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 In this paper, we focus on combining the theories of picture fuzzy sets on 
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commutative rings. The aim of this manuscript is to apply picture fuzzy set 
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1. INTRODUCTION 

The notion of L-fuzzy ideal of a ring is introduced in [1], which is related to the notion of fuzzy ideals 

over a ring in [2]. In 2008, Kazanci and Davvaz [3] applied the concept of fuzzy prime (primary) ideals to the 

theory of rough prime (primary) ideals. In 2012, Navarro et al. [4] introduced and studied the concept of prime 

fuzzy ideals over a non commutative ring. In 2016, Darani and Ghasemi [5] defined L-fuzzy 2-absorbing ideals 

of a commutative ring. In 2017, Sonmez et al. [6] introduced the notion of 2-absorbing fuzzy ideals and 2-

absorbing primary fuzzy ideals of a commutative ring. In 2019, Yiarayong [7] gave a complete characterization 

of fuzzy quasi-prime and weakly fuzzy quasi-prime ideals. In 2020, Asif et al. [8] explored the concept of 

picture fuzzy near-rings (PFNRs) and picture fuzzy ideals (PFIs) of a near-ring (NR). In 2021, Ali and 

Mohammed [9] introduced and examined the notion of hesitant fuzzy and hesitant fuzzy prime ideals of a ring. 

Fuzzy sets of a ring have been studied in various algebraic structures, see [10]-[29]. 

Now in this paper we introduced and study picture fuzzy sets as generalization of a commutative ring 

as well as fuzzy sets. We introduce the notions of picture fuzzy ideals on commutative rings and some 

properties of them are obtained. Finally, we give suitable definitions of the operations of picture fuzzy ideals 

over a commutative ring, as composition, product and intersection. 

 

 

2. PICTURE FUZZY IDEALS 

In this section, we concentrate our study on the picture fuzzy ideals and investigate their 

fundamental properties. 

https://creativecommons.org/licenses/by-sa/4.0/


   ISSN:2302-9285 

Bulletin of Electr Eng & Inf, Vol. 11, No. 5, October 2022: 2783-2788 

2784 

Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵 , 𝜂𝐵, 𝜈𝐵) be any picture fuzzy sets over a commutative ring 𝑅. 
Then 𝐴 is called a subset of 𝐵 denoted by 𝐴 ⊆ 𝐵 if 𝜇𝐴 ≤ 𝜇𝐵, 𝜂𝐴 ≥ 𝜂𝐵 and 𝜈𝐴 ≥ 𝜈𝐵 . 
Definition 2.1 Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵, 𝜂𝐵, 𝜈𝐵) be any picture fuzzy sets over a commutative ring 

𝑅.  
1. The intersection of two picture fuzzy sets 𝐴

 
and 𝐵

 
is defined as the picture fuzzy set 

𝐴 ∩ 𝐵 = (𝜇𝐴 ∧ 𝜇𝐵 , 𝜂𝐴 ∨ 𝜂𝐵, 𝜈𝐴 ∨ 𝜈𝐵). 
2. The union of two picture fuzzy sets 𝐴 and 𝐵

 
is defined as the picture fuzzy set 

𝐴 ∩ 𝐵 = (𝜇𝐴 ∨ 𝜇𝐵 , 𝜂𝐴 ∧ 𝜂𝐵, 𝜈𝐴 ∧ 𝜈𝐵). 
We now consider another generalized fuzzy ideal which is called a picture fuzzy ideal of a commutative ring 

𝑅.
 

Definition 2.2 A picture fuzzy set 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) of a commutative ring 𝑅 is called a picture fuzzy ideal of 

𝑅 if 

1. 𝐴(𝑥𝑦) ⊇ 𝐴(𝑥) ∪ 𝐴(𝑦) for all 𝑥, 𝑦 ∈ 𝑅, 
2. 𝐴(𝑥 − 𝑦) ⊇ 𝐴(𝑥) ∩ 𝐴(𝑦) for all 𝑥, 𝑦 ∈ 𝑅.

 
Remark 2.3 Condition (2) of the above definition is equivalent to 𝐴(𝑥 + 𝑦) ⊇ 𝐴(𝑥) ∩ 𝐴(𝑦) and  

𝐴(−𝑥) = 𝐴(𝑥) for all 𝑥, 𝑦 ∈ 𝑅.
 

We now present the following example satisfying above definition. 

 

Example 2.4 Let 𝑅 = ℤ6. Define the picture fuzzy set 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) as follows: 
 

 𝜇𝐴 𝜂𝐴 𝜈𝐴 

0 0.8 0.1 0.1 

1 0.2 0.4 0.4 

2 0.3 0.2 0.2 

3 0.2 0.4 0.4 

4 0.3 0.2 0.2 

5 0.2 0.4 0.4 

 

Then, clearly 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) is a picture fuzzy ideal over a commutative ring 𝑅. 
Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵 , 𝜂𝐵, 𝜈𝐵) be any picture fuzzy sets over a commutative ring 𝑅. 

Define 𝐴𝛩𝐵 = (𝜇𝐴 ⊕ 𝜇𝐵, 𝜂𝐴 ⊗ 𝜂𝐵, 𝜈𝐴 ⊗ 𝜈𝐵) is defined by 
 

(𝜇𝐴 ⊕ 𝜇𝐵)(𝑥) = {
⋃ 𝜇𝐴(𝑦) ∧ 𝜇𝐵(𝑧)

𝑥=𝑦+𝑧

; ∃𝑦, 𝑧 ∈ 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑦 + 𝑧

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(𝜂𝐴 ⊗ 𝜂𝐵)(𝑥) = {
⋂ 𝜂𝐴(𝑦) ∨ 𝜂𝐵(𝑧)

𝑥=𝑦+𝑧

; ∃𝑦, 𝑧 ∈ 𝑆,such that 𝑥 = 𝑦 + 𝑧

1 ; otherwise,

 

 

and 

(𝜈𝐴 ⊗ 𝜈𝐵)(𝑥) = {
⋂ 𝜂𝐴(𝑦) ∨ 𝜂𝐵(𝑧)

𝑥=𝑦+𝑧

; ∃𝑦, 𝑧 ∈ 𝑆,such that 𝑥 = 𝑦 + 𝑧

1 ; otherwise.

 

 

Theorem 2.5 Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴), 𝐵 = (𝜇𝐵, 𝜂𝐵 , 𝜈𝐵) and 𝐶 = (𝜇𝐶 , 𝜂𝐶 , 𝜈𝐶) be any picture fuzzy ideals over a 

commutative ring 𝑅. Then the following properties hold. 

1. 𝐴(𝑥) ≤ 𝐴(0) for all 𝑥 ∈ 𝑅. 
2. 𝐴𝛩𝐴 = 𝐴. 
3. 𝐴𝛩𝐴 = 𝐵𝛩𝐴.

 
4. (𝐴𝛩𝐵)𝛩𝐶 = 𝐴𝛩(𝐵𝛩𝐶). 
5.

 
𝐴𝛩0 = 𝐴 where 0 = (0+, 0−, 0−)

 
is a picture fuzzy set over 𝑅, defined by, 

 

0(𝑥) = {
(1,0,0); 𝑥 = 0
(0,0,1); 𝑥 ≠ 0.

 

 

6. If 𝐴 ⊆ 𝐵, then 𝐴𝛩𝐶 ⊆ 𝐵𝛩𝐶. 
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Proof. 1. Let 𝑥 be an element of 𝑅. Then we have 𝜇𝐴(0) = 𝜇𝐴(𝑥 − 𝑥) ≥ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑥) = 𝜇𝐴(𝑥)
 
and 

𝜂𝐴(0) = 𝜂𝐴(𝑥 − 𝑥) ≤ 𝜂𝐴(𝑥) ∨ 𝜂𝐴(𝑥) = 𝜂𝐴(𝑥). Similarly, we check that 𝜈𝐴(0) ≤ 𝜈𝐴(𝑥). Therefore 

𝐴(𝑥) ≤ 𝐴(0) for all 𝑥 ∈ 𝑅.
 

 2. Let 𝑎 be an element of 𝑅.
 
By (1), we have (𝜇𝐴 ⊕ 𝜇𝐴)(𝑎) = ⋃ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦)𝑎=𝑥+𝑦 ≥ 𝜇𝐴(𝑎) ∧

𝜇𝐴(0) = 𝜇𝐴(𝑎) and (𝜂𝐴 ⊗ 𝜂𝐴)(𝑎) = ⋂ 𝜂𝐴(𝑥) ∨ 𝜂𝐴(𝑥)𝑎=𝑥+𝑦 ≤ 𝜂𝐴(𝑎). Similarly, we check that 

(𝜈𝐴 ⊗ 𝜈𝐴)(𝑎) ≤ 𝜈𝐴(𝑎).
 
Therefore 𝐴 ⊆ 𝐴𝛩𝐴. On the other hand, let 𝑎 be an element of 𝑅. Then 

(𝜇𝐴 ⊕ 𝜇𝐴)(𝑎)    = ⋃ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(𝑦)𝑎=𝑥+𝑦 = ⋃ 𝜇𝐴(𝑥) ∧ 𝜇𝐴(−𝑦)𝑎=𝑥+𝑦  ≤ ⋃ 𝜇𝐴(𝑥 + 𝑦)𝑎=𝑥+𝑦 =

𝜇𝐴(𝑎) and (𝜂𝐴 ⊗ 𝜂𝐴)(𝑎) = ⋂ 𝜂𝐴(𝑥) ∨ 𝜂𝐴(𝑦) =𝑎=𝑥+𝑦 ⋂ 𝜂𝐴(𝑥) ∨ 𝜂𝐴(−𝑦)𝑎=𝑥+𝑦 ≤ ⋂ 𝜂𝐴(𝑥 +𝑎=𝑥+𝑦

𝑦) = 𝜂𝐴(𝑎). It can be similarly proved that (𝜈𝐴 ⊗ 𝜈𝐴)(𝑎) ≤ 𝜈𝐴(𝑎).
 
Therefore 𝐴𝛩𝐴 = 𝐴. 

 3-4. The proof is easy. 

 5. Let 𝑥 be an element of 𝑅. Then we have 

(0+ ⊕ 𝜇𝐴)(𝑎) 
 
 = ⋃ 0+(𝑥) ∧ 𝜇𝐴(𝑦)𝑎=𝑥+𝑦  

  ≤ ⋃ 0+(0) ∧ 𝜇𝐴(𝑎)𝑎=0+𝑎   

  = ⋃ 1 ∧ 𝜇𝐴(𝑎)𝑎=0+𝑎  

  = ⋃ 𝜇𝐴(𝑎)𝑎=0+𝑎  

  𝜇𝐴(𝑎) 

and (0− ⊗ 𝜂𝐴)(𝑎) = ⋂ 0−(𝑥) ∨ 𝜂𝐴(𝑦)𝑎=𝑥+𝑦 ≥ 𝜂𝐴(𝑎). Similarly we can prove  

(0− ⊗ 𝜈𝐴)(𝑎) ≥ 𝜈𝐴(𝑎). Therefore 𝐴𝛩0 = 𝐴. 
 6. The proof is easy. 

 

 

3. OPERATIONS ON PICTURE FUZZY IDEALS 

In this section, we give suitable definitions of the operations of picture fuzzy ideals over a 

commutative ring 𝑅, as composition, product and intersection. Moreover, we obtain basic properties of such 

picture fuzzy ideals.  

Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵 , 𝜂𝐵, 𝜈𝐵)
 
be any picture fuzzy sets over a ring 𝑅. Define the 

composition 𝐴 ⊙ 𝐵 = (𝜇𝐴 ∘ 𝜇𝐵 , 𝜂𝐴 • 𝜂𝐵, 𝜈𝐴 • 𝜈𝐵)
 
and product 𝐴𝐵 = (𝜇𝐴 ∗ 𝜇𝐵 , 𝜂𝐴𝜂𝐵, 𝜈𝐴𝜈𝐵), respectively as 

follows:  
 

(𝜇𝐴 ∘ 𝜇𝐵)(𝑥) = {
⋃ 𝜇𝐴(𝑦) ∧ 𝜇𝐵(𝑧)

𝑥=𝑦𝑧

; ∃𝑦, 𝑧 ∈ 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑦𝑧

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(𝜂𝐴 • 𝜂𝐵)(𝑥) = {
⋂ 𝜂𝐴(𝑦) ∨ 𝜂𝐵(𝑧)

𝑥=𝑦𝑧

; ∃𝑦, 𝑧 ∈ 𝑆,such that 𝑥 = 𝑦𝑧

1 ; otherwise,

 

 

(𝜈𝐴 • 𝜈𝐵)(𝑥) = {
⋂ 𝜂𝐴(𝑦) ∨ 𝜂𝐵(𝑧)

𝑥=𝑦𝑧

; ∃𝑦, 𝑧 ∈ 𝑆,such that 𝑥 = 𝑦𝑧

1 ; otherwise

 

 

and 

(𝜇𝐴 ∘ 𝜇𝐵)(𝑥) = {
⋃ (⋂ 𝜇𝐴(𝑦𝑖)

𝑛

𝑖=1

∧ ⋂ 𝜇𝐵(𝑧𝑖)

𝑛

𝑖=1

)

𝑥=∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1

; ∃𝑦𝑖 , 𝑧𝑖 ∈ 𝑆, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = ∑ 𝑦𝑖𝑧𝑖

𝑛

𝑖=1

0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 

(𝜂𝐴𝜂𝐵)(𝑥) = {
⋂ (⋃ 𝜂𝐴(𝑦𝑖)

𝑛

𝑖=1

∨ ⋃ 𝜂𝐵(𝑧𝑖)

𝑛

𝑖=1

)

𝑥=∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1

; ∃𝑦𝑖 , 𝑧𝑖 ∈ 𝑆,such that 𝑥 = ∑ 𝑦𝑖

𝑛

𝑖=1

𝑧𝑖

1 ; otherwise,

 

 

(𝜈𝐴𝜈𝐵)(𝑥) = {
⋂ (⋃ 𝜈𝐴(𝑦𝑖)

𝑛

𝑖=1

∨ ⋃ 𝜈𝐵(𝑧𝑖)

𝑛

𝑖=1

)

𝑥=∑ 𝑦𝑖𝑧𝑖
𝑛
𝑖=1

; ∃𝑦𝑖 , 𝑧𝑖 ∈ 𝑆,such that 𝑥 = ∑ 𝑦𝑖

𝑛

𝑖=1

𝑧𝑖

1 ; otherwise.
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Theorem 3.1 Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴), 𝐵 = (𝜇𝐵, 𝜂𝐵 , 𝜈𝐵) and 𝐶 = (𝜇𝐶 , 𝜂𝐶 , 𝜈𝐶) be any picture fuzzy ideals over a 

commutative ring 𝑅. Then the following properties hold. 

1. If 𝐴 ⊆ 𝐵, then 𝐶 ⊙ 𝐴 ⊆ 𝐶 ⊙ 𝐵. 
2. If 𝐴 ⊆ 𝐵, then 𝐶𝐴 ⊆ 𝐶𝐵. 
3.

 
𝐶 ⊙ (𝐴𝛩𝐵) ⊆ (𝐶 ⊙ 𝐴)𝛩(𝐶 ⊙ 𝐵).  

4. 𝐶(𝐴𝛩𝐵) ⊆ (𝐶𝐴)𝛩(𝐶𝐵). 
5.

 
𝐶 ⊙ 𝐴 ⊆ 𝐵

 
if and only if 𝐶𝐴 ⊆ 𝐵. 

6. 𝐵 ⊙ 𝐴 ⊆ 𝐴. 
7. If 𝑅 is a ring with identity, then 𝑅 ⊙ 𝐴 = 𝐴.

 
 

Proof. 1. Let 𝑥 be an element of 𝑅. Then (𝜇𝐶 ∘ 𝜇𝐴)(𝑥)    = ⋃ 𝜇𝐶(𝑎) ∧ 𝜇𝐴(𝑏)𝑥=𝑎𝑏 ≤ ⋃ 𝜇𝐶(𝑎) ∧𝑥=𝑎𝑏 𝜇𝐵(𝑏) =
(𝜇𝐶 ∘ 𝜇𝐵)(𝑥) and (𝜂𝐶 • 𝜂𝐴)(𝑥) = ⋂ 𝜂𝐶(𝑎) ∨ 𝜂𝐴(𝑏)𝑥=𝑎𝑏 ≤ ⋂ 𝜂𝐶(𝑎) ∨ 𝜂𝐵(𝑏)𝑥=𝑎𝑏 = (𝜂𝐶 • 𝜂𝐵)(𝑥). 
Similarly, it can be seen that (𝜈𝐶 • 𝜈𝐴)(𝑥) ≤ (𝜈𝐶 • 𝜈𝐵)(𝑥).

 
Therefore 𝐶 ⊙ 𝐴 ⊆ 𝐶 ⊙ 𝐵. 

 2. The proof is easy. 

 3. Let 𝑥 be an element of 𝑅. Then we have  

(𝜇𝐶 ∘ (𝜇𝐴 ⊕ 𝜇𝐵))(𝑥)  
 

= ⋃ 𝜇𝐶(𝑎) ∧ (𝜇𝐴 ⊕ 𝜇𝐵)(𝑏)𝑥=𝑎𝑏  

= ⋃ 𝜇𝐶(𝑎) ∧ ( ⋃ 𝜇𝐴(𝑦) ∧ 𝜇𝐵(𝑧)

𝑏=𝑦+𝑧

)

𝑥=𝑎𝑏

 

   = ⋃ (𝜇𝐶(𝑎) ∧ 𝜇𝐴(𝑦)) ∧ (𝜇𝐶(𝑎) ∧ 𝜇𝐵(𝑧))𝑥=𝑎𝑦+𝑎𝑧  

   ≤ ⋃ (⋃ 𝜇𝐶(𝑟) ∧ 𝜇𝐴(𝑠)𝑎𝑦=𝑟𝑠 ) ∧ (⋃ 𝜇𝐶(𝑡) ∧ 𝜇𝐵(𝑢)𝑎𝑧=𝑡𝑢 )𝑥=𝑎𝑦+𝑎𝑧  

   = ⋃ (𝜇𝐶 ∘ 𝜇𝐴)(𝑐) ∧ (𝜇𝐶 ∘ 𝜇𝐵)(𝑑)𝑥=𝑐+𝑑   

   = ((𝜇𝐶 ∘ 𝜇𝐴) ⊕ (𝜇𝐶 ∘ 𝜇𝐵))(𝑥) 

and 

(𝜂𝐶 • (𝜂𝐴 ⊗ 𝜂𝐵))(𝑥)
 

= ⋂ 𝜂𝐶(𝑎) ∨ (𝜂𝐴 ⊗ 𝜂𝐵)(𝑏)𝑥=𝑎𝑏  

   = ⋂ 𝜂𝐶(𝑎) ∨ (⋂ 𝜂𝐴(𝑦) ∨ 𝜂𝐵(𝑧)𝑏=𝑦+𝑧 )𝑥=𝑎𝑏   

   = ⋂ (𝜂𝐶(𝑎) ∨ 𝜂𝐴(𝑦)) ∨ (𝜂𝐶(𝑎) ∨ 𝜂𝐵(𝑧))𝑥=𝑎𝑦+𝑎𝑧  

   ≥ ⋂ (⋂ 𝜂𝐶(𝑟) ∨ 𝜂𝐴(𝑠)𝑎𝑦=𝑟𝑠 ) ∨ (⋂ 𝜂𝐶(𝑡) ∨ 𝜂𝐵(𝑢)𝑎𝑧=𝑡𝑢 )𝑥=𝑎𝑦+𝑎𝑧  

= ⋂ (𝜂𝐶 • 𝜂𝐴)(𝑐) ∨ (𝜂𝐶 • 𝜂𝐵)(𝑑)

𝑥=𝑐+𝑑

 

= ((𝜂𝐶 • 𝜂𝐴) ⊗ (𝜂𝐶 • 𝜂𝐵))(𝑥). 

Similarly, we obtain that (𝜈𝐶 • (𝜈𝐴 ⊗ 𝜈𝐵))(𝑥) ≥ ((𝜈𝐶 • 𝜈𝐴) ⊗ (𝜈𝐶 • 𝜈𝐵))(𝑥). Hence we conclude that 𝐶 ⊙
(𝐴𝛩𝐵) ⊆ (𝐶 ⊙ 𝐴)𝛩(𝐶 ⊙ 𝐵). 

 4-5. The proof is easy. 

 6. Let 𝑥 be an element of 𝑅. Then we have (𝜇𝐵 ∘ 𝜇𝐴)(𝑥) = ⋃ 𝜇𝐵(𝑎) ∧ 𝜇𝐴(𝑏)𝑥=𝑎𝑏 ≤ ⋃ 𝜇𝐴(𝑎)𝑥=𝑎𝑏 ∧
𝜇𝐴(𝑏) ≤ ⋃ 𝜇𝐴(𝑎𝑏)𝑥=𝑎𝑏 = 𝜇𝐴(𝑥) and 

( )( ) ( ) ( ) ( ) ( )B A B A A A

x ab x ab

x a b a b     
= =

• =    ⋂ 𝜂𝐴(𝑎𝑏) = 𝜂𝐴(𝑥)𝑥=𝑎𝑏 . 

Similarly we can show that (𝜈𝐵 • 𝜈𝐴)(𝑥) ≥ (𝜈𝐴)(𝑥). Therefore 𝐵 ⊙ 𝐴 ⊆ 𝐴. 
 7. The proof is easy. 

  Next, we develop some basic properties of the operations ∩
 
and 𝛩.

 
Theorem 3.2 Let 𝐴 = (𝜇𝐴, 𝜂𝐴, 𝜈𝐴) and 𝐵 = (𝜇𝐵, 𝜂𝐵 , 𝜈𝐵) be any picture fuzzy ideals over a commutative ring 

𝑅. Then the following properties hold. 

1. 𝐴 ∩ 𝐵
 
is a picture fuzzy ideal over 𝑅. 

2. 𝐴𝛩𝐵 is a picture fuzzy ideal over 𝑅. 
Proof. 1. Let 𝑥 and 𝑦 be any elements of 𝑅.

 
Then we have  

(𝜇𝐴 ∧ 𝜇𝐵)(𝑥𝑦) = 𝜇𝐴(𝑥𝑦) ∧ 𝜇𝐵(𝑥𝑦)   

   ≥   (𝜇𝐴 ∧ 𝜇𝐵)(𝑥) ∨ (𝜇𝐴 ∧  𝜇𝐵)(𝑦), 
                            (𝜂𝐴 ∨   𝜂𝐵)(𝑥𝑦) = 𝜂𝐴(𝑥𝑦) ∨ 𝜂𝐵(𝑥𝑦) 

   ≤ (𝜂𝐴 ∨ 𝜂𝐵)(𝑥) ∧ (𝜂𝐴 ∨ 𝜂𝐵)(𝑦), 
(𝜇𝐴 ∧ 𝜇𝐵)(𝑥 − 𝑦) = 𝜇𝐴(𝑥 − 𝑦) ∧ 𝜇𝐵(𝑥 − 𝑦) 

≥ (𝜇𝐴 ∧ 𝜇𝐵)(𝑥) ∧ (𝜇𝐴 ∧  𝜇𝐵)(𝑦)  

and  (𝜂𝐴 ∨   𝜂𝐵)(𝑥 − 𝑦) = 𝜂𝐴(𝑥 − 𝑦) ∨ 𝜂𝐵(𝑥 − 𝑦)  

≤ (𝜂𝐴 ∨ 𝜂𝐵)(𝑥) ∨ (𝜂𝐴 ∨ 𝜂𝐵)(𝑦).  
Similarly, it can be similarly proved that (𝜈𝐴 ∨   𝜈𝐵)(𝑥𝑦) ≤ (𝜈𝐴 ∨ 𝜈𝐵)(𝑥) ∧ (𝜈𝐴 ∨ 𝜈𝐵)(𝑦) and (𝜈𝐴 ∨
 𝜈𝐵)(𝑥 − 𝑦) ≤ (𝜈𝐴 ∨ 𝜈𝐵)(𝑥) ∨ (𝜈𝐴 ∨ 𝜈𝐵)(𝑦). Thus we have 𝐴 ∩ 𝐵

 
is a picture fuzzy ideal over 𝑅.
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2. Let 𝑥 and 𝑦 be any elements of 𝑅.
 
Then we have 

(𝜇𝐴 ⊕ 𝜇𝐵)(𝑥 − 𝑦)
 

= ⋃ 𝜇𝐴(𝑎) ∧ 𝜇𝐵(𝑏)𝑥−𝑦=𝑎+𝑏  

   ≥ ⋃ 𝜇𝐴(𝑎1 − 𝑏1) ∧ 𝜇𝐵(𝑎2 − 𝑏2)𝑥=𝑎1+𝑎2,𝑦=𝑏1+𝑏2
 

≥ ( ⋃ 𝜇𝐴(𝑎1) ∧ 𝜇𝐵(𝑎2)

𝑥=𝑎1+𝑎2

) ∧ ( ⋃ 𝜇𝐴(𝑏1) ∧ 𝜇𝐵(𝑏2)

𝑦=𝑏1+𝑏2

) 

= (𝜇𝐴 ⊕ 𝜇𝐵)(𝑥) ∧ (𝜇𝐴 ⊕ 𝜇𝐵)(𝑦) 

 (𝜂𝐴 ⊗ 𝜂𝐵)(𝑥 − 𝑦)
 

= ⋂ 𝜂𝐴(𝑎) ∨ 𝜂𝐵(𝑏)𝑥−𝑦=𝑎+𝑏
 

    
≤ ⋂ 𝜂𝐴(𝑎1 − 𝑏1) ∨ 𝜂𝐵(𝑎2 − 𝑏2)𝑥=𝑎1+𝑎2,𝑦=𝑏1+𝑏2  

    
≤ (⋂ 𝜂𝐴(𝑎1) ∨ 𝜂𝐵(𝑎2)𝑥=𝑎1+𝑎2

) ∨ (⋂ 𝜂𝐴(𝑏1) ∨ 𝜂𝐵(𝑏2)𝑦=𝑏1+𝑏2
)
 

    
= (𝜂𝐴 ⊗ 𝜂𝐵)(𝑥) ∨ (𝜂𝐴 ⊗ 𝜂𝐵)(𝑦)

 (𝜇𝐴 ⊕ 𝜇𝐵)(𝑥𝑦) 
 

= ⋃ 𝜇𝐴(𝑎) ∧ 𝜇𝐵(𝑏)𝑥𝑦=𝑎𝑏  

   ≥ ⋃ (𝜇𝐴(𝑥) ∧ 𝜇𝐵(𝑦)) ∨ (𝜇𝐴(𝑎1) ∧ 𝜇𝐵(𝑎2))𝑦=𝑎1+𝑎2
 

= (𝜇𝐴 ⊕ 𝜇𝐵)(𝑥) ∨ (𝜇𝐴 ⊕ 𝜇𝐵)(𝑦) 

 (𝜂𝐴 ⊗ 𝜂𝐵)(𝑥𝑦) 
 

= ⋂ 𝜂𝐴(𝑎) ∨ 𝜂𝐵(𝑏)𝑥𝑦=𝑎+𝑏
 

    
≤ ⋂ (𝜂𝐴(𝑥) ∨ 𝜂𝐵(𝑦)) ∧ (𝜂𝐴(𝑎1) ∨ 𝜂𝐵(𝑎2))𝑦=𝑎1+𝑎2  

    
= (𝜂𝐴 ⊗ 𝜂𝐵)(𝑥) ∧ (𝜂𝐴 ⊗ 𝜂𝐵)(𝑦). 

Similarly we can see that (𝜈𝐴 ⊗ 𝜈𝐵)(𝑥 − 𝑦) ≤ (𝜈𝐴 ⊗ 𝜈𝐵)(𝑥) ∨ (𝜈𝐴 ⊗ 𝜈𝐵)(𝑦)
 

and (𝜈𝐴 ⊗ 𝜈𝐵)(𝑥𝑦) ≤
(𝜈𝐴 ⊗ 𝜈𝐵)(𝑥) ∧ (𝜈𝐴 ⊗ 𝜈𝐵)(𝑦). Thus we have, 𝐴𝛩𝐵 is a picture fuzzy ideal over 𝑅. 
 

 

4. CONCLUSION  

In the structural theory of picture fuzzy algebraic systems, picture fuzzy sets with special properties 

always play an important role. In this work, we focus on a particular topic related to picture fuzzy algebra, 

which develops picture fuzzy versions of commutative rings. Specifically, we study the theory of fuzzy sets 

and picture fuzzy sets. We introduce the notions of picture fuzzy ideals on commutative rings and some 

properties of them are obtained. Finally, we give suitable definitions of the operations of picture fuzzy ideals 

over a commutative ring, as composition, product and intersection. 
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