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 Directly learning a defect prediction model from cross-project datasets 

results in a model with poor performance. Hence, training data selection 

becomes a feasible solution to this problem. Limited comparative studies 

investigating the effect of training data selection on the prediction 

performance have presented contradictory results. Those studies also did not 

analyze why a training data selection method underperforms. This study 

aims to investigate the impact of training data selection on the defect 

prediction model and data complexity measures. The method is based on an 

empirical comparison between prediction performance and data complexity 

measure before and after selection. This study compared 13 training data 

selection methods on 61 projects using six classification algorithms and 

measured the data complexity using six complexity measures focusing on 

overlap class, noise level, and class imbalanced ratio. Experimental results 

indicate that the best method for each dataset varies depending on the dataset 

and classifiers. The training data selection most affects noise rate and class 

imbalance. We concluded that critically selecting the training data method 

could improve the performance of the prediction model. We recommend 

dealing with noise and unbalanced classes when designing training data 

methods. 
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1. INTRODUCTION  

Software review and testing are increasingly important in software organizations due to the strong 

demand for high-quality software [1]. Such demand requires the software developer to thoroughly review and 

test each software module to detect and correct possible defects. However, this approach is impractical since 

the software quality assurance (SQA) team has limited resources and time. Several studies found that only a 

tiny portion of the software modules caused most software errors [2], [3]. Therefore, the SQA teams must 

allocate limited resources effectively to the part of a software product that is most likely to contain defects 

[4], [5]. Using a software defect prediction (SDP) model lets the SQA team focus on prudently reviewing or 

testing the high defect-prone modules.  

Although it looks promising, the lack of historical data makes it challenging to create the SDP 

model. Recent studies examined the feasibility of developing an SDP model using historical data from the 

other projects cross-project defect prediction (CPDP). However, CPDP has a disadvantage in that merely 

https://creativecommons.org/licenses/by-sa/4.0/
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using cross-project datasets to build the SDP model produces a model with unsatisfactory predictive 

performance. It is because the training and testing datasets have different data distributions. [6], [7]. 

Numerous solutions to this problem have been proposed, including data transformation  

[6], [8]–[12], data normalization [6], and training data selection [13]–[18]. Data transformation and 

normalization use all training instances to train an SDP model, which may contain irrelevant and noisy data. 

Zhang et al. [19] found it difficult to choose a transformation for a given pair of training and testing 

instances. Prior studies [6], [20] show that the effect of the transformation on the model performance varies 

on the same dataset. Studies [16], [18], [21] reported that the prediction model developed using selected 

cross-project data has a satisfied predictive performance. Therefore, selecting the relevant data for training an 

SDP model becomes an important and challenging task [16]. This study focused on the training data selection 

method and its corresponding performance on cross-project data. 

Many studies have proposed various training data selection methods. Several of them [4], [16], [18], 

[22]-[24] compared the performance of the training data selection method to a baseline model, an SDP model 

built using all available training data, to examine the effectiveness of the method. The results are 

contradictory. Some researchers [22], [25] found that the SDP model built using selected training data 

performs better than the baseline model. However, the others discovered the opposite result: the baseline 

model outperforms the SDP model built using selected training data [23], [24]. One possible explanation for 

this conflicting result is that each study used a different experimental setting, such as different datasets, 

classifiers, performance metrics, or levels of analysis. This result raises an intriguing question: does the 

training data selection positively impact defect prediction performance?  

Li et al. [22] also found a minor improvement in defect prediction model performance. It indicates 

that a defect prediction model built with selected training data is not necessarily better than one built with all 

training data. The findings motivate us to investigate the other factors that may affect the efficacy of the 

training data selection method. Ho and Baso [26] proposed data complexity measures to characterize the 

underlying complexity of a classification problem. The metrics reflect various data characteristics, such as 

class overlap, class separability, and decision boundary complexity. Cano [27] found that the complexity 

measures strongly relate to the performance of the classification algorithm. An SDP can be a classification 

problem that predicts whether an unseen instance is defective or not. We used complexity measures proposed 

in [26], [28] to investigate the selected cross-project datasets to understand how the findings in [22]–[24] 

could happen. No dedicated SDP research has investigated the impact of training data selection on training 

data complexity, to the best of our knowledge. We raise a question: Does the selection of training data affect 

the training data complexity?  

Given the question mentioned above, we conducted a large-scale comparison of 13 training data 

selection methods, trained on 61 datasets from three dataset repositories (i.e., PROMISE, Markov decision 

process (MDP), AEEEM) using six classification algorithms. Unlike [25], our study focused on the 

approaches for selecting training data. We further build on [22], [23] by comparing 13 training data selection 

methods combined with six classifiers over 61 datasets from three repositories, i.e., AEEEM, PROMISE, and 

MDP. This research aims to determine how training data selection and classifier selection affect defect 

prediction performance and data complexity. To accomplish the intended goal, we proposed three research 

questions:  

RQ1: How does the impact of selecting training data on the SDP models? 

Selecting training data could impact the SDP model on most dataset releases. The effect of training 

data selection varies across dataset releases and the best training data selection method tends to be different 

for each dataset release. In addition, no single method consistently appears as the best method for selecting 

training data in all dataset releases. It confirms the no-free lunch theorem. When looking at cumulative 

performance on each dataset repository, Herbold [16] and Peters et al. [29] are the best-performing training 

data selection methods on the AEEEM and PROMISE datasets, despite their statistical insignificance 

compared to the baseline model. 

RQ2: Does the choice of classification algorithms impact the performance of an SDP model? 

The classification algorithm affects the prediction performance on most training data selection 

methods, with Naive Bayes (NB) being the top-performing classifier. No single method consistently 

performs best when paired with any classifier. 

RQ3: How does the impact of selecting training data on the complexity of training data? 

Selecting training data may affect data complexity measures, especially in noise rate and class 

imbalance, but the effect is not necessarily positive. The defect datasets are deemed to be complex data, 

which may cause some selection methods to have unsatisfied performance. 

This study contributes in three ways. This study provides: i) a large-scale and comprehensive 

comparative research on training data selection, encompassing 13 approaches and 61 dataset releases from 

three dataset repositories (i.e., PROMISE, MDP, and AEEEM) using six classifiers, ii) a detailed analysis of 
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the impact of selecting training data on prediction performance at two levels of analysis: dataset release and 

dataset repository level, iii) a detailed analysis of how selecting training data affects training data complexity. 

To our best knowledge, this is the first study that examines the effect of training data selection on training 

data complexity in the SDP area. This paper is structured as follows: section 2 reviews the related works, 

section 3 outlines the methodology, section 5 presents the results and discussion, and section 5 draws on the 

conclusion and highlights future research. 

 

 

2. RELATED WORKS 

2.1.  Training data selection 

Training data selection is a method for selecting the appropriate training instances based on the target 

instances. Correct identification of suitable training data is critical since irrelevant training instances degrade 

the performance of an SDP model. Many methods for selecting training data have emerged, classified into 

several groups (i.e., instance, project, and multi-granularity) based on training data granularity [30]. 

Several studies have proposed training data selection methods at the instance level using the k-

nearest neighbors (kNN) algorithm [18], [31], [32]. In [18], [32] employ testing instances to select the 

training data, while Peters et al. [31] use source instances to guide the selection. Turhan et al. [18] found that 

the defect prediction model has predictive performance close to those built using within-project data. Peters 

et al. [31] concluded that their proposed filter outperforms the within-project and Turhan filters. Later, He et 

al. [32] considered the similarity of both datasets and the defect count of each training data instance to select 

the relevant data. They concluded that their method is better than the Peters filter. Kawata et al. [33] 

introduced a cluster-based selection using density-based spatial clustering of applications with noise 

(DBSCAN), which merges the source dataset with the target dataset. The method then partitions the 

combined dataset into clusters and it selects as training instances the source instances found in a cluster 

containing at least one target instance. They concluded that the proposed method outperforms Turhan et al. 

and Peter's filter regarding G-measure and area under the curve (AUC). Menzies et al. [34] proposed a local 

filter that developed a model for separately predicting defects for each cluster. 

Other studies investigated the selection of training data at the project level. Most methods use data 

characteristics to assess the closeness of the source and target datasets. Herbold [16] employs the kNN 

algorithm to choose the appropriate source data. The source and target data similarity were measured using 

the Euclidean distance based on mean and standard deviation. Herbold found that predictive performance 

improves significantly based on success rate and recall. Unlike Herbold, He et al. [17] do not use 

distributional features to calculate the similarity of training and testing datasets. Instead, they use 

performance accuracy to calculate the distance between the training and testing datasets. Selected training 

data are instances from datasets that exceed a pre-defined cutoff in terms of accuracy.  

Studies [4], [22] proposed multi-granularity approaches that combine project and instance-level 

methods. They used Herbold's method at the project level to filter out the source data. At the instance level, 

He et al. [4] proposed two strategies that adopt the Burak filter and Peter filter, while Li et al. [22] used  

K-means to create clusters of similar instances. Clusters with at least one target instance are combined to 

form training data instances. Li et al. found that their filter defeated Herbold, Burak filter, and Peter filter.  

Many methods for selecting data have been proposed; therefore, it is necessary to compare their 

performances. Several comparative studies compared the effectiveness of training data selection on the SDP 

performance Table 1. Li et al. [22] studied five methods for training data selection on 44 datasets and 

observed that selecting training data can improve the SDP models. Their analysis focused on the dataset 

release level. Bin et al. [23] compared nine methods on 33 datasets from PROMISE. The baseline method 

outperformed the defect prediction model built using selected training data. Herbold et al. [25] compared the 

cross-project defect prediction model. They included several approaches to dealing with distribution 

divergences, such as training data selection, transformation, and normalization. Herbold et al. compared nine 

training data selection methods. Luo et al. [24] conducted an experimental study on eleven datasets using 

ranking-oriented CPDP for nine training data selection methods. Their findings are similar to [23]. 

Table 1 displays inconsistent findings from several comparative studies. It could be because of the 

different experimental setups, such as different datasets, classifiers, or levels of analysis. Given the above 

contradictory findings, we compared the performance of 13 training data selection methods, trained on 61 

datasets from three dataset repositories (i.e., PROMISE, MDP, and AEEEM) using six classification 

algorithms. The impact of training data selection is evaluated at two granularity levels: dataset release and 

dataset repository level. We also investigate the data complexity measure of the selected cross-project 

datasets to understand better how the findings in [22]-[24] could have occurred.  
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Table 1. Comparative studies on training data selection method for cross-project defect prediction 
Author(s) TDS 

methods 

Number of datasets 

(repositories) 

Classifiers Analysis Findings 

Li et al. 

[22] 

5  44 (PROMISE) NB, SVM Performance at dataset re-

lease level 

Data filtering could improve 

the performance of SDP model. 

Bin et al. 
[23] 

9  33 (PROMISE) RF Performance at data repo-
sitory level 

Using all source data as 
training data provided bet-ter 

prediction accuracy. 

Herbold 
et al. [25] 

9  67 (PROMISE, MDP, 
AEEEM, RELINK, 

and NETGENE) 

DT, LR, RBF 
Net, NB, RF, 

SVM 

Performance at data repo-
sitory level 

LACE2 [29] using NB was the 
best training data selection 

methods. 

Luo et al. 
[24] 

9  11 (PROMISE) LTR Performance at data repo-
sitory level 

Selecting training data did not 
affect the performance of 

ranking oriented CPDP. 

Proposed 
study 

13  
 

61 (PROMISE, MDP, 
and AEEEM) 

DT, LR, 
MLP, NB, 

RF, SVM 

Performance at dataset re-
lease and data repository, 

impact on data complexity 

--- 

 

 

2.2.  Data complexity measures 

Data complexity measures are widely utilized to assess the dataset's underlying characteristics, i.e., 

class overlap, linear separability, and neighborhood among instances. These metrics are applied to investigate 

the inherent difficulty of a classification problem within a given dataset. Ho and Baso proposed the initial 

version of the data complexity metric [26]. Lorena et al. [28] then standardized the measures so that each 

measure is in the range [0, 1], with a high value indicating highly complex data.  

Many studies have investigated the use of data complexity measures in various areas of research, 

such as class imbalance [35], feature selection [36], [37], classifier recommendation [38], and prediction of 

classifier performance [39]. We used data complexity measures to study why the SDP model built with 

selected training data performs similarly to or even worse than the one built with all training data. This study 

used the standardized version of the complexity measures categorized into three groups: feature overlap, 

linear separability, and neighborhood measure, as presented in Table 2.  

 

 

Table 2. Data complexity measures 
Symbol Name Description 

Feature overlap 

F1 Fisher's discriminant ratio  This measure computes feature overlap across classes. F1's original version 
holds the highest discriminant ratio of all features. The standardized version 

adopts the inverse formulation of the original. 

F2 Volume of overlapping region  This measure calculates feature value distributions within classes. 
F3 Feature efficiency This measure computes the efficiency of each feature. It checks for value 

overlap between instances of different classes for each feature. If there is an 

overlap region, it counts the instances in that region. It divides the number of 
instances in the overlap region by the number of all instances. F3 takes the 

smallest. 
Linear separability 

L1 Sum of the error distance by linear 

programming. 

This measure uses SVM to create a linear boundary and calculates the sum of 

distances between the incorrectly classified instances and the boundary. 
L2 Error rate of linear classifier This measure calculates the error rate of the linear SVM. 

L3 Non-linearity of a linear classifier. This measure interpolates pairs of training examples of the same class to create 

a new test dataset. A linear SVM is built using the original datasets and then 
applied to the test dataset. L3 has the error rate.  

Neighborhood 

N1 Fraction of borderline point This measure first builds a minimum spanning tree (MST). The proportion of 
vertices incident to edges that connect instances of opposite classes in the 

generated MST is used to calculate the N1 values. 

N2 Ratio of intra/extra class nearest 
neighbor distance  

This measure calculates the ratio between intra-class and inter-class distances. 
Intra-class distance is the sum of the distances between an instance and its 

nearest neighbor. Inter-class distance is the sum of the distances between an 

instance and its nearest enemy. 
N3 Error rate of the nearest neighbor 

classifier  

This measure estimates the error rate of a 1NN classifier using leave-one-out. 

N4 Non-linearity of the nearest 
neighbor classifier  

This measure is similar to L3, but it utilizes an NN classifier rather than a linear 
SVM. 

Class Imbalanced 

C2 Imbalance Ratio  This measure assesses the imbalance ratio. 
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The improvement in the defect prediction performance is small [22]. Studies [23], [24] also found 

that the SDP model constructed from selected training data underperforms the baseline model. It encourages 

us to investigate the factors that may affect the efficacy of the training data selection method. We used data 

complexity measures to investigate the selected training dataset characteristics to understand how the 

findings in [22]–[24] could have occurred. No dedicated study has examined the impact of selecting training 

data on the data complexity in software defect prediction. 

 

 

3. METHOD  

3.1.  Experimental datasets 

 We experimented on 61 dataset releases from three different repositories, namely: PROMISE, MDP, 

and AEEEM, since they have been widely used in defect prediction studies [25], [40]–[42]. Table 3 and 

Table 4 present the description of each release. The PROMISE dataset [43] contains several projects with 

various releases. Each release (version) has 20 independent attributes and a dependent attribute representing 

the number of defects found in that release. Herbold [16] did not use proprietary datasets to avoid the 

influence of mixing open-source and proprietary datasets on the experimental results. He also eliminated 

small projects by only choosing versions having at least 100 instances. Following his arguments, we select 44 

releases from 14 projects available from this repository. 

The MDP has 12 releases from six different projects, each of which has a different number of 

metrics, and they share 17 static metrics in common. We used the cleaned version of the MDP dataset [44] 

since prior studies identified inconsistency issues and mislabeled data in the original version of this dataset 

[44]–[46]. We used all releases from this dataset repository. The AEEEM dataset [47] has five releases. This 

dataset contains 61 metrics. We used this dataset since D'Ambros et al. [47] pointed out that prediction 

methods using various metrics result in the best performance. We used all releases from this repository. 

 

 

Table 3. Description of characteristics of benchmark datasets 
Dataset Projects Releases Level Language Metrics 

AEEEM 5 5 class Java 61 

PROMISE 14 44 class Java 20 
MDP 6 12 class Java, C/C++ 21, 39, 40 

 

 

Table 4. Statistical description of benchmark datasets 
Dataset No release #instances #defective %defective No release #instances #defective %defective 
PROMISE 1 ant-1.3 125 20 16 23 lucene-2.2 247 144 58 
 2 ant-1.4 178 40 22 24 lucene-2.4 340 203 60 

 3 ant-1.5 293 32 11 25 poi-1.5 237 141 59 

 4 ant-1.6 351 92 26 26 poi-2.0 314 37 12 
 5 ant-1.7 745 166 22 27 poi-2.5 385 248 64 

 6 arc 234 27 12 28 poi-3.0 442 281 64 

 7 camel-1.0 339 11 3 29 redaktor 176 27 15 
 8 camel-1.2 608 216 36 30 synapse-1.0 157 16 10 

 9 camel-1.4 872 145 17 31 synapse-1.1 222 60 27 

 10 camel-1.6 965 188 19 32 synapse-1.2 256 86 34 
 11 ivy-1.1 111 63 57 33 tomcat 858 77 9 

 12 ivy-1.4 241 16 7 34 velocity-1.4 196 147 75 

 13 ivy-2.0 352 40 11 35 velocity-1.5 214 142 66 
 14 jedit-3.2 272 90 33 36 velocity-1.6 220 78 35 

 15 jedit-4.0 306 75 25 37 xalan-2.4 723 110 15 

 16 jedit-4.1 312 79 25 38 xalan-2.5 803 387 48 
 17 jedit-4.2 367 48 13 39 xalan-2.6 885 411 46 

 18 jedit-4.3 492 11 2 40 xalan-2.7 909 898 99 

 19 log4j-1.0 135 34 25 41 xerces-init 162 77 48 
 20 log4j-1.1 109 37 34 42 xerces-1.2 440 71 16 

 21 log4j-1.2 205 189 92 43 xerces-1.3 453 69 15 

 22 lucene-2.0 195 91 47 44 xerces-1.4 588 437 74 
MDP 1 cm1 344 42 12 7 mw1 264 27 10 

 2 jm1 9593 1759 18 8 pc1 759 61 8 

 3 kc1 2096 325 16 9 pc2 1585 16 1 
 4 kc3 200 36 18 10 pc3 1125 140 12 

 5 mc1 9277 68 1 11 pc4 1399 178 13 

 6 mc2 127 44 35 12 pc5 17001 503 3 
AEEEM 1 lucene 691 64 9 4 eclipse 997 206 21 

 2 pde 1497 209 14 5 equinox 324 129 40 

 3 mylyn 1862 245 13      
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3.2.  Training data selection methods 

We used strict CPDP [48] since it is prevalent in defect prediction studies [25]. This approach does 

not require a labeled target dataset, which an organization may not have when building an SDP model. The 

representative training data selection methods were chosen based on their frequent use in SDP comparative 

studies [22]–[24], the granularity of the training data, and the selection strategy, Table 5 lists the methods. 

 

 

Table 5. Overview of the included training data selection methods 
Ref Granularity Characteristics Selection methods Label Name 

[18] Instance-level  K-nearest neighbors  Distance to target instances, using 
Euclidean. 

Turhan09 

[31] Instance-level  K-nearest neighbors  Distance to target instances, one source 

instance per target instance. 

Peters13a 

[49] Instance-level  K-nearest neighbors  Distance to target instances, using 

Hamming. 

Ryu15 

[29] Instance-level  K-nearest neighbors  Distance to nearest unlike neighbors. Peters15 

[34] Instance-level  Clustering  local cluster-based selection. Menzies11 

[33] Instance-level  Clustering  instances in the same cluster as target 

instance. 

Kawata15 

[50] Instance-level  Ranking-based 10% source instances with highest power. Peters13b 

[16] Project-level K-nearest neighbors  Distance to target dataset, based on data 

characteristics. 

Herbold13 

[17] Project-level Ranking-based Top 10 datasets rank based on predictive 

accuracy. 

ZHe13 

[22] Multi-

granularity 

K-nearest neighbors 

+ clustering 

Distance to target datasets (Herbold13) + 

instances in the same cluster as target 

instance. 

YLi17 

[4] Multi-

granularity 

K-nearest neighbors 

+ clustering 

Distance to target datasets (Herbold13) + 

instances in the same cluster as target 

instance (Peters13a). 

PHe0214 

[4] Multi-

granularity 

K-nearest neighbors 

at both level  

Distance to target datasets (Herbold13) + 

distance to target instances (Turhan09). 

PHe0114 

 

 

3.3.  Classification algorithms 

We used six classifiers to evaluate the effectiveness of training data selection on the prediction 

performance [25], [40]. We considered different families of successful classifiers in finding defects [51]. The 

used classifiers are C4.5 (decision tree), Naive Bayes (probabilistic), LR (regression function), random forest 

(ensemble method), multi-layer perceptron (neural networks), and support vector machine.  

Tantithamthavorn et al. [52] found that optimizing classifier parameters has little effect on AUC. Thus, we 

used the WEKA classifiers with default parameters. 

 

3.4.  Performance measure 

We used the AUC for the prediction measure since the AUC is unaffected by the imbalanced class 

problem, threshold-independent [52], and is widely used in SDP research [53]. The AUC has a maximum 

value of one. A value close to 0.5 indicates that the model behaves similarly to a random model.  

 

3.5.  Experimental settings 

This study utilized a multi-source strict CPDP approach [6], [25], [48]. It creates a prediction model 

from multiple source training datasets and tests it on a single target dataset. We used this approach since 

several methods [4], [16], [17], [22] select the training instances based on the similarity between training and 

the testing dataset at the project level, which required multiple source training data. Such an experimental 

setup enables us to execute the experiment only once for each pair of training data selection and classifier 

[54], except for methods with a random component (i.e., Menzies11, Peters13b, Peters15, and ZHe13). For 

such methods, we experimented ten times and calculated the mean performance value. 

Figure 1 shows the procedure of this comparative study. First, we set up training and target datasets 

using leave-one-out multi-source CPDP. For each repository, i.e., AEEEM, PROMISE, and MDP, each 

dataset release is selected as the target dataset. For example, when using the MDP dataset, if PC1 is the target 

dataset, the remaining releases are used as candidate training datasets, excluding those from the same project 

(i.e., PC2–PC5). Second, we apply each training data selection method to the candidate training datasets. 

Third, we train an SDP model using six classifiers on the selected training dataset. Fourth, we evaluate the 

model on the target dataset. Lastly, we calculate the complexity measure of the training datasets. Procedure 1 

presents the steps of the prediction process with a sample of MDP datasets. 
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Figure 1. Defect prediction process using training data selection 
 

 

Procedure 1 Cross-project defect prediction with training data selection 
Input: ▪ datasets = {CM1, JM1, KC1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5} 

▪ methods = {ALL, Herbold13, Kawata15, Menzies11, Peters13a, Peters13b, 

Peters15, PHe0114, PHe0214, Ryu15, Turhan09, YLi17, ZHe13} 

▪ dcm = {F1, F2, F3, L1, N1, C2} 

▪ classifiers = {DT, LR, MLP, NB, Rf, SVM}  

Output: AUC_values, data_complexity_measures 

0 performance_values = , data_complexity_values =  
 for dataset in datasets do 

1  # Leave one out multi-source cross-project (LOO-MS CP) 

 test.data = dataset 

 train.data = instances from other projects ## if test.ds = PC1, train.ds are all 

instances from CM1, JM1, KC3, MC1, MC2, MW1  

  for method in methods do 

2  train. datamethod = apply_selection (method, train.data)  

3  SDP.model = train (train. dsmethod, classifiers) 

4  AUCtrain.ds, method, classifiers = evaluate (SDP.model, test.data) 

   AUC_values = AUC_values  AUCtrain.ds, method, classifiers  
5  dcvtrain.ds, method, dcm = calculate_complexity (train. datamethod, dcm) 

  data_complexity_measures = data_complexity_measures  dcvtrain.ds, method, dcm 
  end for 

 end for 

6 return performance_values, data_complexity_measures 

 

 

4. RESULTS AND DISCUSSION  

This section presents the results and discussions on the impact of selecting training data on the 

prediction performance and data complexity measure and the impact of the classifier on the SDP model.  

 

4.1.  RQ1: how does the impact of selecting training data on the SDP models? 

We perform the evaluation in two-level analysis, dataset release level, and dataset repository level. We 

present two evaluation points at each level of analysis, i.e., the impact of applying training data selection and the 

best-performing method. At the dataset release level, we aim to identify the effect of applying training data 

selection and determine the best method for each dataset release. To reach this objective, we calculate the 

performance average, in terms of the AUC, of the training data selection methods across different classifiers. We 

then run the Wilcoxon and effect size tests to quantify the difference between training data selection and baseline 

methods. We choose the method with the highest performance average as the best training data selection method. 

At the dataset repository level, we aim to determine the overall effect of selecting training data for each 

dataset group. The Friedman test is used to compare the performance of various training data selection 

methods. If the test rejects the null hypothesis, we then conducted the post-hoc Nemenyi test. We also use the 

Wilcoxon test to compare the performance of each training data selection method to that of the baseline.  

 

4.1.1. Dataset release level 

Table 6 (see in appendix) shows the performance average of training data selection methods across 

six machine learning classifiers for each dataset release. All represents a defect prediction model built using 

all training datasets, i.e., the baseline. The bold value indicates the best training data selection method for a 

dataset release. A "+" sign in the parentheses indicates that a training data selection method improves the 

baseline with a certain magnitude, while "--" suggests the opposite. S, M, L, N represents the magnitude of 

the delta, denoting small, medium, large, and negligible, respectively. For example, for the eclipse dataset 

release, Herbold13 has 0.7247 (+, M), meaning that Herbold13 has the highest average performance, i.e., 

0.7247, and improves the performance of the baseline with a medium effect size. Column "%impr" indicates 
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the improvement achieved using the optimal method. The optimal method was Herbold13, with an 

improvement of 7.35%. Figure 2 graphically summarizes the impact of training data selection methods on 

each dataset release based on the number of methods that successfully improve the baseline method.  

Table 6 (in appendix) and Figure 2 show that training data selection could enhance the defect prediction 

performance since at least one method performs better than the baseline in most dataset releases. The impact of 

selecting training data differs across dataset releases. The improvement obtained by the best method for each dataset 

ranges between 0 (no improvement, i.e., ant-1.3, ivy-1.4, redactor, kc1, and mw1) and 21.87% (PC2). None of the 

methods perform optimally on ant-1.3, ivy-1.4, redactor, kc1, and mw1. It might be because a particular dataset is 

more difficult to learn from than others [54]. Hosseini et al. [55] also identified several datasets that are hard to 

predict using their proposed method. From a different perspective, we suspect that datasets such as ant-1.3, kc1, and 

mw1 are easier to learn (i.e., AUC value larger than 0.7100). It is demonstrated by the fact that the prediction results 

obtained using the baseline method (without training data selection) are better than that using the data selection 

method.  

Figure 2 also implies that training data selection does not necessarily improve the baseline model on 

each dataset release. Figure 3(a) confirms this result. On the one hand, Herbold13 and PHe0114 improve the 

baseline in at least 40% of dataset releases in the AEEEM dataset. Herbold13, Kawata15, Peters13b, 

PHe0114, and Turhan09 perform optimally in the PROMISE dataset, as they upgrade the baseline in over 

40% of dataset releases. The same holds for Peters13b and Turhan09 in the MDP dataset. On the other hand, 

several training data selection methods are consistently inferior to the baseline method. For example, 

Menzies11, Peters13b, Ryu15, Turhan09, and YLi17 do not perform optimally in all AEEEM datasets. 

Similarly, the same is true for Menzies11, Kawata15, and Ryu15 in the MDP dataset. Menzies11 and Ryu15 

perform better than the baseline in only four and three out of 44 dataset releases in the PROMISE dataset. 

Figure 3(b) shows that Herbold13 reaches the best performance on four out of five dataset releases on the 

AEEEM dataset. For the PROMISE dataset, the best-performing method on a dataset release is varied. 

Eleven methods, including ALL, have ever been the best method. Herbold13, Peters13b, and Turhan09 are 

the most often cited techniques. Peters13b is the method that frequently outperforms all others on the MDP 

dataset. The remaining five methods, including ALL, ever perform optimally on MDP datasets as well. There 

is no training data selection method having the best performance across all dataset releases. 
 

 

 
 

Figure 2. The number of training data selection methods performs better than the baseline on each dataset 

release. Red, green, and blue colors represent dataset release from AEEEM, PROMISE, and MDP datasets 
 

 

  
(a) (b) 

 

Figure 3. Improvement of training data selection over the baseline (a) the percentage of times a training data 

selection method improves the baseline model across all studied datasets and (b) the distribution of the best 

training data selection method across all studied datasets 
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4.1.2. Dataset repository level 

Tables 7-9 compare each training data selection method to the baseline (i.e., ALL) using the 

Wilcoxon test for six classifiers. Each value (AUC̅̅ ̅̅ ̅̅ ) represents the mean AUC of the training data selection 

method paired with a classifier across all dataset releases. For each classifier, bold values denote that the 

mean AUC of the corresponding method is higher than the baseline. The underlined value represents the 

highest mean AUC (i.e., the best performing method). A training data selection method statistically performs 

better or worse than the baseline if the p-values (p_val) are less than the significance level (i.e., 0.05). For 

instance, on the AEEEM dataset, Herbold13 combined with DT substantially outperforms the baseline since 

the p-value (0.0317) is less than 0.05. Herbold13 is the best method when paired with DT.  

Tables 7-9 show that training data selection could improve the defect prediction performance since, 

for each method, there exists at least one classifier that performs better than the baseline. Herbold13 and 

PHe014 are better than the baseline in three classifiers on the AEEEM dataset. For the PROMISE dataset, 

Kawata15 and Peters13b dominantly outperform the other methods since they are better than the baseline in 

five and four classifiers, respectively. However, no method could outperform the baseline in more than two 

classifiers for the MDP dataset.  

 

 

Table 7. Performance of training data selection method on different classifiers on the AEEEM dataset 
Method DT LR MLP NB RF SVM 

 AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val 

ALL 0.5684  0.7252   0.6986   0.7180   0.7298   0.5005   

Herbold13 0.6200 0.0317 0.6985 0.6905 0.6546 0.3095 0.7087 0.5476 0.7376 1.0000 0.6633 0.0097 

Kawata15 0.5608 0.5284 0.7253 0.9166 0.6721 0.5476 0.7184 0.9166 0.7252 1.0000 0.5000 0.4237 
Menzies11 0.5807 0.4206 0.5835 0.0079 0.5765 0.0159 0.6195 0.0317 0.5881 0.0079 0.4999 0.2330 

Peters13a 0.5495 0.6905 0.6827 0.0556 0.6341 0.2222 0.6931 0.2222 0.7237 0.8413 0.5000 0.4237 

Peters13b 0.5334 0.3095 0.7191 0.6905 0.6754 0.3095 0.7041 0.6905 0.5990 0.0079 0.5000 0.4237 
Peters15 0.5566 0.3095 0.6573 0.0556 0.5767 0.0159 0.7398 0.5476 0.6994 0.3095 0.5000 0.4237 

PHe0114 0.5721 0.5476 0.7353 0.6905 0.6349 0.3095 0.7512 0.4206 0.6959 0.2222 0.5000 0.4237 

PHe0214 0.5425 0.4206 0.6917 0.5476 0.5980 0.0556 0.7436 0.6905 0.6900 0.4206 0.5000 0.4237 
Ryu15 0.5374 0.0952 0.5729 0.0079 0.5451 0.0079 0.5948 0.0159 0.5383 0.0079 0.4996 0.1812 

Turhan09 0.5807 0.4206 0.5835 0.0079 0.5765 0.0159 0.6195 0.0317 0.5881 0.0079 0.4999 0.2330 

YLi17 0.5894 0.4206 0.6146 0.0159 0.5743 0.0317 0.6955 0.5476 0.6794 0.3095 0.5129 0.0449 

ZHe13 0.5959 0.8413 0.5816 0.0079 0.5881 0.0317 0.6291 0.0556 0.6558 0.0317 0.6107 0.0097 

 

 

Table 8. Performance of training data selection method on different classifiers on the PROMISE dataset 
Method DT LR MLP NB RF SVM 

 AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val 

ALL 0.5805  0.6945   0.6673  0.6943   0.6707  0.5072   

Herbold13 0.5339 0.0106 0.6317 0.0043 0.6091 0.0035 0.6844 0.5846 0.6438 0.1180 0.5856 0.0000 

Kawata15 0.5763 0.7543 0.6967 1.0000 0.6688 0.8258 0.6954 0.9468 0.6745 0.8453 0.5075 0.8248 
Menzies11 0.5775 0.8347 0.5875 0.0000 0.5742 0.0000 0.5832 0.0000 0.5890 0.0000 0.5095 0.0454 

Peters13a 0.5503 0.1476 0.6318 0.0017 0.5727 0.0000 0.6770 0.4016 0.6521 0.3764 0.5000 0.0041 

Peters13b 0.6328 0.0013 0.6946 0.9567 0.6749 0.6037 0.6901 0.7480 0.6554 0.7734 0.5049 0.7763 
Peters15 0.5694 0.5178 0.6647 0.0733 0.6011 0.0003 0.6944 0.9570 0.6467 0.1698 0.5000 0.0026 

PHe0114 0.5719 0.5259 0.7035 0.9503 0.6188 0.0078 0.7115 0.4470 0.6532 0.3227 0.5166 0.9215 

PHe0214 0.5694 0.3457 0.6651 0.0720 0.5901 0.0001 0.7018 0.7429 0.6474 0.1759 0.5000 0.0041 
Ryu15 0.5600 0.1672 0.5869 0.0000 0.5624 0.0000 0.6161 0.0000 0.5582 0.0000 0.4994 0.0261 

Turhan09 0.5766 0.8773 0.7010 0.8806 0.6206 0.0148 0.7101 0.4723 0.6547 0.4087 0.5184 0.9353 

YLi17 0.5509 0.1160 0.6382 0.0210 0.5981 0.0006 0.6872 0.6980 0.6289 0.0902 0.5176 0.0167 
ZHe13 0.6027 0.1506 0.6089 0.0000 0.5939 0.0004 0.6160 0.0000 0.6197 0.0068 0.5887 0.0000 

 

 

Table 9. Performance of training data selection method on different classifiers on the MDP dataset 
Method DT LR MLP NB RF SVM 

 AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val AUC̅̅ ̅̅ ̅̅  p_val 

ALL 0.7065  0.7301   0.7355  0.7462   0.7055  0.5000   

Herbold13 0.5427 0.0000 0.7182 0.7125 0.6467 0.4095 0.7229 0.2913 0.7029 0.8428 0.6091 0.0000 

Kawata15 0.6578 0.1409 0.7362 0.8428 0.6977 0.7553 0.7237 0.2189 0.7106 0.9323 0.5000 1.0000 
Menzies11 0.5315 0.0000 0.5255 0.0000 0.5228 0.0000 0.5513 0.0000 0.5345 0.0003 0.5002 0.3593 

Peters13a 0.6133 0.0086 0.6592 0.2415 0.6046 0.0887 0.6729 0.0684 0.6731 0.3777 0.5000 1.0000 

Peters13b 0.7039 0.8398 0.7225 0.9774 0.7296 0.9323 0.7327 0.3474 0.6744 0.6297 0.5000 1.0000 
Peters15 0.5452 0.0006 0.7249 0.5899 0.6128 0.0173 0.7706 0.7125 0.6795 0.1978 0.5000 1.0000 

PHe0114 0.5593 0.0002 0.6985 0.4776 0.6671 0.1277 0.7721 0.6297 0.7263 0.6297 0.5000 1.0000 

PHe0214 0.5361 0.0002 0.6962 0.4095 0.6212 0.0205 0.7732 0.5137 0.7286 0.7553 0.5000 1.0000 
Ryu15 0.5245 0.0000 0.5345 0.0000 0.5022 0.0000 0.6357 0.0007 0.5132 0.0000 0.4994 0.1471 

Turhan09 0.6216 0.0072 0.7666 0.4883 0.7011 0.3474 0.7692 0.7125 0.6991 0.6297 0.5000 1.0000 

YLi17 0.6255 0.1409 0.7328 1.0000 0.7228 0.7125 0.7355 0.4776 0.7264 0.6707 0.5000 1.0000 
ZHe13 0.6512 0.1409 0.5981 0.0056 0.5991 0.0068 0.6066 0.0001 0.6294 0.0597 0.5688 0.0000 
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It is also difficult for Peters13 and Ryu15 to outperform the baseline as no classifier paired with 

these methods successfully enhances the prediction performance in all dataset repositories. All methods are 

inferior to the baseline when paired with MLP on the AEEEM and MDP datasets. The same results also 

happen on the MDP dataset when the training data selection methods are combined with the DT. 

Nevertheless, the results show that the prediction model trained on selected training data is viable for 

predicting the defect in a cross-project setting correctly.  

To find the overall performance of each method on each dataset group, we calculate the average 

performance of the training data selection method across different classifiers and dataset releases. We ran the 

Friedman test and found a significant difference in performance average between pairwise training data 

selection methods. We then conducted the Nemenyi test, which is presented in Figure 4.  

Figure 4(a) compares different training data selection methods using the Nemenyi test on the 

AEEEM dataset. It displays the mean performance rank of each method with a critical distance (CD) equal to 

8.16. Herbold13 is the most optimal method for selecting training data since it achieves the best mean rank. It 

is the only method better than the baseline, despite their statistically insignificant margin. It enhances the 

baseline model in 80% of the AEEEM dataset releases with a significant difference in 60% of dataset 

releases, i.e., eclipse, equinox, and lucene see Table 6 (in appendix). All remaining methods fail to increase 

the prediction performance of the baseline. 

Figure 4(b) compares different training data selection methods using the Nemenyi test on the 

PROMISE dataset. The critical distance is CD 2.75. The Nemenyi test identifies four groups. We find that 

the baseline method belongs to the first and second groups (from right to left), significantly outperforming 

Peters13a, Ryu15, and Menzies11 and comparable to the remaining methods. Peters13b has the highest 

impact on the prediction model on the PROMISE dataset. It is comparable to Kawata15, Turhan09, 

PHe0114, and the baseline and significantly outperforms the others. Peters13b achieves a mean AUC of 

0.6421, whereas the baseline is 0.6358. Peters13b successfully outperforms the baseline in 31 out 44 dataset 

releases; however, the performance differences between both approaches are significant only in 15 dataset 

releases, with the small (S) and medium (L) effect size.  

Figure 4(c) displays the Nemenyi test results on the MDP dataset. The critical distance is 5.27. The 

Nemenyi test identifies four groups. We find that the baseline model belongs to the first group, significantly 

outperforming ZHe13, Ryu15, and Menzies11 and comparable to the remaining methods. No method 

positively impacts the prediction performance of the baseline. Table 6 (in appendix) shows that Peters13b 

performs better than the baseline in five dataset releases (CM1, JM1, KC3, MC2, PC1); the differences, 

however, are statistically insignificant (the effect size magnitude is negligible). On the contrary, the baseline 

is superior to Peters13b in seven dataset releases, on three of which (PC2, PC3, PC4), the prediction 

performances of the two approaches differ statistically.  

As for the best method, statistical testing found no significant difference between the best training 

data selection method and the baseline. However, the mean rank value shows that Herbold13 and Peters13b 

outperform the baseline on the AEEEM and PROMISE datasets, respectively. Thus, Herbold13 is the best 

method for selecting training data for the AEEEM, while the best method for the PROMISE dataset is 

Peters13b, with an improvement of 1% and 3.6%, respectively the last three rows in Table 6 (in appendix).  
 

 

   
(a) (b) (c) 

 

Figure 4. Nemenyi test for the comparison of training data selection methods for different dataset repositories 

(a) AEEEM datasets, (b) PROMISE datasets, and (c) MDP datasets 
 

 

Answer to RQ1: the above analysis found that selecting training data could impact the SDP model 

on most dataset releases. The effect of training data selection varies across dataset releases and the best 

training data selection method tends to be different for each dataset release. In addition, no single method 

consistently appears as the best method for selecting training data in all dataset releases. It confirms the no-

free lunch theorem. When looking at cumulative performance on each dataset repository, Herbold13 and 

Peters13b are the best-performing training data selection methods on the AEEEM and PROMISE datasets, 

despite their statistical insignificance compared to the baseline model.  
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4.2.  RQ2: Does the choice of classification algorithms impact the performance of an SDP model? 

We present two evaluations to answer this research question: the impact of classifiers on training 

data selection performance and the best classifier for each dataset repository. For the former, we calculate the 

performance average of each classifier across training data selection methods on every dataset repository. 

While for the latter, we run the Friedman test. Suppose there is a significant difference in average 

performance between pairwise methods we conduct the post-hoc Nemenyi test.  

Results for RQ2: For each classifier, we calculate the performance average of each training data selection 

method across all dataset releases. Figures 5(a)-(c) compare the performance different classifiers paired with 

different training data selection methods for each repository. We observed that the classifier affects the 

performance of the training data selection methods. The eleven methods for selecting training data exhibit a nearly 

similar pattern of performance average on the AEEEM, PROMISE, and MDP datasets. Since the imbalanced 

dataset, support vector machine (SVM) seems to fail to predict the defect. Except for Herbold13 and ZHe13, Their 

AUC values are close to 0.500, indicating that SVM behaves like a random model. 

 

 

   
(a) (b) (c) 

 

Figure 5. Performance comparisons of different classifiers paired with different training data selection 

methods, based on mean AUC (a) AEEEM, (b) PROMISE, and (c) MDP  

 

 

Figure 5 shows that the NB is the best-performing classifier in most training data selection methods. 

For the AEEEM dataset, NB outperforms the other classifiers when paired with seven training data selection 

methods, i.e., Menzies11, Peters15, PHe1014, PHe0214, Ryu15, Turhan09, and YLi17. For the PROMISE 

dataset, the NB provides the best performance for eight training data selection methods, i.e., Herbold13, 

Peters13a, Peters15, PHe0114, PHe0214, Ryu15, Turhan09, and YLi17. While on the MDP dataset, NB 

outperforms all other classifiers, except for Kawata15, Peters13a, and ZHe13. 

We ran the Friedman test to validate these results and found a significant difference in the average 

performance between pairwise classifiers. Figure 6(a)-(c) compare the performances of six classifiers using 

the Nemenyi for AEEEM, PROMISE, and MDP dataset. The NB always has the lowest mean rank in all 

datasets. It is consistently better or significantly better than the other classifiers across all evaluated datasets.  

 

 

   
(a) (b) (c) 

 

Figure 6. Nemenyi test for the comparison of classifiers for different dataset repositories (a) AEEEM 

datasets, (b) PROMISE datasets, and (c) MDP datasets 

 

 

Menzies et al. [56] discovered that reducing training data does not affect NB performance. It is 

confirmed in our experiment. Our experiment reveals that the retention rate of the training data selection 

method varies. When applied to the PROMISE datasets, Peters15, Turhan09, and Kawata15 achieve retention 

rates of 1.95 percent, 14.8 percent, and 93.1 percent, respectively, indicating that the number of training data 

is significantly different. Despite the disparate retention rates, NB performs relatively consistently across the 

three methods. Yu et al. [57] studied the prediction performance in the imbalanced class and concluded that 

NB is more stable in imbalanced datasets. Catal [58] also pointed out that NB is the robust classifier for 
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supervised learning. Based on the findings of these studies, we believe this is why NB performs well in this 

study. This finding also substantiates the statement that simple classifiers, such as NB perform well when 

building models to predict defects [53].  

SVM seems problematic in predicting the defect. It consistently performs poorly in all training data 

selection methods except Herbold13 and ZHe13. Their performance values are close to 0.500, indicating that 

SVM behaves like a random classifier. The possible explanation is that the used datasets have imbalanced 

nature, with more non-defect than defect modules. Bowes et al. [54] pointed out that the SVM classifier is 

sensitive to highly imbalanced datasets. As a result, most SVM-based training data selection methods 

underperform when trained on such unbalanced datasets. Herbold13 and ZHe13 are the exceptions. Both 

approaches deal with the imbalanced dataset using under-sampling and weighting. Therefore, in the case of 

imbalanced datasets, both methods could improve the SVM-based SDP models.  

Answer to RQ2: the above analysis concludes that the classification algorithm affects the defect 

prediction performance on most training data selection methods, with the NB being the top-performing 

classifier. Furthermore, no single method consistently performs best when paired with any classifier. 

 

4.3. RQ3: How does the impact of selecting training data on the complexity of training data? 

Table 6 (in appendix) shows that training data selection can improve prediction performance. 

However, most performance improvements have negligible or minor effects. It confirms the findings in [22]. 

It motivates us to investigate further the causes of such findings. This experiment deal with three CPDP 

challenges: class imbalance, noisy dataset, and class complexity. We studied whether selecting training data 

addresses this problem by studying the impact of selecting training data on the complexity of the defect 

datasets and relating the complexity with the performance of the prediction model.  

We compared the data complexity measures of the training dataset before and after selection. We 

only focus on data complexity measures representing CPDP problems, such as N1, which is sensitive to noise 

in the dataset [36], [59], [60], and C2, which is related to imbalanced data. We also identify the complexity of 

the defect dataset used. We did not include all related measures because some of them, i.e., L2, L3, and N3, 

is based on a specific classifier's error rate that was not used in this experiment. Thus, we compute only F1, 

F2, F3, L1, N1, and C2 to detect class overlap (F1-F3), class separability (L1), presence of noise (N1), and 

class imbalance (C2). We used the standardized complexity measures (available in R package Ecol) 

proposed by Lorena et al. [28]. We quantify the impact of data selection on data complexity as the difference 

between the pre-selection and post-selection data complexity measures. Figure 7 shows the quartile box plot 

representing the difference between the pre-selection and post-selection data complexity measures. The 

positive boxplot denotes that the complexity of all datasets is reduced after being selected by a particular 

method. The negative boxplot means the opposite. The box plot spanning from positive to negative y-axis 

shows the effect of data selection on data complexity measures can be positive or negative. We present 

several observations:  

F1 and F2 are the least affected complexity measures. No training data selection method could 

reduce this complexity measure, except for F2 in PROMISE datasets. It is reasonable since class overlap, and 

class separability have a stronger relationship with feature relevancy [36], not instance relevancy, likewise 

for L1, where most median values have the value 0. 

C2 is the most impacted data complexity measure. Two training data selection methods, Herbold13 

and ZHe13, consistently produce positive values for all corpus data, indicating that they successfully reduce 

class imbalance levels. It is understandable since both methods employ under-sampling and weighting to 

compensate for the unbalanced dataset. The improvement of C2 in the other methods is dependent on the 

imbalanced ratio of the training data. The more unbalanced the training data, the more likely C2 will have a 

better value after selection. The MDP datasets have a high imbalanced ratio, whereas the PROMISE dataset 

has a low ratio. The improvement of C2 is evident in the MDP dataset. For PROMISE datasets, the impact on 

this measure for methods other than Herbold13 and ZHe13 is unclear, as C2 can be either positive or 

negative. If training data selection is not appropriately handled, better result on the imbalanced class level 

after selecting training data is not guaranteed. 

In general, training data selection has no positive effect on N1. Except for Ryu15, the median value 

of N1 is negative in all dataset corpora. It has two causes. First, the N1 values of Ryu are always positive 

since Ryu15 is the only training data selection method that performs noise filtering. Ryu15 measures the 

distance between a data instance and the entire data distribution using the Mahalanobis distance. Second, the 

training data selection method selects appropriate training instances based on the target instances. The 

methods select training data based on target and training dataset similarity. The target dataset in CPDP is 

unlabeled, so the similarity is calculated solely on metric values, excluding class information. This situation 

increases the likelihood of selecting duplicates or inconsistent instances, especially for methods that ignore 

redundant data instances during data selection. In addition, methods such as Herbold13, PHe0114, and 
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PHe0214 that select training data at the project level granularity are more susceptible to including redundant 

instances. It is because the similarity between the training and target datasets is measured using the distance 

between their data distributions, which means that datasets are selected in aggregate rather than instance by 

instance. This condition prevents the detection of redundant instances. We see that Herbold13, ZHe13, 

PHe0114, and PHe0214 have a higher difference in N1 than other methods. 

 

 

 
 

Figure 7. The impact of training data selection on the data complexity measures 

 

 

Figure 8 (a)-(c) display the trend of the average value of F3, L1, N1, and C2 for each training data 

selection method for AEEEM, PROMISE, and MDP dataset, respectively. TRN represents the baseline 

method that uses all training data to build the prediction model. We observed that L1 and F3 tend to have 

constant values, especially in AEEEM and PROMISE. For N1 and C2, higher values indicate a more 

complex classification problem, resulting in lower performance. Except for Ryu15, the AUC tends to 

decrease as the values of N1 and C2 increase. It shows that N1 and C2 are suitable measures of the 

complexity of the defect data produced by data selection. 

 

 

   
(a) (b) (c) 

 

Figure 8. Average value of selected data complexity measures along with the AUC (a) AEEEM,  

(b) PROMISE, and (c) MDP 

 

 

Based on the previous two-level analysis, training data selection could improve the baseline model. 

However, in Tables 6 (in Appendix), most improvements in prediction performance are statistically insignificant in 

that the improvement is relatively small. The training data selection methods also performed better on the 

PROMISE dataset than on the other datasets, see Figure 3(a). We suspect these statistically insignificant impacts 

relate to the complex characteristics of the defect datasets. The analysis reveals that the training datasets are 

essentially complex problems. They have high overlapping (high F3) and noisy instances and are highly 

imbalanced (high C2 for AEEEM and MDP). It makes such datasets more challenging to learn [54]. Hosseini et al. 
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[55] confirm this since they identified several datasets that are hard to predict using their proposed method. In our 

case, the analysis found that selecting training data did not necessarily reduce the complexity of the training data, 

and even the selection could increase the data complexity, Figure 7. It may result in insignificant performance 

gains. In some cases, after data selection, the prediction performance of the model even degrades. The imbalanced 

class ratio has a more significant effect on model performance than the noise ratio. As illustrated in Figure 3, the 

percentage of times a training data selection method improves the baseline methods in PROMISE is greater than 

the percentages for AEEEM and MDP. Figure 8 shows that the PROMISE datasets have lower C2 than the 

AEEEM and MDP datasets. 

Focusing on training (TRN) dataset before selection, we can highlight several points in Figure 8:  

i) F3 is always a high value. A high F3 value indicates high overlap, ii) AEEEM and PROMISE have a high 

imbalanced rate, iii) the noise ratio is relatively high, at or above 20%. It implies that defect datasets are a 

complex problem because they present three challenges to CPDP: class imbalance, noisy dataset, and class 

overlapping. We suspect that these issues cause some selection methods to perform suboptimally. Answer to 

RQ3: training data selection may affect the data complexity measure, especially in N1 and C2, but the effect 

is not necessarily positive. The defect datasets are deemed to be complex data, which may cause some 

selection methods to have unsatisfied performance. 

 

 

5. CONCLUSION  

This study examined the impact of training data selection on the performance of an SDP model. We 

compared 13 training data selection methods using 61 releases of software from three dataset repositories 

(i.e., AEEEM, PROMISE, and MDP). We analyze in three dimensions: performance at a dataset release 

level, dataset repository level, and impact on data complexity. The results of the study are as follows: 

selecting training data could positively impact the defect prediction performance on most dataset releases. 

The best training data selection methods are different for each dataset release. When looking at cumulative 

performance on each dataset repository, most training data selection methods do not improve the baseline 

model, particularly the MDP dataset. We discovered that Herbold13 and Peters13b are the best methods on 

the AEEEM and PROMISE datasets. The classification algorithm affects the prediction performance on most 

training data selection methods, with the NB being the best-performing classifier. In addition, no single 

training data selection method consistently outperforms the others when paired with any classifier. Training 

data selection affects the data complexity measure, especially in N1 and C2, but the effect is not necessarily 

positive. The defect datasets are deemed to be complex data, which may cause some selection methods to 

have unsatisfied performance. Experimental results indicate that the best method for each dataset varies 

depending on the dataset and classifiers. For future works, an investigation on a recommendation system to 

select a suitable training data selection method for a particular dataset. We recommend dealing with noise 

and unbalanced classes when designing training data methods. 
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APPENDIX 

 

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the 

target or testing dataset instead of the training dataset 

No Release* ALL Herbold13 Kawata15 Menzies11 Peters13a Peters13b Peters15 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 eclipse 0.6751 0.7247 (+, M) 0.6757 (+, N) 0.6319 (--, S) 0.6713 (--, N) 0.6486 (--, S) 0.6794 (+, N) 

2 equinox 0.6669 0.7019 (+, S) 0.6600 (--, N) 0.5736 (--, L) 0.5625 (--, L) 0.6145 (--, M) 0.6038 (--, M) 

3 lucene 0.6362 0.7075 (+, L) 0.6268 (--, N) 0.5478 (--, L) 0.6390 (+, N) 0.6327 (--, N) 0.5659 (--, M) 

4 mylyn 0.6487 0.6110 (--, S) 0.6375 (--, N) 0.5509 (--, L) 0.6255 (--, S) 0.5768 (--, M) 0.6144 (--, S) 

5 pde 0.6569 0.6572 (+, N) 0.6515 (--, N) 0.5692 (--, L) 0.6545 (--, N) 0.6365 (--, N) 0.6445 (--, N) 

6 ant-1.3 0.7261 0.6799 (--, S) 0.7182 (--, N) 0.6212 (--, L) 0.6501 (--, M) 0.7165 (--, N) 0.6053 (--, L) 

7 ant-1.4 0.5457 0.5334 (--, S) 0.5397 (--, N) 0.5203 (--, L) 0.5211 (--, L) 0.5475 (+, N) 0.5724 (+, L) 

8 ant-1.5 0.6792 0.7134 (+, S) 0.6666 (--, N) 0.6057 (--, M) 0.6144 (--, S) 0.7115 (+, S) 0.6430 (--, S) 

9 ant-1.6 0.7188 0.7297 (+, N) 0.7140 (--, N) 0.6196 (--, L) 0.6838 (--, S) 0.7296 (+, N) 0.6721 (--, S) 

10 ant-1.7 0.6962 0.7029 (+, N) 0.6932 (--, N) 0.6087 (--, L) 0.6893 (--, N) 0.7126 (+, N) 0.6874 (--, N) 
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Table 6. The performance of training data selection method for each dataset release. 'release' denotes the 

target or testing dataset instead of the training dataset (continue) 

No Release* ALL Herbold13 Kawata15 Menzies11 Peters13a Peters13b Peters15 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

11 arc 0.6526 0.6550 (+, N) 0.6625 (+, N) 0.5984 (--, M) 0.6363 (--, N) 0.6437 (--, N) 0.6744 (+, S) 

12 camel-1.0 0.6350 0.5837 (--, S) 0.6439 (+, N) 0.5986 (--, S) 0.5121 (--, L) 0.6417 (+, N) 0.5754 (--, M) 

13 camel-1.2 0.5525 0.5426 (--, S) 0.5450 (--, S) 0.5216 (--, L) 0.5365 (--, M) 0.5528 (+, N) 0.5433 (--, S) 

14 camel-1.4 0.6347 0.5751 (--, M) 0.6313 (--, N) 0.5498 (--, L) 0.5866 (--, M) 0.6396 (+, N) 0.6234 (--, N) 

15 camel-1.6 0.5528 0.5734 (+, M) 0.5596 (+, N) 0.5302 (--, M) 0.5494 (--, N) 0.5724 (+, S) 0.5610 (+, N) 

16 ivy-1.1 0.6528 0.6255 (--, S) 0.6345 (--, N) 0.5528 (--, L) 0.6072 (--, M) 0.7090 (+, M) 0.5941 (--, M) 

17 ivy-1.4 0.6854 0.6308 (--, M) 0.6831 (--, N) 0.6059 (--, L) 0.5858 (--, L) 0.6842 (--, N) 0.5611 (--, L) 

18 ivy-2.0 0.7085 0.7105 (+, N) 0.7003 (--, N) 0.6307 (--, L) 0.6618 (--, S) 0.7080 (--, N) 0.6991 (--, N) 

19 jedit-3.2 0.7033 0.6091 (--, M) 0.7077 (+, N) 0.6125 (--, L) 0.6311 (--, M) 0.7108 (+, N) 0.6823 (--, N) 

20 jedit-4.0 0.6769 0.5885 (--, L) 0.6776 (+, N) 0.6033 (--, L) 0.6313 (--, M) 0.6674 (--, N) 0.6382 (--, S) 

21 jedit-4.1 0.7096 0.5908 (--, L) 0.7199 (+, N) 0.6540 (--, M) 0.6786 (--, S) 0.7200 (+, N) 0.6575 (--, M) 

22 jedit-4.2 0.7460 0.6328 (--, L) 0.7638 (+, N) 0.6824 (--, M) 0.6998 (--, S) 0.7607 (+, N) 0.6980 (--, S) 

23 jedit-4.3 0.5812 0.5044 (--, L) 0.6005 (+, S) 0.5418 (--, L) 0.5361 (--, L) 0.5836 (+, N) 0.6023 (+, S) 

24 log4j-1.0 0.7114 0.6983 (--, N) 0.7004 (--, N) 0.5895 (--, L) 0.6584 (--, S) 0.7056 (--, N) 0.6406 (--, M) 

25 log4j-1.1 0.6984 0.7099 (+, N) 0.7045 (+, N) 0.5844 (--, L) 0.5685 (--, L) 0.6889 (--, N) 0.7098 (+, N) 

26 log4j-1.2 0.5353 0.5574 (+, M) 0.5569 (+, S) 0.5437 (+, N) 0.4861 (--, L) 0.5580 (+, S) 0.5694 (+, S) 

27 lucene-2.0 0.6417 0.7058 (+, L) 0.6492 (+, N) 0.5583 (--, L) 0.6629 (+, S) 0.6719 (+, S) 0.6288 (--, N) 

28 lucene-2.2 0.5842 0.6244 (+, L) 0.5838 (--, N) 0.5305 (--, L) 0.5948 (+, N) 0.6058 (+, S) 0.5658 (--, S) 

29 lucene-2.4 0.5972 0.6371 (+, M) 0.6057 (+, N) 0.5372 (--, L) 0.5610 (--, S) 0.6091 (+, N) 0.5971 (--, N) 

30 poi-1.5 0.6365 0.6384 (+, N) 0.6335 (--, N) 0.5537 (--, L) 0.6235 (--, N) 0.6402 (+, N) 0.5703 (--, M) 

31 poi-2.0 0.5718 0.4833 (--, L) 0.5522 (--, S) 0.5550 (--, S) 0.5703 (--, N) 0.5549 (--, S) 0.6350 (+, M) 

32 poi-2.5 0.6586 0.6261 (--, S) 0.6987 (+, S) 0.5714 (--, L) 0.6413 (--, N) 0.6907 (+, S) 0.6510 (--, N) 

33 poi-3.0 0.6752 0.6602 (--, N) 0.6911 (+, N) 0.5546 (--, L) 0.6783 (+, N) 0.7286 (+, S) 0.6980 (+, N) 

34 redaktor 0.6569 0.5897 (--, M) 0.6480 (--, N) 0.5923 (--, M) 0.5962 (--, M) 0.6280 (--, S) 0.5150 (--, L) 

35 synapse-1.0 0.6939 0.6623 (--, S) 0.6823 (--, N) 0.5704 (--, L) 0.5739 (--, L) 0.6964 (+, N) 0.6073 (--, L) 

36 synapse-1.1 0.6127 0.6474 (+, S) 0.6113 (--, N) 0.5218 (--, L) 0.5431 (--, M) 0.6382 (+, S) 0.6218 (+, N) 

37 synapse-1.2 0.6642 0.6886 (+, S) 0.6642 (+, N) 0.5454 (--, L) 0.6280 (--, S) 0.6885 (+, S) 0.6431 (--, S) 

38 tomcat 0.6827 0.6986 (+, N) 0.6895 (+, N) 0.6457 (--, S) 0.6716 (--, N) 0.7338 (+, S) 0.5839 (--, M) 

39 velocity-1.4 0.4313 0.4682 (+, S) 0.4307 (--, N) 0.4609 (+, M) 0.4663 (+, S) 0.4248 (--, N) 0.4881 (+, L) 

40 velocity-1.5 0.5698 0.5119 (--, M) 0.5712 (+, N) 0.5105 (--, L) 0.5223 (--, M) 0.6058 (+, M) 0.5912 (+, S) 

41 velocity-1.6 0.6352 0.5759 (--, M) 0.6306 (--, N) 0.5360 (--, L) 0.5718 (--, M) 0.6491 (+, N) 0.5937 (--, M) 

42 xalan-2.4 0.6657 0.6599 (--, N) 0.6695 (+, N) 0.5959 (--, L) 0.6560 (--, N) 0.6696 (+, N) 0.6458 (--, S) 

43 xalan-2.5 0.5657 0.5464 (--, M) 0.5620 (--, N) 0.5372 (--, L) 0.5388 (--, M) 0.5683 (+, N) 0.5589 (--, N) 

44 xalan-2.6 0.5931 0.5952 (+, N) 0.5701 (--, S) 0.5613 (--, M) 0.6120 (+, S) 0.5853 (--, N) 0.5894 (--, N) 

45 xalan-2.7 0.6998 0.7434 (+, S) 0.6771 (--, S) 0.5869 (--, L) 0.5734 (--, L) 0.7260 (+, S) 0.6142 (--, M) 

46 xerces-1.2 0.4836 0.4618 (--, M) 0.4862 (+, N) 0.5211 (+, L) 0.5051 (+, M) 0.5236 (+, M) 0.4792 (--, N) 

47 xerces-1.3 0.6977 0.6056 (--, L) 0.7028 (+, N) 0.5835 (--, L) 0.6561 (--, S) 0.5802 (--, M) 0.6789 (--, N) 

48 xerces-1.4 0.6839 0.5824 (--, L) 0.6826 (--, N) 0.5604 (--, L) 0.6873 (+, N) 0.4997 (--, L) 0.7121 (+, S) 

49 xerces-init 0.4695 0.4904 (+, M) 0.4920 (+, L) 0.5213 (+, L) 0.4230 (--, L) 0.5711 (+, L) 0.4805 (+, S) 

50 CM1 0.6893 0.6287 (--, M) 0.6895 (+, N) 0.5234 (--, L) 0.6493 (--, S) 0.7022 (+, N) 0.6130 (--, L) 

51 JM1 0.6484 0.5541 (--, L) 0.6477 (--, N) 0.5389 (--, L) 0.6395 (--, N) 0.6509 (+, N) 0.6486 (+, N) 

52 KC1 0.7116 0.6200 (--, M) 0.7053 (--, N) 0.5306 (--, L) 0.6566 (--, M) 0.7048 (--, N) 0.6391 (--, M) 

53 KC3 0.6451 0.5701 (--, L) 0.6311 (--, N) 0.5023 (--, L) 0.5858 (--, L) 0.6473 (+, N) 0.5685 (--, L) 

54 MC1 0.7902 0.7916 (+, N) 0.7862 (--, N) 0.5184 (--, L) 0.7768 (--, N) 0.7860 (--, N) 0.8030 (+, N) 

55 MC2 0.6339 0.6256 (--, N) 0.6106 (--, S) 0.5326 (--, L) 0.5573 (--, L) 0.6363 (+, N) 0.6240 (--, N) 

56 MW1 0.7114 0.6006 (--, L) 0.6959 (--, N) 0.4980 (--, L) 0.5830 (--, L) 0.6930 (--, N) 0.5940 (--, L) 

57 PC1 0.6864 0.6913 (+, N) 0.6849 (--, N) 0.5608 (--, L) 0.5152 (--, L) 0.7004 (+, N) 0.6198 (--, M) 

58 PC2 0.6459 0.7574 (+, L) 0.5637 (--, S) 0.5237 (--, L) 0.5121 (--, M) 0.6075 (--, S) 0.5492 (--, M) 

59 PC3 0.6626 0.7082 (+, M) 0.6446 (--, N) 0.5235 (--, L) 0.6246 (--, S) 0.6400 (--, S) 0.5996 (--, M) 

60 PC4 0.6064 0.6048 (--, N) 0.6005 (--, N) 0.5076 (--, L) 0.6237 (+, S) 0.5595 (--, M) 0.6187 (+, N) 

61 PC5 0.8166 0.7325 (--, S) 0.7918 (--, N) 0.5715 (--, L) 0.7225 (--, M) 0.7982 (--, N) 0.7885 (--, N) 

         

mean AEEEM 0,6568 0,6805 0,6503 0,5747 0,6305 0,6219 0,6216 

mean PROMISE 0,6358 0,6148 0,6365 0,5701 0,5973 0,6421 0,6127 

mean MDP 0,6873 0,6571 0,6710 0,5276 0,6205 0,6772 0,6388 

 

 

Table 6. The performance of training data selection method for each dataset release. 'release' denotes the 

target or testing dataset instead of the training dataset (continue) 

No Release* PHe0114 PHe0214 Ryu15 Turhan09 YLi17 ZHe13 %impr 

(1) (2) (10) (11) (12) (13) (14) (15) (16) 

1 eclipse 0.6448 (--, S) 0.6832 (+, N) 0.5323 (--, L) 0.6319 (--, S) 0.6636 (--, N) 0.6408 (--, S) 7,35 

2 equinox 0.6757 (+, N) 0.5903 (--, M) 0.5508 (--, L) 0.5736 (--, L) 0.5419 (--, L) 0.6718 (+, N) 5,24 

3 lucene 0.6322 (--, N) 0.6008 (--, S) 0.5727 (--, L) 0.5478 (--, L) 0.6305 (--, N) 0.5580 (--, L) 11,21 

4 mylyn 0.6688 (+, N) 0.6464 (--, N) 0.5356 (--, L) 0.5509 (--, L) 0.5734 (--, L) 0.5832 (--, L) 3,10 
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Table 6. The performance of training data selection method for each dataset release. 'release' denotes the 

target or testing dataset instead of the training dataset (continue) 

No Release* PHe0114 PHe0214 Ryu15 Turhan09 YLi17 ZHe13 %impr 

(1) (2) (10) (11) (12) (13) (14) (15) (16) 

1 eclipse 0.6448 (--, S) 0.6832 (+, N) 0.5323 (--, L) 0.6319 (--, S) 0.6636 (--, N) 0.6408 (--, S) 7,35 

2 equinox 0.6757 (+, N) 0.5903 (--, M) 0.5508 (--, L) 0.5736 (--, L) 0.5419 (--, L) 0.6718 (+, N) 5,24 

3 lucene 0.6322 (--, N) 0.6008 (--, S) 0.5727 (--, L) 0.5478 (--, L) 0.6305 (--, N) 0.5580 (--, L) 11,21 

4 mylyn 0.6688 (+, N) 0.6464 (--, N) 0.5356 (--, L) 0.5509 (--, L) 0.5734 (--, L) 0.5832 (--, L) 3,10 

5 pde 0.6195 (--, S) 0.6176 (--, S) 0.5487 (--, L) 0.5692 (--, L) 0.6457 (--, N) 0.5972 (--, L) 0,05 

6 ant-1.3 0.6542 (--, M) 0.6087 (--, L) 0.5418 (--, L) 0.6500 (--, M) 0.6973 (--, S) 0.5954 (--, L) 0,00 

7 ant-1.4 0.5214 (--, M) 0.5371 (--, N) 0.5334 (--, S) 0.5139 (--, M) 0.5284 (--, M) 0.5125 (--, L) 4,90 

8 ant-1.5 0.6514 (--, S) 0.5973 (--, M) 0.6023 (--, M) 0.6332 (--, S) 0.6622 (--, N) 0.6362 (--, S) 5,04 

9 ant-1.6 0.6616 (--, S) 0.6358 (--, M) 0.6152 (--, L) 0.6797 (--, S) 0.6786 (--, S) 0.6782 (--, S) 1,52 

10 ant-1.7 0.6774 (--, N) 0.6795 (--, N) 0.6104 (--, L) 0.6864 (--, N) 0.6724 (--, S) 0.7061 (+, N) 2,36 

11 arc 0.6990 (+, S) 0.7034 (+, M) 0.5287 (--, L) 0.6848 (+, S) 0.6256 (--, S) 0.5859 (--, L) 7,78 

12 camel-1.0 0.6236 (--, N) 0.5464 (--, L) 0.5428 (--, L) 0.6405 (+, N) 0.6280 (--, N) 0.6211 (--, N) 1,39 

13 camel-1.2 0.5573 (+, N) 0.5328 (--, L) 0.5280 (--, L) 0.5786 (+, M) 0.5545 (+, N) 0.5345 (--, M) 4,72 

14 camel-1.4 0.6367 (+, N) 0.6148 (--, S) 0.5498 (--, L) 0.6344 (--, N) 0.6317 (--, N) 0.5963 (--, M) 0,77 

15 camel-1.6 0.5524 (--, N) 0.5725 (+, S) 0.5283 (--, M) 0.5766 (+, M) 0.5670 (+, S) 0.5668 (+, S) 4,31 

16 ivy-1.1 0.6336 (--, N) 0.6407 (--, N) 0.5606 (--, L) 0.6494 (--, N) 0.6132 (--, S) 0.6361 (--, S) 8,60 

17 ivy-1.4 0.6101 (--, L) 0.5942 (--, L) 0.5629 (--, L) 0.6200 (--, M) 0.6590 (--, S) 0.6108 (--, L) 0,00 

18 ivy-2.0 0.6655 (--, S) 0.6891 (--, N) 0.5778 (--, L) 0.6645 (--, S) 0.6631 (--, S) 0.6828 (--, S) 0,29 

19 jedit-3.2 0.7182 (+, N) 0.6623 (--, S) 0.6386 (--, M) 0.7004 (--, N) 0.4814 (--, L) 0.6789 (--, S) 2,11 

20 jedit-4.0 0.6946 (+, S) 0.6620 (--, N) 0.6172 (--, M) 0.7114 (+, S) 0.5726 (--, L) 0.6877 (+, N) 5,10 

21 jedit-4.1 0.6858 (--, S) 0.6608 (--, S) 0.6013 (--, L) 0.6948 (--, N) 0.5658 (--, L) 0.6906 (--, S) 1,47 

22 jedit-4.2 0.7576 (+, N) 0.6953 (--, S) 0.6500 (--, L) 0.7699 (+, S) 0.6002 (--, L) 0.7098 (--, S) 3,20 

23 jedit-4.3 0.5987 (+, S) 0.5813 (+, N) 0.4887 (--, L) 0.6156 (+, M) 0.5626 (--, S) 0.6165 (+, L) 6,07 

24 log4j-1.0 0.6991 (--, N) 0.6318 (--, M) 0.5727 (--, L) 0.7081 (--, N) 0.7114 (+, N) 0.6588 (--, M) 0,00 

25 log4j-1.1 0.7139 (+, N) 0.7260 (+, S) 0.5529 (--, L) 0.7008 (+, N) 0.7202 (+, N) 0.6369 (--, M) 3,95 

26 log4j-1.2 0.5351 (--, N) 0.5952 (+, L) 0.5009 (--, L) 0.5504 (+, S) 0.5660 (+, S) 0.5715 (+, M) 11,18 

27 lucene-2.0 0.6498 (+, N) 0.6134 (--, S) 0.5454 (--, L) 0.6446 (+, N) 0.6358 (--, N) 0.6488 (+, N) 9,99 

28 lucene-2.2 0.5689 (--, S) 0.5886 (+, N) 0.5439 (--, M) 0.5798 (--, N) 0.5580 (--, S) 0.5968 (+, S) 6,88 

29 lucene-2.4 0.6070 (+, N) 0.6078 (+, N) 0.5378 (--, L) 0.5961 (--, N) 0.6600 (+, M) 0.6295 (+, M) 10,52 

30 poi-1.5 0.6288 (--, N) 0.6082 (--, S) 0.5674 (--, L) 0.6216 (--, N) 0.6336 (--, N) 0.5940 (--, M) 0,57 

31 poi-2.0 0.6038 (+, S) 0.6124 (+, M) 0.5654 (--, N) 0.6362 (+, M) 0.5127 (--, M) 0.5660 (--, N) 11,26 

32 poi-2.5 0.6457 (--, N) 0.6380 (--, N) 0.5796 (--, L) 0.6190 (--, S) 0.6408 (--, N) 0.5296 (--, L) 6,09 

33 poi-3.0 0.6756 (+, N) 0.6891 (+, N) 0.5825 (--, L) 0.6628 (--, N) 0.6619 (--, N) 0.6106 (--, M) 7,90 

34 redaktor 0.5948 (--, M) 0.4816 (--, L) 0.5265 (--, L) 0.5364 (--, L) 0.4933 (--, L) 0.5290 (--, L) 0,00 

35 synapse-1.0 0.6594 (--, S) 0.6381 (--, S) 0.6275 (--, M) 0.6630 (--, S) 0.6837 (--, N) 0.5340 (--, L) 0,36 

36 synapse-1.1 0.5829 (--, S) 0.6317 (+, S) 0.5396 (--, L) 0.5873 (--, S) 0.6379 (+, S) 0.5664 (--, M) 5,67 

37 synapse-1.2 0.6618 (--, N) 0.6489 (--, N) 0.5772 (--, L) 0.6509 (--, N) 0.6248 (--, S) 0.5885 (--, L) 3,67 

38 tomcat 0.6358 (--, S) 0.6759 (--, N) 0.6101 (--, M) 0.6248 (--, S) 0.7063 (+, N) 0.6885 (+, N) 7,49 

39 velocity-1.4 0.4906 (+, L) 0.4834 (+, L) 0.4745 (+, L) 0.5130 (+, L) 0.3988 (--, S) 0.3923 (--, M) 18,94 

40 velocity-1.5 0.5862 (+, S) 0.5898 (+, S) 0.5230 (--, M) 0.5800 (+, N) 0.6022 (+, S) 0.6265 (+, L) 9,95 

41 velocity-1.6 0.6068 (--, S) 0.5582 (--, L) 0.5553 (--, L) 0.6107 (--, S) 0.5830 (--, M) 0.5953 (--, M) 2,19 

42 xalan-2.4 0.6732 (+, N) 0.6296 (--, S) 0.5891 (--, L) 0.6769 (+, N) 0.6494 (--, N) 0.6583 (--, N) 1,69 

43 xalan-2.5 0.5806 (+, S) 0.5582 (--, S) 0.5384 (--, L) 0.5891 (+, M) 0.5544 (--, S) 0.5544 (--, S) 4,14 

44 xalan-2.6 0.5802 (--, S) 0.5730 (--, S) 0.5831 (--, N) 0.5936 (+, N) 0.5884 (--, N) 0.5782 (--, S) 3,19 

45 xalan-2.7 0.7165 (+, N) 0.5920 (--, L) 0.6481 (--, M) 0.7274 (+, S) 0.6865 (--, N) 0.6682 (--, S) 6,23 

46 xerces-1.2 0.4887 (+, N) 0.4818 (--, N) 0.5030 (+, M) 0.4762 (--, S) 0.4792 (--, N) 0.5252 (+, L) 8,60 

47 xerces-1.3 0.7056 (+, N) 0.6824 (--, N) 0.6063 (--, L) 0.7162 (+, N) 0.5517 (--, L) 0.6104 (--, L) 2,65 

48 xerces-1.4 0.6900 (+, N) 0.6991 (+, N) 0.5656 (--, L) 0.7091 (+, N) 0.5697 (--, M) 0.6400 (--, M) 4,12 

49 xerces-init 0.5078 (+, L) 0.4933 (+, L) 0.5148 (+, L) 0.4524 (--, M) 0.4805 (+, S) 0.4754 (+, N) 21,64 

50 CM1 0.6492 (--, S) 0.5760 (--, L) 0.5298 (--, L) 0.6435 (--, S) 0.6542 (--, S) 0.6431 (--, M) 1,87 

51 JM1 0.6306 (--, S) 0.6358 (--, N) 0.5548 (--, L) 0.6452 (--, N) 0.5942 (--, M) 0.5122 (--, L) 0,38 

52 KC1 0.6817 (--, S) 0.6797 (--, S) 0.5357 (--, L) 0.6930 (--, N) 0.6790 (--, S) 0.5796 (--, L) 0,00 

53 KC3 0.5940 (--, M) 0.5850 (--, M) 0.5286 (--, L) 0.6102 (--, S) 0.6314 (--, N) 0.5790 (--, L) 0,35 

54 MC1 0.7196 (--, S) 0.7385 (--, S) 0.5584 (--, L) 0.7920 (+, N) 0.7666 (--, N) 0.7518 (--, S) 1,62 

55 MC2 0.6457 (+, N) 0.5986 (--, S) 0.5640 (--, L) 0.6132 (--, S) 0.6192 (--, S) 0.5838 (--, M) 1,86 

56 MW1 0.6689 (--, S) 0.6408 (--, M) 0.5104 (--, L) 0.6578 (--, S) 0.6779 (--, S) 0.5873 (--, L) 0,00 

57 PC1 0.6325 (--, M) 0.6318 (--, M) 0.5133 (--, L) 0.6901 (+, N) 0.6489 (--, S) 0.6470 (--, S) 2,04 

58 PC2 0.6437 (--, N) 0.6765 (+, N) 0.5271 (--, L) 0.6977 (+, S) 0.7872 (+, L) 0.6990 (+, S) 21,87 

59 PC3 0.5651 (--, L) 0.5837 (--, L) 0.5212 (--, L) 0.6287 (--, S) 0.6474 (--, N) 0.5511 (--, L) 6,88 

60 PC4 0.6454 (+, S) 0.6180 (+, N) 0.5153 (--, L) 0.6205 (+, N) 0.5488 (--, M) 0.6059 (--, N) 6,42 

61 PC5 0.7706 (--, S) 0.7460 (--, S) 0.5603 (--, L) 0.8234 (+, N) 0.8311 (+, N) 0.5664 (--, L) 1,78 

         

mean AEEEM 0,6482 0,6276 0,5480 0,5747 0,6110 0,6102 3,61 

mean PROMISE 0,6293 0,6123 0,5638 0,6302 0,6035 0,6050 1,00 

mean MDP 0,6539 0,6425 0,5349 0,6763 0,6738 0,6089 0,00 
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