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 Experimental setup implements the concept of degree of observability (DoO) 

adequate a land-vehicle navigation application with noised inertial 

measurement unit (IMU) and global positioning system (GPS) sensors based 

on a loosely coupled approach. The navigation systems such as IMU-GPS 

require extensive evaluations of nonlinear equations as used in an extended 

Kalman filter (EKF). According to DoO and during our test, we have 

implemented a method for measuring the DoO of all states continuously. 

Where, the results showed that applying the fusion IMU-GPS system based 

on EKF be enhanced the DoO measure. The real dataset consists of outputs a 

high sampling rate for IMU sensor at each (0.01s) and GPS receiver at each 

(1s). In addition, an aloft category IMU was put together with differential GPS 

(DGPS) information to produce a real trajectory. GPS has acceptable long-

term accuracy, it is used to update the position and velocity in IMU outputs 

before processing in the EKF algorithm. The implementation consists of three 

main algorithms: Strapdown (dead reckoning DR), DoO and EKF algorithms. 

The results are shown, implementation of both approaches based on EKF and 

the concept of DoO in GPS/INS integrated systems are sufficient robustness 

to use with low-cost sensors. 
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1. INTRODUCTION 

An inertial navigation system (INS) is an independent navigation system even in the absence exterior 

data [1], [2]. Where, its contributed this capability that to the emergence of many research and industrial 

development [3], [4]. Inertial measurement unit (IMU)s low-cost systems have become in along time-proven 

a principal part of vehicle navigation systems [5], [6]. However, the reliability of an INS is less perfect over 

time by accumulation errors [7]. Error model application in the INS-GPS navigation system was given in [3]. 

In addition, The error model is obtained by employing a first-order model of the IMU. On the other hand, a 

complex INS error model with a Kalman filter of 54 states was presented [8], [9]. 

Global navigation satellites system (GNSS) as satellite technology is continuously developed and 

widely used in many areas of human life such as vehicles or aircraft (e.g. aerial robots) [10]. GNSS satellite 

https://creativecommons.org/licenses/by-sa/4.0/
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technology permits the operator to define the location of the aircraft and land-vehicle by using absolute and 

differential methods [11]. In addition, there are presentations of the DGPS (differential GPS) method in [12]. 

In the DGPS technique, ground stations in connection to the mobile onboard GPS receiver mounted in the 

aircraft plays a key role [13]. Moreover, the number of GNSS reference stations involved in DGPS positioning 

is also very important [14]. 

INS-GPS integration idea is to use both methods of localization together: estimate and absolute. This 

idea is justified by the complementarity of proprioceptive sensors and exteroceptive sensors [15]. Integration 

system ameliorates the quality and integrity of the navigation system, and INS able be utilized to ameliorate 

the pursuit when GPS signal outage [16]. For INS-GPS integrated system error estimation and compensation. 

Estimating techniques such as EKF are frequently utilized. Based on an INS error model and GPS 

updates, KF calculates location, speed and pitch errors [8], [17]. Therefore, applying this method requires an 

error model for the INS and a measurement model for the GPS. Since GPS has acceptable long-term accuracy, 

it is used to update the position and velocity given by the INS. Thus, it limits the long-term increase of INS 

errors. On the other hand, the short-term, precise information provided by the INS is used to overcome GPS 

outages and multipath errors. Kalman filter operates in the prediction model when GPS outage occurs and the 

error model is used to rectify the INS data. 

To preserve the navigational signals seen between satellite and its receiver, many guidelines have been 

set to specify the GPS raw data format. The national marine electronics association (NMEA), the radio 

technical commission for maritime services (RTCM) and the transceiver independent exchange format are the 

most widely utilized standards (RINEX) [18]. 

Concept of the DoO with respect to INS-GPS integrated systems is investigated in this work. in view 

of the fact that traditional observability analysis is inadequate for an extraordinary navigation scenarios matrix 

that becomes very large for high-order time-variant system, such that it rises computational difficulties. Since, 

an unobservable system would not yield an accurate estimation [19] and is prone to divergence [20]. However, 

if the level of noise is insignificant as a result, observability sets a lower limit on the estimation error, and for 

more information, see [21]. Therefore, and based on the above discussion, the paper objectives are: 

a. Experiment low-cost IMU system to be used as autonomous navigation systems during long GPS outages 

for general land-vehicle navigation. Then, the fusion of IMU and GPS sensors is assured by the proposed 

EKF that is used as an estimator technique. 

b. Apply a practical approach for observability, especially in dynamic analysis systems, which define the KF 

efficiency in the estimated states. 

The following is a breakdown of the paper's structure: section 2 demonstrates the methodology that 

was employed. Sections 3 and 4 show summaries of our testing as well as explanations of the results. Finally, 

in section 5, the conclusions are provided. 

 

 

2. RESEARCH METHOD  

2.1.  INS-GPS integration methods 

Different INS-GPS coupling modes exist in the literature [22], [23]. Besides that, difficult problem to 

develop in real-time for navigation system design [6], [24]. The navigation system in our method consists of a 

civilian GPS receiver and a low-cost inertial sensor that are loosely connected as shown in Figure 1. This 

method allows for cost savings in both design and implementation [24], [25]. 

 

 

 
 

Figure 1. Direct configuration 
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of KF algorithm. The loosely coupled form has various configurations and implementations. The most noted 

are implementations the open-loop operation and the second closed-loop [7], [26]. In addition, the above INS-

GPS integration methods are based by: 

a. INS algorithm for integration process. Kalman filter form [26] is defined by two inputs factors, INS 

calculation equations and INS error model. 

b. INS mechanization equations, an IMU was placed on the vehicle's roof. As a result, the both of specific 

force and the angular velocity in the body frame are defined by 𝒇𝒃 and  𝒘𝒊𝒃
𝒃 . Latitude ϕ, longitude λ and 

height h are used to describe the vehicle's location. In the navigation frame, the equation is as: 

 

[

𝑝̇

𝑣̇𝑁

𝑅̇𝑏
𝑛
] = [

𝑣𝑁

𝑅𝑏
𝑛𝑓𝑏 − (2𝑤𝑖𝑒

𝑛 + 𝑤𝑒𝑛
𝑛 )𝑣𝑁 + 𝑔𝑛

𝑅𝑏
𝑛(𝛺𝑖𝑏

𝑏 − 𝛺𝑖𝑛
𝑏 )

] (1) 

 

Where: 𝑝: position vector in the navigation frame, 𝑝 = [𝜙, 𝜆, ℎ]𝑇 

𝑅𝑏
𝑛: transformation matrix from the body frame to navigation frame 

𝑤𝑖𝑒
𝑛 : earth rotation rate vector expressed in the navigation frame 

𝑤𝑒𝑛
𝑛 : orientation rate vector of the navigation frame 

𝛺𝑖𝑏
𝑏 : skew-symmetric matrix of the body rotation rate 

𝛺𝑖𝑒
𝑏 : skew-symmetric matrix of the rotation rate vector 

𝑤𝑖𝑒
𝑏 : rate of earth rotation expressed in the body frame 

𝑔𝑛: gravity vector expressed in the navigation frame 

𝑣𝑁: velocity vector in the navigation frame, 𝑣𝑁 = [𝑣𝑛 , 𝑣𝑒 , 𝑣𝑑] 
 

2.2.  INS error model 

Generally, Information use in the INS-GPS system is preferred to represent in the context of the local 

geographical location [3], [7]. The placement 𝑝 = [𝜙, 𝜆, ℎ]𝑇 is generated by integration of (2) [7] 

 

𝑝̇ = [

𝜑̇

𝜆̇
ℎ̇

] = [

𝑣𝑛

𝑅𝑀+ℎ
𝑣𝑒

𝑐𝑜𝑠(𝜑)(𝑅𝑁+ℎ)

−𝑣𝑑

] (2) 

 

Where 𝑅𝑁 and 𝑅𝑀 are the meridian and normal earth radii, respectively.  

Numerous types of errors affect several navigation systems. Initial condition faults, nonorthogonal 

features of gyro-meters and accelerometers, and mistakes throughout the integration process all affect INS 

[27], [28]. However, skew, scale factor error, non-orthogonality, and random errors are the most common 

defects [7], [27] are presented in the inertial sensors (gyro-meters and accelerometers). The common 

representations of errors are: 

 

Δ𝑓𝑏 = 𝑓𝑏 − 𝑓𝑏      (3) 

 

Δ𝑤𝑖𝑏
𝑏 = 𝑤𝑖𝑏

𝑏 − 𝑤̂𝑖𝑏
𝑏  (4) 

 

Where: 𝑓𝑏and 𝑤̂𝑖𝑏 
𝑏  are the measured values, correspondingly of 𝑓𝑏and 𝑤𝑖𝑏

𝑏  

Δ𝑓𝑏Δ𝑤𝑖𝑏
𝑏  represent measurement errors in specific force and relative angular rate. 

Δ𝑓𝑏 and Δ𝑤̂𝑖𝑏
𝑏  are the specified force error and related angular velocity error estimates, respectively.  

The favorite notion of error statuses (𝛿𝑥) in a navigation system is convenient [26]. 

 

[

𝛿𝑝̇

𝛿𝑣̇𝑁

𝜌̇
] = 𝐹 [

𝛿𝑝
𝛿𝑣
𝜌

]  +G [
𝛿𝑓𝑏

𝛿𝑤𝑖𝑏
𝑏 ] (5) 

 

With 𝐹 = (

𝐹𝑝𝑝 𝐹𝑝𝑣 𝐹𝑝𝜌

𝐹𝑣𝑝 𝐹𝑣𝑣 𝐹𝑣𝜌

𝐹𝜌𝑝 𝐹𝜌𝑣 𝐹𝜌𝜌

) and 𝐺 = [
0

−𝑅𝑏
𝑛

0

0
0
𝑅𝑏

𝑛
] (6) 
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The error vector has been established by 𝛿𝑥 = [𝛿𝑝, 𝛿𝑣, 𝜌]𝑇 , where 𝛿𝑝 = 𝑝 − 𝑝̂ = 𝛿𝑝 = [𝛿𝜑, 𝛿𝜆, 𝛿ℎ]𝑇, 

𝛿𝑣 = 𝑣𝑒
𝑛 − 𝑣̂𝑒

𝑛 = 𝛿𝑝 = [𝛿𝑣𝑛 , 𝛿𝑣𝑒 , 𝛿𝑣𝑑]𝑇𝜌 = [𝜀𝑁 , 𝜀𝐸, 𝜀𝐷]𝑇 and 𝛿𝑤𝑖𝑏
𝑏 = 𝛥𝑤𝑖𝑏

𝑏 + 𝛥𝑤̂𝑖𝑏
𝑏 . 

 

Many forms of matrix F are proposed [29]. In [8], it contains of the proposition of a simplified error model. 

The constituents of matrix F in this scenario are as: 

 

𝐹𝑝𝑝 = [
0  0  0
0 0 0
0 0 0

]   (7)  

 

𝐹𝑝𝑣 = [
1  0 0
0 1 0
0 0 1

] (8) 

 

𝐹𝑝𝜌 = [
0  0  0
0 0 0
0 0 0

] (9) 

 

𝐹𝑣𝑝 = [
0  0 0
0 0 0
0 0  𝜏𝐷

−2
] (10)  

 

𝐹𝑣𝑣 = [

0  −2𝑤𝑖𝑒 𝑠𝑖𝑛 𝜑  0
−2𝑤𝑖𝑒 𝑠𝑖𝑛 𝜑 0  2𝑤𝑖𝑒 𝑐𝑜𝑠 𝜑

0 −2𝑤𝑖𝑒 𝑐𝑜𝑠 𝜑 0
] (11) 

 

𝐹𝑣𝜌 = [

0  𝑓𝐷 + 2𝑔  −𝑓𝑁

−𝑓𝐷 − 2𝑔 0 𝑓𝐸

𝑓𝑁 −𝑓𝐸 0
]       (12) 

 

𝐹𝜌𝑝 = [
0  0  0
0 0 0
0 0 0

] (13) 

 

𝐹𝜌𝑣 = [
0 𝑅𝑒

−1 0

−𝑅𝑒
−1 0 0

0 0 0

] ,  (14) 

 

𝐹𝜌𝜌 = [

0 −𝑤𝑖𝑒 𝑠𝑖𝑛 𝜑 0
𝑤𝑖𝑒 𝑠𝑖𝑛 𝜑 0 𝑤𝑖𝑒 𝑐𝑜𝑠 𝜑

0 −𝑤𝑖𝑒 𝑐𝑜𝑠 𝜑 0
] (15) 

 

Where: 𝜑 is the latitude and 𝑇𝐷 ≈ √
𝑅

2𝑔
= 520(𝑠) 

𝑅𝑒 = √𝑅𝑀𝑅𝑁 ≈ 6372795.5 𝑚is the earth average radius. 

𝑤𝑖𝑒 ≈ 7.292115 × 10−5𝑟𝑎𝑑/𝑠 is the earth rotation rate. 

𝑓𝑁 , 𝑓𝐸 , 𝑓𝐷: are the specialized forces of north, east, and downward. 

 
2.3.  Extended Kalman filter 

INS-GPS in direct configuration, the KF is made up of two estimated values combined (INS and GPS 

data), the position, velocity, and attitude (PVA) solutions are the same for these two parameters [27], [26]. In 

our experiment, the inertial navigation system, which serves as the process model, provides the initial estimate 

directly. The GPS receiver provides the second estimate, which is the measurement. The position of the system 

(land-vehicle) in a navigation system is represented by state, speed, and attitude (PVA solutions) [26]. In a 

continuous state, the moving system is characterized by linear system equations [8]. 

 

𝑥̇(𝑡) = 𝐹(𝑡)𝑥(𝑡) + 𝐺(𝑡)𝑢(𝑡) (16) 
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The dynamic matrix (obtained via partial derivatives) is F(t), the position vector is x(t), the layout matrix is 

G(t), and the forcing function is u(t). The components of of 𝑢(𝑡) = [𝛿𝑓𝑏 , 𝛿𝑤𝑖𝑏
𝑏 ]𝑇 are white noise with a 

covariance matrix of 

 

𝑄 = 𝑑𝑖𝑎𝑔(𝜎𝑎𝑥
2 𝜎𝑎𝑦

2 𝜎𝑎𝑧
2 𝜎𝑤𝑥

2 𝜎𝑤𝑦
2 𝜎𝑤𝑧

2 ) (17) 

 

The following is the measurement model: 

 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑣(𝑡) (18) 

 

Here z(t) is the measurement at time t, H denotes the observation matrix and v(t) denotes white noise 

𝑣(𝑡) ~𝑁 (0, 𝑅). The use of IMU data should be based on very short sampling time intervals 𝛥𝑡 = 𝑡𝑘 − 𝑡𝑘−1 

(update every IMU=100 Hz), Table 1 shows the position (vehicle movement: PVA variation scalar) and 

measurement model [7], [27]. The discrete-time KF equations are summarized in Table 1 [3], [8]. 

 

 

Table 1. KF equations in discrete time 
KF parameters KF equations 

System model 𝑥𝑘 = 𝛷𝑘−1𝑥𝑘−1 + 𝑤𝑘−1, 𝑤𝑘 ~𝑁(0, 𝑄𝑘) 
Initialization 𝑥0

− = 𝐸[𝑥0],𝑃0
− = 𝑣𝑎𝑟   (𝑥0

−) 
Gain calculation 𝐾𝑘 = 𝑃𝑘

−𝐻𝑘
𝑇(𝑅𝑘 + 𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑇)−1 

Measurement update 𝑥0
+ = 𝑥0

− + 𝐾𝑘(𝑦̃𝑘 − 𝑦̂𝑘) 
Covariance matrix update 𝑃𝑘

+ = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘
− 

Time propagation 𝑥𝑘+1
− = 𝛷𝑘𝑥𝑘

− + 𝐺𝑘𝑢𝑘 

𝑃𝑘+1
− = 𝛷𝑘𝑃𝑘

+𝛷𝑘
𝑇 + 𝛷𝑑𝑘  

(𝛷𝑑𝑘 = 𝐺𝑘𝛷𝑘𝐺𝑘
𝑇𝛥𝑇) 

                                        Where 𝑥−, 𝑥+: are, respectively, the Priori and Posteriori state vector, 

𝑃−, 𝑃+: are, respectively, the Priori and Posteriori error covariance matrix. 

𝐺 = [
0

−𝑅𝑏
𝑛

0

0
0
𝑅𝑏

𝑛
]    and 𝑄 = 𝑑𝑖𝑎𝑔(𝜎𝑎𝑥

2 , 𝜎𝑎𝑦
2 , 𝜎𝑎𝑧

2 , 𝜎𝑤𝑥
2 , 𝜎𝑤𝑦

2 , 𝜎𝑤𝑧
2 ) 

are, respectively, the standard deviation of the accelerometers and gyro-meters 

 

 

2.4.  Observability analysis 

A method that allows knowing the degree the health of internal system if it's good or no by measuring 

the external information output detects. This method is called 'observability' [30]. Here, in our non-linear 

system, H(t)=I3×3 is time constants; thus, we put observability by using Boolean condition. 

 

𝑟𝑎𝑛𝑘(𝑂𝜐) =
?

𝑟𝑎𝑛𝑘(𝑂𝜐+1) (19) 

 

let O = [

N0(t)

N1(t)
⋮

Nυ−1(t)

] ⇒

[
 
 
 
 

H0(t)

H0(t)F(t) +
∂

∂x
H0(t)

⋮

Hυ−1(t)F(t) +
∂

∂x
Hυ−1(t)]

 
 
 
 

⇒ [

H
HF
…

HFυ−1

] (20) 

 

However, in [31], the innovation of the idea of "degree of observability" was based on a quantitative 

approach. We achieve an error covariance (P), through the several iterations in the extended Kalman filter 

process. The disparity between the estimate and real state values is indicated by this error. Furthermore, the 

standard mathematical analysis has been applied.  

Description normalized error (Pʹ) 

 

𝑃′(𝑘) =  (√𝑃(0))
−1

 𝑃(𝑘) (√𝑃(0))
−1

 (21) 

 

Where: P(0) is the initial error covariance matrix, P(k) is the current error covariance matrix. The acquired 

matrix can be presented in (22), Pij and Pij(0) are the error covariance matrix elements. The pursuit is obtained 

by the sum of all of the eigenvalues, after that we obtain the normalized error covariance in (8). The eigenvalues 

of Pʹʹ(k) are without dimension and limited between 0 < λi ≤ n, such that the DoO is defined better, as the error 

turns smaller. 
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P′(k) ⇒

[
 
 
 
 
 

P11

P11(0)

P12

√P11(0)P22(0)
…

P21

√P22(0)P11(0)

P11

P22(0)
…

⋮
Pn1

√Pnn(0)P11(0)

⋮
Pn2

√Pnn(0)P22(0)

⋱
…

   

P12

√P11(0)Pnn(0)

P12

√P22(0)Pnn(0)

⋮
Pnn

Pnn(0) ]
 
 
 
 
 

 (22) 

 

𝑃′′(𝑘) =
𝑛

𝑡𝑟(𝑃′(𝑘))
𝑃′(𝑘) (23) 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Field-test data description 

A micro-electro-mechanical system (MEMS) based IMU was used. The motion pak II is a solid-state 

device cluster in use in instrumentation and control applications to measure linear accelerations and angular 

rates (dead reckoning aiding GPS, robotics, and flight testing etcas seen in Figure 2, the IMU (motion pak II) 

unit was placed on the vehicle's rooftop, with the NovAtel OEM4 GPS receiver [32]. 

 

3.2.  Datasets specification 

The datasets are utilized to put the suggested method to the test. Real dataset consists to outputs IMU 

sensor (motion pak II) and GPS receiver (OEM4). Figure 3 shows the assumed real trajectory obtained by 

combining a better grade IMU (CIMU) with DGPS data. Furthermore, some initial parameters have been used 

to correct a problem of synchronization between the IMU and GPS receiver output data. 
 

 

  
  

Figure 2. Motion pack II placement on the test 

vehicle 

Figure 3. True trajectory of the experimental 

vehicle 

 

 

3.3.  IMU (motion pak II) properties 

In order to put the proposed approach to the test. GPS data was collected at 1 Hz, whereas inertial 

measurement data was collected at 100 Hz. The data-gathering measurement units were put on top of a land 

vehicle. In Figure 4, the results of the input values 𝑓𝑏
𝑦
and zw  are clearly shown noisy. When GPS/INS fusion 

is not used, the vehicle does not track the reference track over all directions, as shown in Figure 5. 
 
 

 
 

Figure 4. IMU measurements along run 

 
 

Figure 5. True trajectory vs GPS measurements 
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3.4.  Error state results 

Let’s examine the estimation performance over time, starting with Table 2. Firstly, position error in 

Figure 6, As shown the decay from the initial value along time and the representation of the standard of 

deviation is the magenta dashed line. As seen the geodetic angle errors (φ, λ) show small changes that oncoming 

to zero, since the model moves only few meters in the LLLN frame. Contrarily, the altitude is scaled in meters 

w.r.t previous samples, such that the error magnitude is much bigger. 

Secondary, velocity error states in Figure 7, Contrarily, the position that is being corrected by the 

observation (GPS measurement) itself, here the errors increase over time and develop in a random walk. v_N 

and v_E show noisy style while v_D succeeds to stabilize, after a period, as it can be clarified our strap down 

model's inexactness. 
 

 

Table 2. Accelerometer and gyro-meter properties 
  X Y Z 

Bias Factory Accelerometer ± 125 ± 125 ± 125 

Set (mg2, /s) Gyro meter ± 5.0 ± 5.0 ± 5.0 

Scale Factor Accelerometer 6.66 V/g 6.66 V/g 6.66 V/g 
(mg2, °/s) Gyro meter 0.133 V/°/s 0.133 V/°/s 0.133 V/°/s 

Input Axis Alignment Accelerometer 1 1 1 

(°typical) Gyro meter 1 1 1 

 
 

 
 

Figure 6. Position error vs time 

 
 

Figure 7. Velocity error vs time 

 

 

Now let’s check the euler angles error in Figure 8, it describes the Euler angles error φ (roll), θ (pitch) 

and (δψ) that obtained from transformation Matrix 𝑅𝑏
𝑛. As it appears, a small variation occurred on the axis φ 

(roll) and θ (pitch). Contrarily, a great variation in azimuthal (δψ). It's logical because, the variation in the 

planar motions is related in same motion of the orientation of the land vehicle. 

 

2.5.   Degree of observability (DoO) results 

We’ll now show the DoO analysis based on section 2.6, and see if we can determine which states are 

being best estimated (↓ DoO), and which are most weakly (↑ DoO). It’s clearly shown in Figure 9, there are 

cambers in starting of the land vehicle in (φ, λ and h) Latitude, longitude and altitude respectively. Afterward, 

continues with many drifts and outages caused by two sensors IMU and GPS  
 

 

 
 

Figure 8. Euler angles error vs time 

 
 

Figure 9. DoO of position error vs time 
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Here in Figure 10, the velocity states DoO, exhibit an acute downhill and after approximately one 

second nullified. This can be explained by the position/velocity IMU coupling within the mode. From  

Figure 11, the vehicle is initialized stationary where noise measurements increase the residual measurement. 

But once motion is starting, the Euler angles’ DoO immediately zero down after, implying that the estimator 

manages to succeed well in the estimating mission, although direct 𝑅𝑏
𝑛 measurement does not exist. 

 

 

 
 

Figure 10. DoO of velocity error vs time 

 
 

Figure 11. DoO of euler angle error vs time 

 

 

3.6.    Comparison 

3.6.1. GPS measurements, reference and estimate trajectories 

The proposed approach, as illustrated in Figure 12 and Figure 13, gives comparable results for the 

moveable vehicle in all directions. The vehicle is tracking the reference trajectory with nearly no errors in all 

directions, as shown in the following figures, especially after applying the fusion stage over the total running 

duration. Furthermore, the running algorithm did not fail during GPS signal outages, demonstrating the 

suggested approach's ability to recompensate the signal during GPS outages. 

 

 

 
 

  

Figure 12. Estimate vs true trajectory Figure 13. Estimate vs GPS measurements 

 

 

3.6.2. Strapdown (dead reckoning), KF-INS and EKF(INS-GPS) algorithms 

Table 3 shows the drift errors for KF-IMU, EKF (IMU-GPS), and dead reckoning (IMU alone) for 

motion pak II during all six outages, and clearly shows that EKF (IMU-GPS) offers similar results to 

KF/IMU for drift errors when GPS outages occur. Each GPS outage's individual maximum drift errors, as well 

as the mean of the highest drift errors, are presented. The supplied drift errors are calculated by calculating the 

square root of the sum of squared errors in latitude, longitude, and altitude, and thus represent total errors in 

all directions. Dead reckoning, on the other hand, produces findings that are similar to those of the  

EKF(IMU-GPS). Since there is no updated IMU data by GPS for each 1s, this is logical. 
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Table 3. Results for MP field tests 
GPS outages KF/INS (m) Dead reckoning (m) EKF-INS/GPS (m) 

# 1 159.4  72.5 104 
# 2 212.9  205.8 171 

# 3 

# 4 
# 5 

# 6 

Mean value 

210.2 

181.8 
194.9 

90.49 

179.95 

174 

240 
275.7 

300 

224.16 

202 

214 
211 

101 

173.86 

 

 

4. CONCLUSION  

In this paper, using noised IMU and global positioning system (GPS) sensors, a realistic approach for 

determining the complete kinematic state of a land-vehicle navigation application based on direct configuration 

approach. On the other hand, the implementation of the concept of DoO with respect to GPS/INS integrated 

systems was conducted and discussed theoretically and experimentally. 

The system's architecture is built on a loosely connected integration method using EKF. For this type 

of system, the EKF is still the standard estimation technique. However, almost all contemporary approaches in 

the literature are based on the filter's indirect setup (namely also error configuration). In general, the results of 

our tests showed, the position and velocity errors converge to zero while the orientation errors remain small 

during the run. There are three possibilities of the reasons that orientation doesn’t converge to zero since could 

be: i) indirect connection between them and the GPS measurements, ii) error from the strap-down algorithm 

(model error). 

Afterward, we examined the filter with several different fusion ratios between GPS and IMU rates and 

saw that as the ratio gets higher the accuracy, but also the calculation’s complexity increases. It is considered 

that the both approaches of GPS/INS integrated systems Based on EKF and the concept of the DoO are 

sufficiently durable to be used in conjunction with low-cost detectors. Finally, future work will focus on 

improving estimation accuracy by adding more dynamic models to the filter and expanding the input sources 

to include other positional sensors such as visual odometry. Furthermore, EKF can be upgraded to its adaptive 

version, which allows the system to perform more efficiently even when there are no GPS signals. 
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