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ABSTRACT

Massive connectivity and effective spectrum usage have become more important as the
use of wireless communication devices and networks has grown dramatically. The ap-
proach of non-orthogonal multiple access (NOMA) is advocated as a viable solution
for meeting consumers’ current needs. The signals are overlaid with various power
levels for each user in a NOMA-assisted system, and then broadcast to the receiver.
SIC (successive interference cancellation) is used by the receiver to discriminate and
get the needed signal. Until far, most studies have concentrated on SIC with ideal
features, with only a handful focusing on SIC with imperfect qualities (ipSIC). While
the perfect SIC (pSIC) represents the ideal condition of no data loss and no external
sounds, the ipSIC represents data transfer in a real-time context. In this research, we
will assess the system performance metrics of the investigated NOMA system in the
presence of ipSIC and compare them to the performance of the same user’s pSIC. We
define channels as κ − µ fading distributions, which is more essential. For two desti-
nations, we construct accurate outage probability formulas. Meanwhile, Monte-Carlo
simulations are run to ensure that the mathematical expressions derived are genuine.
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1. INTRODUCTION
The increasing appetite for the internet of things (IoT) and mobile internet is behind the design push

for innovative future wireless communication networks that satisfy high spectral and connectivity efficiency
[1]–[3]. Non-orthogonal multiple access (NOMA) is one of the technologies proposed to address spectral
efficiency and mass connectivity challenges in future network systems [1]–[3]. Unlike existing orthogonal
multiple access (OMA), NOMA accommodates more users by utilizing non-orthogonal resource allocation
[1]–[8]. NOMA is divided in two sub-categories: power and code-based NOMA [1], [3], [5]. In this study,
we have mainly concerned with power-domain NOMA which typically serves multiple users by grouping
and superposing users’ data signals at the transmitters. Users experiencing dissimilar channel conditions are
usually grouped. Hence, far users experiencing poor channel conditions are allocated greater transmit power
and in each group, while the near receiver utilizes successive interference cancellation (SIC) to decode the data
transmitted signal to the far user. SIC helps to eliminate interference, thus, users with better channel gain do
not require high transmit power to achieve good throughput [9].

Several studies have investigated the performance benefits of power-domain in various NOMA-assisted
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communication networks. For example, [10] studied the outage of NOMA assisted downlink multi-cell millime
ter-wave (mmWave) network under Nakagami-m fading. The authors numerically proved that NOMA outper-
forms OMA in multi-cell mmWave systems. Zhang et al. in [11], the authors demonstrated the individual out-
age rate of NOMA’s fading and power split configurations in cognitive hybrid satellite-ground networks reliant
on amplify and forward (AF) procedures. In particular, the ground network channels followed Nakagami-m
distribution whilst the satellite links followed generalized shadowed-Rician fading. Differently, the authors in
[12], compared the outage and throughput performance of two popular NOMA decoding techniques, SIC and
joint-decoding (JD), in uplink machine-to-machine (M2M) communications. Numerical results showed that
SIC has similar performance to JD when transmitting powers and traffic load over frequency-flat block-fading
multiple access channels are low but underperforms under higher transmit powers or frequency-selectivity con-
ditions. In similar work, in [13], the authors confirmed that NOMA outperforms OMA in enhancing the spectral
efficiency of K-tier heterogeneous networks (HetNets).

Another key technology has already deployed in long term evolution (LTE-advanced) and 5G is mas-
sive multiple-input multiple-output (MIMO) [14], [15]. In this work, they examined the utilization of power-
domain NOMA at base stations with multiple antennas. Various works on multiple antennas aided NOMA
have focused on perfect SIC such as [16]–[26] whereas only a few have focused on imperfect SIC (ipSIC) as in
[27]–[29]. While the perfect SIC (pSIC) represents the ideal condition of no data loss and no external sounds,
the ipSIC represents data transfer in a real-time context.

Motivated by recent studies, just a few works have examined how single-input single-output (SISO)
downlink NOMA systems perform in general fading channels. For instance, in [30], the authors investigated
the impact of residual transceiver hardware impairments on cooperative SISO NOMA under generic α − µ
fading channels. The authors also proposed exact asymptotic formulas for outage probability (OP), ergodic
capacity, and energy efficiency to characterize the system performance. Le et al. in [31], the authors studied
the uplink performance of SISO NOMA systems subject to imperfect SIC and delay constraints over a wide
range of fading composite fading channels like lognormal-Nakagami-m, KG, η−µ, Nakagami-q (Hoyt), κ−µ,
Nakagami-n (Rician), Nakagami-m, and Rayleigh fading channels. The authors derived exact expressions of
OP, throughput, and capacity based on Meijer-G functions. Moreover, [32], the authors considered OP for
downlink and uplink multi-user SISO power-domain NOMA network where users can be subject to one of the
fading distributions mentioned in [31]. ElHalawany et al. in [33], the authors also developed exact expressions
for ergodic capacity, OP and bit error rate (BER) for a two-user NOMA-aided SISO downlink framework under
κ− µ shadowing.

Differently, this paper provides a scheme to highlight the different OP performance of two users
separated by an obstruction in a multiple-input single-output (MISO) NOMA network utilizing perfect and
imperfect SIC under κ − µ fading channels. Our contributions are listed is being as: We investigate power-
domain NOMA by examining the downlink OP performance under κ − µ fading channels using perfect and
imperfect SIC. We formulate exact OP formulas subject to the power allocation coefficients constraints. We
evaluate outage under κ−µ fading channels to show how perfect and imperfect SIC guarantees operation in the
downlink when there is an obstruction between the two users. Simulation results demonstrate that imperfect
SIC, in terms of the OP, outperforms perfect SIC.

The remainder of this document is formatted is being as. The downlink power-domain NOMA with
generalized channels is described in section 2. In part 3, we look at the outage performance of a power-domain
NOMA scenario. In part 4, we present comprehensive numerical simulations, and section 5 ends the article.

2. DESCRIPTION OF DOWNLINK NOMA WITH GENERALIZED CHANNELS
Figure 1 shows a base station (BS) equipped with N antennas to serve two NOMA users, U1 and U2.

Particularly, we assume that the BS is equipped with n antennas in which n = [1, 2, . . . , N ]. The channel gain
of links BS − U1 and BS − U2 are defined as gn,1 and gn,1, respectively. In this study, the BS transmits the
superposed information s =

√
Pb1s1 +

√
Pb2s2 to the users (U1 and U2), where s1 and s2 are U1 and U2 the

messages, respectively. b1 and b2 are the power allocation coefficients subject to b2 > b1 and b2 + b1 = 1.
P is the BS transmit power. Moreover, U1 and U2 receive the superposed signal and loop interference signal
simultaneously. The observations at U1 and U2 are [34]:

yn,1 = gn,1

(√
Pb1s1 +

√
Pb2s2

)
+ ωn,1, (1)
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yn,2 = gn,2

(√
Pb1s1 +

√
Pb2s2

)
+ ωn,2, (2)
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Figure 1. Downlink NOMA with generalized channels

where ωn,i ∼ CN (0, N0), for i = 1, 2 is the additive complex white gaussian noise (AWGN).
As given (2), U2 is able to detect s2 by treating s1 in (2) as an interference. The instantaneous signal-

to-interference-plus-noise ratio (SINR) at U2 from (2) is given as:

γ̃n
U2

=
ρb2|gn,2|2

1 + ρb1|gn,2|2
=

b2γn,2
1 + b1γn,2

, (3)

where γn,i
∆
= ρ|gn,i|2, i ∈ {1, 2} and ρ = P/N0 is the transmit SNR at NOMA users.

As for the detection of s2, U1 first performs SIC that decodes and removes U2’s message, then pro-
ceeds to decode its own message without interference. For this, the instantaneous SINR at U1 for the detection
of s2 is given as:

γ̃n
U2→U1

=
ρb2|gn,1|2

1 + ρb1|gn,1|2
=

b2γn,1
1 + b1γn,1

, (4)

After the SIC procedure in this context, resulting in a positive residual interference quantity and channel estima-
tion noise without the interference of s1 with imperfect SIC (ipSIC) and perfect SIC (pSIC), the instantaneous
signal-to-noise ratio (SNR) at U1 for the detection of s1 is represented as [35]:

γ̃n,pSIC
U1

= b1γn,1, (5)

γ̃n,ipSIC
U1

=
b1γn,1

1 + ρ|hI |2
, (6)

where |hI |2 ∼ CN (0, λI) in which 0 ≤ λI < 1 is the level of residual interference caused by imperfect SIC
and CN ∼ (a, b) is the complex normal distribution with average a and variance b.

3. ANALYSIS OF OUTAGE PROBABILITY
3.1. The channel model

We set γn = γn1
= γn2

, thus, the probability density function (PDF) of γn is given by [36], [37]:

pγn (x |κ, µ, ρ ) = G (κ, µ, ρ)x(µ−1)/2e−λgxIµ−1

(
2
√
κµλgx

)
, x > 0 (7)
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where λg = (1+κ)µ
ρ , G (κ, µ, ρ) =

λ(µ+1)/2
g

[κµ](µ−1)/2eκµ
, κ > 0 designates the total power of dominant components

and the total power of scattered waves ratio. µ > 0 describes the number of multi-path clusters and Iv (x)
denotes the v-th order modified Bessel function. Similarly, the PDFs of γi, i ∈ {1, 2} in κ− µ fading channels
can be expressed by pγi (xi |κi, µi, ρ ). For arbitrary values κ and µ, the cumulative distribution function (CDF)
of γn can be obtained as [38], (31).

Fγn
(x |κ, µ, ρ ) = 1−Qµ

(√
2κµ,

√
2λgx

)
, x > 0 (8)

with Qc (a, b) = a1−c
∫∞
b

xce−(x
2+a2)/2Ic−1 (ax) dx specifies the generalized Marcum Q-function in [39],

(4.33). For integer values of µ and with the help of [39], (4.63), Fγn
(x |κ, µ, ρ ) can be greatly simplified as:

Fγn
(x |κ, µ, ρ ) = e−κµ−λgx

∞∑
r=µ

(
λgx

κµ

)r/2

Ir
(
2
√
κµλgx

)
, (9)

Utilizing Iq (a
√
x) =

∞∑
n=0

(a
√
x/2)

2n+r

n!Γ(n+r+1) is the modified Bessel function of the first kind of order q in [40],

(8.445), we have:

Fγn (x |κ, µ, ρ ) = e−κµ−λgx
∞∑
r=µ

∞∑
n=0

κnµnλn+r
g xn+r

n!Γ (n+ r + 1)
. (10)

3.2. Two users outage probability
When the user’s rates are determined based on their channel conditions, OP becomes an important

metric for performance evaluation. Hence the performance of two users in terms of the OP is obtained in the
following way.

Case 1: 0 < λI ≤ 1, we have the OP with ipSIC for U1 is calculated as:

PipSIC
1 =Pr

(
max
n∈N

{
γ̃n
U2→U1

}
< ε̃2 ∪max

n∈N

{
γ̃n,ipSIC
U1

}
< ε̃1

)
=

N∏
n=1

[
1− Pr

(
γ̃n
U2→U1

≥ ε̃2, γ̃
n,ipSIC
U1

≥ ε̃1

)]
=
[
1− Pr

(
γ1 ≥ η̃2, γ1 ≥ η̃1

(
1 + ρ|hI |2

))]N
,

(11)

where ε̃i = 22Ri − 1, for i = 1, 2, Ri being the target rate at Ui, η̃2 = ε̃2
b2−ε̃2b1

and η̃1 = ε̃1
b1

. Assuming

η̃1

(
1 + ρ|hI |2

)
≫ η̃2, PipSIC

1 can be calculated by:

PipSIC
1 =

[
1− Pr

(
γn,1 ≥ η̃1

(
1 + ρ|hI |2

))]N
=

1−
∞∫
0

f|hI |2 (x)
[
1− Fγn,1

(η̃1 (1 + ρx))
]
dx


N

.

(12)

3.2.1. Proposition
The exact OP with ipSIC at the user U1 is written as:

PipSIC
1 =

[
e−κµ−λg η̃1

∞∑
r=µ

∞∑
n=0

n+r∑
q=0

(
n+ r
q

)
q!κnµnλn+r

g η̃n+r
1 λq

Iρ
q

n!Γ (n+ r + 1) (1 + λIλg η̃1ρ)
q+1

]N

, (13)

where Γ (•) is the Gamma function [40], (8.310).
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3.2.2. Proof of proposition
From (12), PipSIC

1 is expanded is being as:

PipSIC
1 =

1− ∞∫
0

f|hI |2 (x)dx+

∞∫
0

f|hI |2 (x)Fγn,1 (η̃1 (1 + ρx)) dx

N

=

1− λI

∞∫
0

e
− x

λI dx+
e−κµ−λg η̃1

λI

∞∑
r=µ

∞∑
n=0

κnµnλn+r
g η̃n+r

1

n!Γ (n+ r + 1)

∞∫
0

e
−x

(
1
λI

+λg η̃1ρ
)
(1 + ρx)

n+r
dx

N

.

(14)
For the first integral, it equals 1. For the second integral we use Newton’s Binomial Theorem.

(x+ y)
n
=

n∑
k=0

(
n
k

)
xn−kyk =

n∑
k=0

(
n
k

)
xkyn−k. (15)

Hence (14) is calculated as:

PipSIC
1 =

e−κµ−λg η̃1

λI

∞∑
r=µ

∞∑
n=0

n+r∑
q=0

(
n+ r
q

)
κnµnλn+r

g η̃n+r
1 ρq

n!Γ (n+ r + 1)

∞∫
0

e
−x

(
1
λI

+λg η̃1ρ
)
xqdx. (16)

Using [40], (3.351.3), we have close-form outage probability with ipSIC of U1 given as:

PipSIC
1 =

[
e−κµ−λg η̃1

∞∑
r=µ

∞∑
n=0

n+r∑
q=0

(
n+ r
q

)
q!κnµnλn+r

g η̃n+r
1 λq

Iρ
q

n!Γ (n+ r + 1) (1 + λIλg η̃1ρ)
q+1

]N

. (17)

Based on the aforementioned results, the proof is complete.
Case 2: λI = 0, PpSIC

1 is given as:

PpSIC
1 =Pr

(
max
n∈N

{
γ̃n
U2→U1

}
< ε̃2 ∪max

n∈N

{
γ̃n,pSIC
U1

}
< ε̃1

)
=

N∏
n=1

[1− Pr (γn,1 ≥ η̃2, γn,1 ≥ η̃1)]

=[1− Pr (γn,1 ≥ η̃max)]
N

=
[
Fγn,1

(η̃max)
]N

,

(18)

where η̃max = [η̃1, η̃2]
+ in which [a, b]

+
= max (a, b).

Applying (8), (10), and (18) can be calculated as:

PpSIC
1

µ∈Q
=

[
Qµ

(√
2κµ,

√
2λg η̃max

)]N
µ∈N
=

[
e−κµ−λg η̃max

∞∑
r=µ

∞∑
n=0

κnµnλn+r
g η̃n+r

max

n!Γ (n+ r + 1)

]N

.

(19)

Solving of PpSIC
1 we obtain the closed-form OP at U2 as:

P2 =Pr

(
max
n∈N

{
γ̃n
U2

}
< ε̃2

)
=

N∏
n=1

[
1− Pr

(
γ̃n
U2

≥ ε̃2
)]

=[1− Pr (γn,2 ≥ η̃2)]
N

=
[
Fγn,2 (η̃2)

]N
.

(20)
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Similarly, we obtain the OP of U2 as:

P2
µ∈Q
=

[
Qµ

(√
2κµ,

√
2λg η̃2

)]N
µ∈N
=

[
e−κµ−λg η̃2

∞∑
r=µ

∞∑
n=0

κnµnλn+r
g η̃n+r

2

n!Γ (n+ r + 1)

]N

.

(21)

4. NUMERICAL RESULTS
In this section, κ−µ fading is used; see Table I for a list of examples. We use mathematical derivations

to mimic OP and then use Monte-Carlo simulation to check these derivations. Table 2 contains a list of the
parameters.

Table 1. The κ− µ distribution yields common fading distributions [41]
Channels κ− µ Distribution parameters
Rayleigh µ = 1, κ → 0

One-sided Gaussian µ = 0.5, κ → 0

κ− µ µ = µ, κ = κ
Nakagami-m µ = m,κ → 0

Rician with parameter K µ = 1, κ = K

Table 2. In the performance evaluation, system parameters were employed [42]
System Parameters Values

Monte Carlo simulations repeated 106 iterations
Antennas of BS N = 2

The power allocation coefficients {b1, b2} = {0.1, 0.9}
The target rate at U1 R1 = 2 bps/Hz
The target rate at U2 R2 = 1 bps/Hz

The interference signal’s effect level (IS) λI = 0.001

Figure 2 depicts OP for user U1 with imperfect SIC versus transmit SNR for different fading channels.
From the Figure, we can observe how the level of interference signal λI impacts OP. The best OP performance
is achieved under Nakagami-m fading channels for both cases of λI . Also, the OP curves approach a floor at
large SNR values as this is indicative of the error introduced by SIC in general. However, the OP performance
curves have different values depending on the λI value. The reason is that imperfect SIC under performs in
cases of large levels of interference signal as to be expected from the literature.

Figure 3 depicts OP for both user U1 with perfect and imperfect SIC conditions, and user U2 versus
transmit SNR for different fading channels with λI = 0.001. From the Figure, we can observe how the different
values of κ− µ distribution impact OP. The best OP performance is achieved under (κ− µ) = (2, 0) for both
U1 and U2. In addition, we can observe that OP for user U2 does not approach a floor as SIC is not utilized at
the user receiver but the OP curves for U1 approach a floor at large SNR values when perfect SIC is exploited
at the receiver.

Figure 4 depicts OP for both user U1 with perfect and imperfect SIC conditions, and user U2 versus
power allocation b2 for different values of fading channels with target rates R1 = R2 = 0.5, λI = 0.01 and
ρ = 15 dB. From the Figure, we can observe how the different values of κ − µ distribution impact OP. The
best OP performance is achieved under (κ−µ) = (2, 0) for both U1 and U2. Moreover, at about b2 = 0.65 the
OP for both SIC cases for user U1 starts performing poorly. This demonstrates the relationship between power
allocation coefficients and OP.

Figure 5 depicts OP for both user U1 with perfect and imperfect SIC conditions, and user U2 versus
varying target rates R1 = R2, λI = 0.01, b1 = 0.05, b2 = 0.95 and while varying ρ dB. In Figure 5, we can see
how the different values of R1 = R2 and ρ impact OP. The best OP performance is achieved at R1 = R2 = 0.3
bit/s/Hz for both U1 and U2. Also, for user U1 the OP hits a ceiling at high R1 = R2 values.
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Figure 2. Probability of U1 with ipSIC versus ρ [dB] for different fading channels
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Figure 3. Outage probability versus ρ [dB] for different fading channels, with λI = 0.001
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Figure 4. Outage probability versus b2 for different values of general fading channel, with R1 = R2 = 0.5,
λI = 0.01 and ρ = 15 [dB]
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Figure 5. Outage probability versus target rate, with λI = 0.01, b1 = 0.05 and b2 = 0.95

5. CONCLUSION
We studied a NOMA communication network with two users D1 and D2 in this study. We also devel-

oped mathematical formulae for OP in the case of a receiver with an incomplete SIC. These expressions were
simulated using different κ− µ fading distribution channels (which are more generic than particular situations
like Rayleigh, Nakagami-m, and Rician fading channels). The additional simulations were done using the
general fading distribution of κ and µ as the major discovery. As can be shown from the simulations, imperfect
SIC outperforms flawless SIC models.
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