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 This study aims to increase the processing time of detecting non-rice objects 

based on the you only look once v3-tiny (YOLOv3-tiny) model. The system 

was developed on the Raspberry Pi 4 embedded system with the Movidius 

neural compute stick 2 (NCS 2) implementation approach. Data object in the 

form of gravel on a bunch of rice in the video. The video data was obtained 

using a webcam with a resolution of 1920 x 1080 pixels with a total of 2759 

frames. From the test results, frames per second (FPS) have increased by 

1.27x in the Movidius NCS 2 implementation compared to processing using 

the central processing unit (CPU) from the Raspberry Pi 4. The object 

detection processing on video data is complete at 1871.408 seconds with 

1.474 FPS using the CPU from the Raspberry Pi 4 and finished at 1477.141 

seconds with 1.868 FPS using Movidius NCS 2. From these differences, it 

can be seen that the application of Movidius NCS 2 succeeded in increasing 

the object detection processing in this study by 26.69% with the YOLOv3-

tiny model approach on the Raspberry Pi 4 embedded system. 
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1. INTRODUCTION 

In this modern era, the application of technology in the agricultural world was increasingly crowded 

[1], [2]. Several approaches have been taken to support the efficiency of agriculture. Besides using the 

internet of things (IoT) for smarthome systems [3], [4], for plant monitoring, both in terms of soil fertility to 

plant health regularly and automatically [5], [6]. The more advanced the agriculture monitoring process has 

developed, the more researchers are researching the camera-based agricultural monitoring process [7], [8], 

combined with the IoT system on end computing [9], [10]. The camera is used as a sensor which then the 

data obtained, processed, and then can be used as a reference for concluding, and some conclusions are 

drawn using machine learning. 

The combination of using cameras as input for machine learning is considered suitable for solving 

object detection problems in the monitoring process [11]–[14]. However, in the case of remote monitoring, 

the latency of sending and processing data is considered a problem if the detection process is carried out on 

the server. To overcome this, few studies have also been carried out related to the object detection process in 

edge computing. In question, edge computing is carried out on the client/sensor side so that the computing 

process is faster than computing on the server. 

To support the complexity of tools on edge computing, in this study, a study was conducted 

regarding the application of the Raspberry Pi to the camera-based object detection task. Not only referring to 

computing using the central processing unit (CPU) of the Raspberry Pi but the Movidius neural compute 
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stick 2 (NCS 2) is also applied in this study. Furthermore, the CPU usage of the Raspberry Pi was compared 

with NCS 2, where NCS 2 serves to speed up the computing process on low-performance devices [15], such 

as its implementation on Raspberry Pi [16]–[18]. 

 

 

2. METHOD 

2.1.  Research method 

This research focuses on the application of object detection on the Raspberry Pi embedded system to 

detect gravel in a bunch of rice. The model used for the detection process is you only look once (YOLO) v3-

tiny (YOLOv3-Tiny) with the Darknet-19 network, where YOLOv3-tiny is an upgraded algorithm of YOLO 

[19], YOLO9000 [20], and YOLOv3 [21], which includes updated development of the convolutional neural 

network (CNN) [22]. YOLOv3-Tiny is a development of YOLOv3 with fewer networks to optimize 

computing speed [23]. Darknet-19 used in the YOLOv3-Tiny configuration can be seen in Table 1. There are 

several stages in this research. The research stages can be seen in Figure 1. 
 

 

Table 1. Darknet-19 architecture on the YOLOv3-tiny algorithm [23] 
Layer Type Filters Size/Stride Input Output 

0 Convolutional 16 3 x 3/1 416 x 416 x 3 416 x 416 x 16 
1 Maxpool  2 x 2/2 416 x 416 x 16 208 x 208 x 16 

2 Convolutional 32 3 x 3/1 208 x 208 x 16 208 x 208 x 32 
3 Maxpool  2 x 2/2 208 x 208 x 32 104 x 104 x 32 

4 Convolutional 64 3 x 3/1 104 x 104 x 32 104 x 104 x 64 

5 Maxpool  2 x 2/2 104 x 104 x 64 52 x 52 x 64 
6 Convolutional 128 3 x 3/1 52 x 52 x 64 52 x 52 x 128 

7 Maxpool  2 x 2/2 52 x 52 x 128 26 x 2 x 128 

8 Convolutional 256 3 x 3/1 26 x 2 x 128 26 x 26 x 256 
9 Maxpool  2 x 2/2 26 x 26 x 256 13 x 13 x 256 

10 Convolutional 512 3 x 3/1 13 x 13 x 256 13 x 13 x 512 

11 Maxpool  2 x 2/2 13 x 13 x 512 13 x 13 x 512 
12 Convolutional 1024 3 x 3/1 13 x 13 x 512 13 x 13 x 1024 

13 Convolutional 256 1 x 1/1 13 x 13 x 1024 13 x 13 x 256 

14 Convolutional 512 3 x 3/1 13 x 13 x 256 13 x 13 x 512 
15 Convolutional 255 1 x 1/1 13 x 13 x 512 13 x 13 x 255 

16 YOLO     

17 Route 13     

18 Convolutional 128 1 x 1/1 13 x 13 x 256 13 x 13 x 128 

19 Up-sampling  2 x 2/2 13 x 13 x 128 26 x 26 x 128 

20 Route 19 8     

21 Convolutional 256 3 x 3/1 13 x 13 x 384 13 x 13 x 256 

22 Convolutional 255 1 x 1/1 13 x 13 x 256 13 x 13 x 256 

23 YOLO         

 

 

 
 

Figure 1. Research stages 
 

 

At this stage, the image data used for training and model validation is annotated first. Furthermore, 

the data is separated between image data used as training data and image data used as validation data. After 

the image data is divided, the training model begins. Finally, after the trained model was obtained, the model 

was tested using two computational methods: the CPU from the Raspberry Pi 4 model B and the Intel 

Movidius NCS 2 to get computational speed data between the two methods.  
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As a detection model evaluation method, the mean average precision (mAP) is used in this study to 

support data analysis, because mAP is a popular measurement method to obtain the accuracy of the object 

detector [11]. The mAP value is obtained from the average value of the total average precision (AP) of each 

class, where the AP is determined from the precision-recall (PR) curve obtained from the association of each 

detection instance with overlapping ground truths. The mAP value is represented by the equation mAP =
1 

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 , where N is the total number of classes. The YOLO loss function exploits sum-squared error to 

calculate loss between the ground truth and the prediction, which contains localization loss, confidence loss, 

and classification loss [19]. The loss function is represented by (1). 

 

𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − 𝑥𝑖)2 + (𝑦𝑖 − 𝑦̂𝑖)

2]

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+ (√ℎ𝑖 − √ℎ̂𝑖)
2

]

𝐵

𝑗=0

𝑆2

𝑖=0

  

 (1) 

+ ∑ ∑ 𝕝𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ 𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝕝𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

+ ∑ 𝕝𝑖
𝑜𝑏𝑗

∑ (𝑃𝑖(𝑐) − 𝑃̂𝑖(𝑐))
2
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𝑆2

𝑖=0

 

 

Where 𝑆 represents cell grid to predict 𝐵 bounding box in coordinate 𝑥, 𝑦, 𝑤, ℎ. 𝕝𝑖𝑗
𝑜𝑏𝑗

value is 1 if the 𝑗𝑡ℎ 

bounding box in cell 𝑖 is responsible to detect the object, otherwise will produce value 0, while 𝜆𝑐𝑜𝑜𝑟𝑑 used to 

increase weight for loss in bounding box coordinates. 𝐶𝑖 represents the confidence score of the box 𝑗 in cell 𝑖, 
while 𝜆𝑛𝑜𝑜𝑏𝑗 denotes weight down the loss when background is detected, and also, 𝑃𝑖(𝑐) represents the 

conditional class probability for class 𝑐 in cell 𝑖. The model tested by detecting the spreading rice containing 

gravel. For the model testing purpose, the rice was loaded by hand and spread on the table that had been set 

before by installing webcam above the table. 

 

2.2.  Hardware and software 

To support this research, hardware and software are needed in testing the gravel detection process. 

The YOLOv3-tiny model was trained using a personal computer (PC) with an intel core i5-8400 2.8 GHz 

processor, 8 gigabytes of random access memory (RAM), and an NVIDIA GeForce GTX 1070 Ti graphics 

processing unit (GPU). The hardware implementation used is a Raspberry Pi 4 model B with 4 gigabyte 

RAM equipped with a broadcom BCM2711 processor, quad-core cortex-A72 (ARM v8) 64-bit system-on-a-

Chip (SOC) @ 1.5 GHz. In comparison to the processing speed test, the hardware is provided with a 

MOVIDIUS NCS 2 with Intel Movidius myriad X vision processing unit (VPU) with 16 SHAVE cores (128-

bit very long instruction word (VLIW) vector processors). In addition to embedded systems and processing 

components, on the hardware aspect, the logitech C525 webcam is used in this study to record video as data 

to be processed with 720 p resolution. NCS 2 is used in this study because, so far, the neural compute stick is 

quite successful in handling CNN-based object detection processing [24], [25]. 

Software configuration is also applied in this study to support hardware performance. On Raspberry 

Pi 4 model B, Debian v11 based RaspiOS Bullseye is implemented. RaspiOS is equipped with the Python, 

OpenCV, and OpenVino programming languages as a framework to help test the computing speed between 

the CPU and NCS 2. Meanwhile, to assist the model training process on a PC, CUDA 9.0, and cuDNN 7.5 

were implemented equipped with labelimg as a means of labeling data and a Darknet framework to run the 

YOLOv3-Tiny algorithm training process. 

 

 

3. RESULTS AND DISCUSSION 

The Raspberry Pi 4 model B-based hardware in this test was assembled with and without Intel 

Movidius NCS 2. This was done to support 2 test methods. The first test is the operation of the Raspberry Pi 

4 model B to run computing on the CPU-based object detection process. In comparison, the second test is the 

operation of the Raspberry P4 model B to run computing on the object detection process based on Intel 

Movidius NCS 2. 

 

3.1.  The results of training and model validation 

The hyperparameter configuration of the YOLOv3-tiny algorithm was obtained and worked well for 

the training data process with decay settings of 0.0005, momentum 0.9, saturation 1.5, exposure 1.5, and Hue 

0.1. The learning rate in the training process is set at 0.001 and the training model is recorded in every 1000 

iterations with a maximum iteration of 15000. The training and validation process results are loss values that 

affect the object detection process in the image. The model training result means that the smaller the resulting 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Processing time increasement of non-rice object detection based on YOLOv3-tiny … (Nova Eka Budiyanta) 

1059 

loss value and the larger the mAP value, the better the model detecting objects in the new image data. In the 

training process, the YOLOv3-tiny configuration was executed with 15000 iterations. The training process 

result can be seen in Figure 2. Figure 2 shows that the model training process minimized the loss value of 

2.14 in the 1000th iteration to 0.27 in the 15000th iteration. 

 

 

 
 

Figure 2. The results of the model training process 

 

 

3.2.  Model test results 

The model that has been trained is tested using 2759 frames of video with a resolution of 1920 x 

1080 px, which each frame represented in orange dots for Movidius NCS 2 processing and blue dots for 

Raspberry Pi 4 model B CPU processing. The test results using the Raspberry Pi 4 model B CPU obtained an 

object detection processing speed of 1.474 frames per second (FPS). On the other hand, testing using the 

Raspberry Pi 4 model B with Intel Movidius NCS 2, the object detection processing speed was obtained at 

1.868 FPS. The graph of the test results can be seen in Figure 3. 

 

 

 
 

Figure 3. The comparison of object detection processing speed 

 

 

3.3.  System test results 

After the training process was complete, the model was tested on a Python and OpenCV-based 

detection and classification system using image data that the model had not recognized. Model testing in this 

study was carried out using a video containing 2759 frames with a resolution of 1920 x 1080 px. Image data 

taken from output video results can be seen in Figure 4. Test results using video data on; 3 objects in  

Figure 4(a), 4 objects in Figure 4(b), 5 objects in Figure 4(c), 6 objects in Figure 4(d), 7 objects in Figure 

4(e), and 8 objects in Figure 4(f). 
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(a) (b) (c) 

 

   
(d) (e) (f) 

 

Figure 4. Test results using video data on (a) 3 objects, (b) 4 objects, (c) 5 objects, (d) 6 objects, (e) 7 objects, 

and (f) 8 objects 

 

 

4. CONCLUSION 

The test results found that the object detection processing speed increased by 1.27x on the Intel 

Movidius NCS 2 implementation compared to processing using the CPU from the Raspberry Pi 4. Object 

detection processing on video data was completed in 1871.408 seconds with 1,474 FPS using the CPU from 

the Raspberry Pi 4 model B and finished at 1477.141 seconds with 1.868 FPS using Movidius NCS 2. From 

these differences, it can be seen that the application of Intel Movidius NCS 2 succeeded in increasing object 

detection processing in this study by 26.69% with the tiny-YOLOv3 model approach on the Raspberry Pi 4 

model B embedded system. In this study, NCS exploitation to get fps improvement in object detection task 

has been done successfully, and we can potentially use it with some end effector mechanisms to pick out the 

detected non-rice objects in further research. Furthermore, other parallel processing using more than one 

NCS as well as modified algorithm can be used to increase the fps for real-world applications. 
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