1007/s10664-015-9396-2.

[2] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures in a complex software system,” IEEE Transactions on

Software Engineering, vol. 26, no. 8, pp. 797–814, Aug. 2000, doi: 10.1109/32.879815.
[3] C. Andersson and P. Runeson, “A replicated quantitative analysis of fault distributions in complex software systems,” IEEE

Transactions on Software Engineering, vol. 33, no. 5, pp. 273–286, May 2007, doi: 10.1109/TSE.2007.1005.

[4] P. He, B. Li, D. Zhang, and Y. Ma, “Simplification of training data for cross-project defect prediction,” arXiv preprint
arXiv:1405.0773, May 2014, doi: 10.11772/j.issn.1001-9081.2016.0000.

[5] Y. Zhou et al., “How far we have progressed in the journey? an examination of cross-project defect prediction,” ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 27, no. 1, pp. 1–51, Jun. 2018, doi: 10.1145/3183339.
[6] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings - International Conference on Software Engineering,

May 2013, pp. 382–391, doi: 10.1109/ICSE.2013.6606584.

[7] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-project defect prediction: a large scale experiment on
data vs. domain vs. process,” in Proceedings of the 7th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering, 2009, pp. 91–100, doi: 10.1145/1595696.1595713.

[8] A. E. C. Cruz and K. Ochimizu, “Towards logistic regression models for predicting fault-prone code across software projects,”
2009 3rd Int. Symp. Empir. Softw. Eng. Meas. ESEM 2009, pp. 460–463, 2009, doi: 10.1109/ESEM.2009.5316002.

[9] Q. Zou, L. Lu, Z. Yang, X. Gu, and S. Qiu, “Joint feature representation learning and progressive distribution matching for cross-

project defect prediction,” Information and Software Technology, vol. 137, p. 106588, Sep. 2021, doi: 10.1016/j.infsof.2021.106588.
[10] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, “A two-phase transfer learning model for cross-project defect prediction,”

Information and Software Technology, vol. 107, pp. 125–136, Mar. 2019, doi: 10.1016/j.infsof.2018.11.005.
[11] F. Wu, X. Zheng, Y. Sun, Y. Gao, and X.-Y. Jing, “Joint domain adaption and pseudo-labeling for cross-project defect prediction,”

IEICE Transactions on Information and Systems, vol. 105, no. 2, pp. 432–435, 2022, doi: 10.1587/transinf.2021EDL8061.

[12] Z. Xu et al., “Cross project defect prediction via balanced distribution adaptation based transfer learning,” Journal of Computer
Science and Technology, vol. 34, no. 5, pp. 1039–1062, 2019, doi: 10.1007/s11390-019-1959-z.

[13] M. F. Sohan, M. A. Kabir, M. Rahman, S. M. H. Mahmud, and T. Bhuiyan, ''Training data selection using ensemble dataset

approach for software defect prediction,'' International Conference on Cyber Security and Computer Science, 2020, pp. 243–256.
[14] S. Zheng, J. Gai, H. Yu, H. Zou, and S. Gao, “Training data selection for imbalanced cross-project defect prediction,” Computers

& Electrical Engineering, vol. 94, p. 107370, 2021, doi: 10.1016/j.compeleceng.2021.107370.

[15] Z. Sun, J. Li, H. Sun, and L. He, “CFPS: collaborative filtering based source projects selection for cross-project defect
prediction,” Applied Soft Computing, vol. 99, p. 106940, Feb. 2021, doi: 10.1016/j.asoc.2020.106940.

[16] S. Herbold, “Training data selection for cross-project defect prediction,” in Proceedings of the 9th International Conference on

Predictive Models in Software Engineering, Oct. 2013, pp. 1–10, doi: 10.1145/2499393.2499395.
[17] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source projects: an empirical study on defect prediction,” in

2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Oct. 2013, pp. 45–54, doi:

10.1109/ESEM.2013.20.
[18] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value of cross-company and within-company data for

defect prediction,” Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, Oct. 2009, doi: 10.1007/s10664-008-9103-7.

[19] F. Zhang, I. Keivanloo, and Y. Zou, “Data transformation in cross-project defect prediction,” Empirical Software Engineering,
vol. 22, no. 6, pp. 3186–3218, Dec. 2017, doi: 10.1007/s10664-017-9516-2.

[20] Y. Jiang, B. Cukic, and T. Menzies, “Can data transformation help in the detection of fault-prone modules?,” in DEFECTS’08:

2008 International Symposium on Software Testing and Analysis-Proceedings of the 2008 Workshop on Defects in Large
Software Systems 2008, DEFECTS’08, Jul. 2008, pp. 16–20, doi: 10.1145/1390817.1390822.

[21] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility of cross-project defect prediction,” Automated

Software Engineering, vol. 19, no. 2, pp. 167–199, Jun. 2012, doi: 10.1007/s10515-011-0090-3.
[22] Y. Li, Z. Huang, Y. Wang, and B. Fang, “Evaluating data filter on cross-project defect prediction: comparison and

improvements,” IEEE Access, vol. 5, pp. 25646–25656, 2017, doi: 10.1109/ACCESS.2017.2771460.

[23] Y. Bin, K. Zhou, H. Lu, Y. Zhou, and B. Xu, “Training data selection for cross-project defection prediction: which approach is
better?,” in IACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 2017, pp. 354–363, doi:

10.1109/ESEM.2017.49..

[24] H. Luo, H. Dai, W. Peng, W. Hu, and F. Li, “An empirical study of training data selection methods for ranking-oriented cross-
project defect prediction,” Sensors, vol. 21, no. 22, p. 7535, 2021, doi: 10.3390/s21227535.

[25] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study to benchmark cross-project defect prediction approaches,”

IEEE Transactions on Software Engineering, vol. 44, no. 9, pp. 811–833, Sep. 2018, doi: 10.1109/TSE.2017.2724538.
[26] T. K. Ho and M. Basu, “Complexity measures of supervised classification problems,” IEEE transactions on pattern analysis and

machine intelligence, vol. 24, no. 3, pp. 289–300, 2002, doi: 10.1109/34.990132.

[27] J. Cano, “Analysis of data complexity measures for classification,” Expert systems with applications, vol. 40, no. 12, pp. 4820–
4831, Sep. 2013, doi: 10.1016/j.eswa.2013.02.025.

[28] A. C. Lorena, L. P. F. Garcia, J. Lehmann, M. C. P. Souto, and T. K. A. M. Ho, “How complex is your classification problem?: A survey

on measuring classification complexity,” ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–34, 2019, doi: 10.1145/3347711.
[29] F. Peters, T. Menzies, and L. Layman, “LACE2: better privacy-preserving data sharing for cross project defect prediction,” in 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1, pp. 801–811, May 2015, doi: 10.1109/ICSE.2015.92.

[30] B. L. Sinaga, S. Ahmad, and Z. A. Abas, “A review of training data selection in software defect prediction,” Journal of
Theoretical and Applied Information Technology, vol. 98, no. 12, pp. 2092–2108, 2020.

[31] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect prediction,” in IEEE International Working Conference on

Mining Software Repositories, 2013, pp. 409–418, doi: 10.1109/MSR.2013.6624057.
[32] P. He, Y. He, L. Yu, and B. Li, “An improved method for cross-project defect prediction by simplifying training data,”

Mathematical Problems in Engineering, vol. 2018, pp. 1–18, Jun. 2018, doi: 10.1155/2018/2650415.

[33] K. Kawata, S. Amasaki, and T. Yokogawa, “Improving relevancy filter methods for cross-project defect prediction,” in 2015 3rd
International Conference on Applied Computing and Information Technology/2nd International Conference on Computational

Science and Intelligence, Jul. 2015, pp. 2–7, doi: 10.1109/ACIT-CSI.2015.104.

[34] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, “Local vs. global models for effort estimation and defect

prediction,” in 2011 26th IEEE/ACM International Conference on Automated Software Engineering, ASE 2011, Proceedings,

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2907-2925

2920

2011, pp. 343–351, doi: 10.1109/ASE.2011.6100072.

[35] V. H. Barella, L. P. F. Garcia, M. C. P. de Souto, A. C. Lorena, and A. C. P. L. F. de Carvalho, “Assessing the data complexity of
imbalanced datasets,” Information Sciences, vol. 553, pp. 83–109, Apr. 2021, doi: 10.1016/j.ins.2020.12.006.

[36] L. C. Okimoto, R. M. Savii, and A. C. Lorena, “Complexity measures effectiveness in feature selection,” in 2017 Brazilian

Conference on Intelligent Systems (BRACIS), Oct. 2017, pp. 91–96, doi: 10.1109/BRACIS.2017.66.
[37] N. T. Dong and M. Khosla, “Revisiting feature selection with data complexity,” in Proceedings-IEEE 20th International

Conference on Bioinformatics and Bioengineering, BIBE 2020, 2020, pp. 211–216, doi: 10.1109/BIBE50027.2020.00042.

[38] L. P. F. Garcia, A. C. Lorena, M. C. P. De Souto, and T. K. Ho, “Classifier recommendation using data complexity measures,” in
Proceedings - International Conference on Pattern Recognition, 2018, pp. 874–879, doi: 10.1109/ICPR.2018.8545110.

[39] L. Morán-Fernández, V. Bolón-Canedo, and A. Alonso-Betanzos, “Can classification performance be predicted by complexity measures? A

study using microarray data,” Knowledge and Information Systems, vol. 51, no. 3, pp. 1067–1090, 2017, doi: 10.1007/s10115-016-1003-3.
[40] R. Malhotra, “A systematic review of machine learning techniques for software fault prediction,” Applied Soft Computing, vol.

27, pp. 504–518, Feb. 2015, doi: 10.1016/j.asoc.2014.11.023.

[41] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “Machine learning based methods for software fault prediction: a survey,” Expert
Systems with Applications, vol. 172, p. 114595, Jun. 2021, doi: 10.1016/j.eswa.2021.114595.

[42] S. Hosseini, B. Turhan, and D. Gunarathna, “A Systematic literature review and meta-analysis on cross project defect prediction,”

IEEE Transactions on Software Engineering, vol. X, no. 2, pp. 111–147, 2019, doi: 10.1109/TSE.2017.2770124.
[43] M. Promise and L. Madeyski, “Towards identifying software project clusters with regard to defect prediction,” in Proceedings of

the 6th International Conference on Predictive Models in Software Engineering - PROMISE ’10, 2010, p. 1, doi:

10.1145/1868328.1868342.
[44] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments on the NASA software defect datasets,” IEEE Trans.

Softw. Eng., vol. 39, no. 9, pp. 1208–1215, 2013, doi: 10.1109/TSE.2013.11.

[45] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "The misuse of the NASA metrics data program data sets for
automated software defect prediction," 15th Annual Conference on Evaluation & Assessment in Software Engineering (EASE

2011), 2011, pp. 96–103, doi: 10.1049/ic.2011.0012.
[46] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “The jinx on the NASA software defect data sets,” in Proceedings of the 20th

International Conference on Evaluation and Assessment in Software Engineering, Jun. 2016, pp. 1–5, doi: 10.1145/2915970.2916007.

[47] M. D’Ambros, M. Lanza, R. Robbes, M. D. Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug prediction approaches,”
2010 7th IEEE working conference on mining software repositories (MSR 2010), pp. 31–41, 2010, doi: 10.1109/MSR.2010.5463279.

[48] S. Herbold, A. Trautsch, and J. Grabowski, “Global vs. local models for cross-project defect prediction: A replication study,”

Empirical software engineering, vol. 22, no. 4, pp. 1866–1902, 2017, doi: 10.1007/s10664-016-9468-y.
[49] D. Ryu, J.-I. Jang, and J. Baik, “A hybrid instance selection using nearest-neighbor for cross-project defect prediction,” Journal of

Computer Science and Technology, vol. 30, no. 5, pp. 969–980, Sep. 2015, doi: 10.1007/s11390-015-1575-5.

[50] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy and utility in cross-company defect prediction,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, pp. 1054–1068, 2013, doi: 10.1109/TSE.2013.6.

[51] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: the use of machine learning in software defect prediction,” IEEE

Transactions on Software Engineering, vol. 40, no. 6, pp. 603–616, Jun. 2014, doi: 10.1109/TSE.2014.2322358.
[52] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “The impact of automated parameter optimization on defect

prediction models,” IEEE Transactions on Software Engineering, vol. 45, no. 7, pp. 683–711, Jul. 2019, doi:

10.1109/TSE.2018.2794977.
[53] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic literature review on fault prediction performance in software

engineering,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304, Nov. 2012, doi: 10.1109/TSE.2011.103.

[54] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different classifiers find the same defects?,” Software Quality
Journal, vol. 26, no. 2, pp. 525–552, 2018, doi: 10.1007/s11219-016-9353-3.

[55] S. Hosseini, B. Turhan, and M. Mäntylä, “A benchmark study on the effectiveness of search-based data selection and feature

selection for cross project defect prediction,” Information and Software Technology, vol. 95, pp. 296–312, Mar. 2018, doi:
10.1016/j.infsof.2017.06.004.

[56] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang, “Implications of ceiling effects in defect predictors,” in

Proceedings of the 4th international workshop on Predictor models in software engineering - PROMISE ’08, 2008, p. 47, doi:
10.1145/1370788.1370801.

[57] Q. Yu, S. Jiang, and Y. Zhang, “The performance stability of defect prediction models with class imbalance: An empirical study,”

IEICE Transactions on Information and Systems, vol. 100, no. 2, pp. 265–272, 2017, doi: 10.1587/transinf.2016EDP7204.
[58] C. Catal, “Software fault prediction: A literature review and current trends,” Expert systems with applications, vol. 38, no. 4, pp.

4626–4636, 2011, doi: 10.1016/j.eswa.2010.10.024.

[59] L. P. F. Garcia, A. C. P. L. F. de Carvalho, and A. C. Lorena, “Effect of label noise in the complexity of classification problems,”
Neurocomputing, vol. 160, pp. 108–119, 2015, doi: 10.1016/j.neucom.2014.10.085.

[60] L. P. F. García, A. C. P. L. F. De Carvalho, and A. C. Lorena, “Noisy data set identification,” International Conference on Hybrid

Artificial Intelligence Systems, vol. 8073, pp. 629–638, 2013, doi: 10.1007/978-3-642-40846-5_63.

BIOGRAPHIES OF AUTHORS

Benyamin Langgu Sinaga received bachelor degree in electrical engineering

from Department of Electrical Engineering, Gadjah Mada University, Yogyakarta, Indonesia

in 1994. He obtained master degree in computer science from School of Computer Science

and Engineering, The University of New South Wales, Sydney, Australia in 2000. He

currently pursuing Ph.D degree at Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia, Melaka. His research interests include software engineering,

information system adoption, and machine learning. He can be contacted at email:

benyamin.sinaga@uajy.ac.id.

https://orcid.org/0000-0001-7132-6700
https://scholar.google.com/citations?user=Wmt5oeoAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57195637405
https://publons.com/researcher/1936879/benyamin-langgu-langgu-sinaga/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The impact of training data selection on the cross-project defect prediction … (Benyamin Langgu Sinaga)

2921

Sabrina Ahmad is an Associate Professor at the Faculty of Information and

Communication Technology, Universiti Teknikal Malaysia Melaka. She has qualifications and

undergone formal trainings in the area of software engineering and development. She is

specialized in requirements engineering in both research and practice. She obtained her Ph.D

in Computer Science from The University of Western Australia in 2012. She endeavors to

maintain the bridge between academia and practitioners and therefore continue strengthening

software engineering curriculum and apply the knowledge in the industries through

consultation projects. Therefore, she continues to upgrade her skills and knowledge through

professional training and certification. She obtained professional certification in requirements

engineering, a certified tester and a certified professional IT architect. She can be contacted at

email: sabrinaahmad@utem.edu.my.

Zuraida Abal Abas is currently an Associate Professor at the Department of

Intelligent Computing & Analytics, Faculty of Information and Communication Technology,

Universiti Teknikal Malaysia Melaka. She obtained her Ph.D in Mathematics at Universiti

Teknologi Malaysia; her M.Sc in Operational Research at London School of Economics,

United Kingdom; and her B.Sc in Industrial Mathematics at Universiti Teknologi Malaysia.

Her research interests are operational research, analytics, modeling and simulation. She can be

contacted at email: zuraidaa@utem.edu.my.

Antasena Wahyu Anggarajati received bachelor degree in informatics

engineering from Department of Informatics Engineering, Atma Jaya University, Yogyakarta,

Indonesia in 2008. Then pursued his passion in software development as software engineering

until now. He currently leading a small team of engineers at Evermos. His interests include

software engineering, project management, and computer science. He can be contacted at

email: antasenawahyu@gmail.com.

https://orcid.org/0000-0002-4277-2063
https://scholar.google.com/citations?user=-Mxj7AgAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=43061001500
https://publons.com/researcher/3444331/sabrina-ahmad/
https://orcid.org/0000-0002-4608-7629
https://scholar.google.com.my/citations?user=U7QhAp4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=36871592400
https://publons.com/wos-op/researcher/5350509/zuraida-abal-abas/
https://orcid.org/0000-0001-6071-9082
https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=gN-8aQoAAAAJ
https://publons.com/researcher/5347305/antasena-anggarajati/

