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 Induction motor is widely used in industrial applications due to its low cost, 
simple design, and reliability. In this paper, the induction motor control 
structure FOC will be implemented on the FPGA platform for the drive 
system using GaN devices. By using GaN technology, the switching 
frequency can be up to 100 kHz instead of 2 to 20 kHz when using IGBT 
transistors. It leads to a significant reduction in switching loss as well as 
increasing the power density of the power electronic converter. The control 
structure will be programmed in VHDL language on the system-on-chip 
environment of Xilinx Zybo z7010 FPGA development board. The validity 
of the research is verified by some results when operating with HIL device. 
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1. INTRODUCTION 

The development of induction motor drives has a long history for decades. Many control algorithms 
have been developed to meet the requirements of the industry [1]. Besides, high power density has become a 
research trend in recent years in power electronics field. Accordingly, the new converters are designed not 
only to meet the power requirement but also archive a low volume and lightweight in many applications [2]. 
The development of semiconductor technology using GaN material allows them to operate at switching 
frequency from 50 to 200 kHz instead of only 2 to 20 kHz on IGBT transistors [3]. In addition, GaN-based 
devices also have advantages such as reducing switching losses and high temperatures operation. Many 
studies have been published to prove its effectiveness in practice with power electronic converters [4], [5]. 
However, to operating at high frequencies, it requires computational hardware must have equivalent 
processing capability. Previously, some studies have successfully implemented the field-oriented control 
algorithm using a DSP processor as shown in [6], [7]. This research focused on programming the pulse width 
modulation (PWM) pulse generator and current loop control. However, the higher the sampling frequency, 
the more computational resources are required, which leads to the time left to implement other functions, and 
control loops are limited [8]. FPGA technology [9] with the ability to handle multi-threading, which allows 
high frequency sampling and flexibility [10] is the solution for this problem. Furthermore, FPGA 
manufacturers also provide a system-on-chip (SoC) environment that making it increasingly used in power 
electronics and electrical drives systems [11]-[18]. In [19]-[21], the V/f control for induction motor using 
FPGA platform has been proposed. The advantage of this method is simple design, but V/f scalar control is 
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only suitable for low power and low control accuracy applications. The stator voltage regulator in [22] uses 
the sinusoidal pulse width modulation technique (SPWM) to generate gates pulse, which does not maximize 
the utilization of DC side voltage of three-phase voltage source inverter (VSI). This paper focuses on 
implementing the FOC algorithm using Kit FPGA Xilinx Zybo Zynq 7010 in VHDL language programmed 
by manual coding method for GaN-based induction motor drive. Figure 1 depicts the structure of the FOC 
algorithm that will be implemented in this work. 
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Figure 1. Block diagram of field-oriented control algorithm for induction motor drive 
 
 

2. IMPLEMENTING FOC ALGORITHM ON FPGA PLATFORM 
This section will present in detail the method of implementing the FOC algorithm on FPGA 

platform. All blocks in Figure 1 will be programmed and packaged as an integrated circuit (IC) in the 
development board. 

 
2.1.  FOC algorithm and modeling the induction motor 

The FOC algorithm was developed decades ago by Siemens’s engineers [23]. The vector control 
algorithm is based on the idea that stator current can be decoupled into two components by using transformation 
from stationary abc frame (Isa, Isb, Isc) to rotating dq frame (Isd, Isq), the first one (Isd) produces flux and the other 
(Isq) produces torque. Thus, the induction motor now can be modeled as a separately excited DC motor and 
make DC motor control theories can be used for AC motor. Assume that the parameters of induction motor are 
stator resistance Rs, stator lost inductance Lσs, mutual inductance Lm, rotor inductance Rr, rotor lost inductance 
Lσs, number of pole pairs zp, synchronous speed ωs, rotor speed ω, rotor flux ψr, and T is sampling time. With 
Ls=Lσs+Lm, Lr=Lσr+Lm, ωsl=ωs-ω, Tr=Lr/Tr, Ts=Ls/Ts, 𝜎 = 1 − 𝐿௠

ଶ /(𝐿௦𝐿௥), 𝜓௥ௗ
ᇱ = 𝜓௥ௗ/𝐿௠. 4 difference 

equations of induction motor in dq frame can be given as [24]: 
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(4) 

In (1) and (2) are used to calculate the parameters of the current controller, where (3) and (4) are used to 
design the flux model of induction motor. 

 
2.2.  Measurement of feedback current by XADC 

XADC is an ADC module integrated into some FPGA series of Xilinx, including a dual 12-bit,  
1 Mega sample per second (MSPS) ADC, and on-chip sensors [25]. Because induction motor is balance load so: 
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Isa+Isb+Isc=0 (5) 
 

Therefore, only two input pairs are used to measure feedback current Isa and Isb, then Isc will be 
calculated by using (5). In order to measure them, current signals must be transformed to voltage signals by:  

 

𝑈(𝑉) = 0.01 ⋅ 𝐼(𝐴) + 0.5 (6) 
 

where I(A) is the instantaneous value of feedback current while U(V) is the value of voltage signal 
transformed. Since the ADC signal’s value is in the range of 0 to 4095, permissible current measurement 
range is from -50 to 50 A. 

 
2.3.  Measuring the feedback rotor speed 

In this work, the rotor speed is measured by using the incremental encoder and will be decoded by 
the QEP resolver programmed in FPGA. Specifically, let consider the states of 2 channels A and B at t1, t2, t3, 
t4 in Figure 2. When the motor is in the forward or backward rotate condition, the states of t1, t2, t3, t4 are also 
listed respectively. When all 4 states are read, the encoder has rotated 1 pulse cycle, then combine 2 adjacent 
states to obtain the values as shown in Table 1. By reading these combined values, both the direction of 
rotation and rotor speed of the induction motor will be determined. 

 
 

 
 

Figure 2. The logic state of 2 channels A and B 
 
 

Table 1. Combination of 2 adjacent states 
Combination state Forward rotation Backward rotation 

t1 – t2 0100 1000 
t2 – t3 0010 0001 
t3 – t4 1011 0111 
t4 – t1 1101 1110 

 
 
Now let use a variable to count encoder pulses named encodercount, another variable read the state 

of encoder named EncoderVal. When the EncoderVal’s value equal to any value in Table 1, the encodercount 
will be added or subtracted by 1 respectively. Otherwise, no changes are made to the variable encodercount. 
In this application, the clock frequency of this module is 1MHz and rotor speed will be sampled at 2000 Hz. 
Assume that when the counter is overflow, encodercount’s value is x, number of pole pairs is zp, the encoder 
has n PPR, the electrical rotor speed is calculated as:  

 

𝜔௘ = 𝑥 ⋅ 2000𝑧௣ ⋅ 2𝜋/(4𝑛)(𝑟𝑎𝑑/𝑠) (7) 
 

2.4.  Frame transformation 
As depicted in Figure 1, both the flux controller and the speed controller generate the reference for 

the current controllers in dq frame. They will be compared to the feedback current converted to the dq frame 
through park and clark transformation. The output of the current controller is Vsd and Vsq in dq frame will be 
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transformed to αβ frame to go to the SVPWM module. The transformation between them is presented as the 
Table 2. The frame transformation modules are programmed in the FPGA platform by using (8) to (13). The 
trigonometric functions sin(θ) and cos(θ) will be determined by using the look-up-table method. 

 
 

Table 2. Fomula for frame transformation 
Clarke transform Park transform Invert park transform 

ቐ
𝐼௦ఈ = 𝐼௦௔ ⋅

2

3
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3
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3
   (8)

𝐼௦ఉ = 𝐼௦௕/√3 − 𝐼௦௖/√3  (9)
 

ቊ
𝐼௦ௗ = 𝐼௦ఈ ⋅ 𝐶𝑜𝑠( 𝜃) + 𝐼௦ఉ ⋅ 𝑆𝑖𝑛( 𝜃) (10)

𝐼௦௤ = 𝐼௦ఉ ⋅ 𝐶𝑜𝑠( 𝜃) − 𝐼௦ఈ ⋅ 𝑆𝑖𝑛( 𝜃) (11)
 ൜

𝑈௦ఈ = 𝑈௦ௗ ⋅ 𝐶𝑜𝑠( 𝜃) − 𝑈௦௤ ⋅ 𝑆𝑖𝑛( 𝜃) (12)

𝑈௦ఈ = 𝑈௦ௗ ⋅ 𝑆𝑖𝑛( 𝜃) + 𝑈௦௤ ⋅ 𝐶𝑜𝑠( 𝜃) (13)
 

 
 
2.5.  Programming flux model 

Flux model the FOC algorithm is used to estimate the rotor flux, calculate the synchronous speed 
and the rotor angle. Firstly, rotor flux can be estimated directly from (3). The synchronous speed is calculated 
from (4): 

 

𝜔௦(𝑘) = 𝜔(𝑘) +
௜ೞ೜(௞)

ೝ்⋅టೝ೏
ᇲ  (14) 

 
Then the rotor angle is the result of integrating the synchronous speed ωs by (15): 

 

𝜃(௞) = 𝑇 ⋅ 𝜔௦(௞ିଵ) + 𝜃(௞ିଵ) (15) 
 

The difference (3), (14), and (15) can be implemented by a digital system. 
 

2.6.  PI control algorithm 
In this project, the PI controller is applied for both inner and outer control loops, this is the most 

control algorithm and has been demonstrated to be effective for motor control. The PI controller is described 
in a differential as in (16): 

 

𝑢(𝑡) = 𝑓௉(𝑡) + 𝑓ூ(𝑡) = 𝐾௣ ⋅ 𝑒(𝑡) + 𝐾௜ ∫ 𝑒(𝑡)𝑑𝑡 (16) 
 

Where Kp is the proportional gain, Ki is the integral time constant, e(t) is the steady-state error, and u(t) is the 
control signal of the controller. With the sample interval T, (16) also can become a difference equation by 
discretization as follows these steps: 

 

With the proportional component: 𝑓௉(𝑡) = 𝐾௣ ⋅ 𝑒(𝑡)
 ௗ௜௦௖௥௘௧௜௭௔௧௜௢௡ 
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑓௉(𝑘) = 𝐾௣ ⋅ 𝑒(𝑘) (17) 

 

The discretization of integral component is implemented by following the Riemann Sums with the sample 
interval T. 
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Finally, the difference equation of PI controller is calculated as: 

 

𝑢(𝑘) = 𝑓ூ(𝑘 − 1) + 𝐾௣𝑒(𝑘) +
௄೔

்
⋅ 𝑒(𝑘) (19) 

 
From (19) can be applied for digital PI controller on any digital system such as FPGA, because PI 

controller is designed in the time domain, so the discretization can reduce the control quality of the 
controller. To avoid this phenomenon, the higher the sampling frequency, the more similar the characteristics 
of the controller designed in the digital domain to its characteristics in the time domain. FPGA platform is a 
powerful tool to achieve high control quality. 

 
2.7.  SVPWM technique 

Space vector modulation (SVM) is a technique used for PWM, it is commonly applied for VSI. The 
biggest advantage of this technique is that it can utilize DC side voltage (≈0.577 Udc) better than the SinPWM 
technique. In this research, it will be programmed to generate the gate pulse at frequency 100kHz for 2-level 
VSI using GaN devices. The SVPWM technique has been proposed in detail in [8]. Figure 3 depicts the 
SVPWM subsystem programmed in FPGA. Figure 4 depicts the flowcharts of the important blocks in this 
work to clarify the programming method, which presented in the previous sections. 
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Figure 3. Block diagram of SVPWM technique in FPGA 
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Figure 4. Flow charts of, (a) QEP resolver, (b) flux model, and (c) PI controller 

 
 

3. RESULTS AND DISCUSSION  
In this section, several of the results when launching the FOC algorithm implemented in the FPGA 

platform with Typhoon HIL 402 devices to verify the validity of this research and make some discussion. 
System clock of the design is 100MHz. The connecting diagram in detail of FPGA and Typhoon HIL is 
shown in Figure 5. The parameter is presented in Table 3 and Table 4. 

 
 

Table 3. Parameters of induction motor 
Rs Lσs Lm Rr Lσr zp J Pole pairs Ψrd

* 

2.52 Ω 0.0062 H 0.1763 H 0.97 Ω 0.0095 H 2 0.117 Kg.m/s2 2 1.2341Wb 
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Table 4. Parameters of (a) VSI circuit and (b) controllers 
(a) (b) 

 

Parameters Value 
Udc: 700 V 
C1: 1000 uF 
fsw: 100 kHz 

 

 

Controller Kp Ki Limit 
Speed controller 5 178 ± 22 

Current controller 30 6690 ± 310 
Flux controller 38 1976 ± 18 
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Figure 5. Connecting FPGA and typhoon HIL 

 
 

3.1.  Device utilization and processing time 
Here, the device utilization of the FPGA board is counted in Table 5 giving an overview of the 

optimization of design. The processing time also calculated by setting a flag at the beginning and the end of 
the computation cycle, Figure 6 shown the processing time of FPGA in one sample. The processing time is 
0.22μs, it significantly smaller than the sample time and allows the duty cycle value just calculated can be 
employed immediately after finishing the calculation instead of delay to the next cycle. 

 
 

Table 5. Device utilization in FPGA board 
Parameter Used Available Utilization 

Look up table (LUT) 9218 17600 53.8% 
LUTRAM 24 6000 0.4% 

Flip flop (FF) 2542 35200 7.2% 
BRAM 1 60 47.6% 

DSP 26 80 32.5% 
IO 17 100 17% 

BUFB 4 32 12.5% 
MMCM 1 2 50% 

 
 

3.2.  Result when launching with HIL devices 
In this section, the magnetizing process of induction motor, the waveform of stator current, speed 

response, and motor mechanical torque when operating in 4 difirrence scenarios, magnetizing process, no-
load condition, and constant load ± 30Nm will be presented in Figures 7 to 11 to demonstrate the efficiency 
of FOC algorithm implemented on FPGA platform. 
Scenario 1: Magnetizing process 

Figure 7 shown the current response in magnetizing process, the magnetizing current is 7A as expected 
because it always equals to Isa and double times Isb and Isc at the final value. The settling time is approximately 3 
ms and there is no overshoot and ringing. Figure 7 to 11 shown that the stator current when motor operating 
with different load has a sinusoidal waveform, rotor speed responses equivalent to the speed command as in 
theory in every scenario. The design has been confirmed that it meets the requirement of system. 
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Scenario 2: No-load condition 
Scenario 3: Operating with constant load 30Nm 
Scenario 4: Operating with constant load -30Nm 

 
 

Sample time Ts = 10μs

Processing time
Tp = 0.22μs

 
 

Figure 6. Procesing time in FPGA 
 
 

 
 

Figure 7. Magnetizing process of induction motor 
 
 

(a) (b) 
 
Figure 8. Stator current of 2nd scenario when speed command is (a) 190rad/s and (b) 20 rad/s 
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(a) (b) 

 
Figure 9. Stator current of 3rd scenario when speed command is (a) 190rad/s and (b) 20 rad/s 

 
 

  
(a) (b) 

 
Figure 10. Stator current of 4th scenario when speed command is (a) 190rad/s and (b) 20 rad/s 
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Figure 11. Speed response 
 
 

4. CONCLUSION 
The implementation of a vector control algorithm using FPGA for GaN-based induction motor drive 

was successfully developed by manual coding method in this contribution. From the achieved result, the 
processing time in one sample is 0.22μs, which meets the requirement of the power electronics system with 
switching-frequency up to 100kHz. The magnetizing process is fast and has no overshoot and ringing, the 
induction motor can operate under different load conditions and different speed commands with only one 
setting for parameters of PI controllers. These results verify the efficiency of the algorithm programmed on 
the FPGA platform and become a worthy replacement for DSP or microcontroller platform. 
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