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 Resilience and fault tolerance are challenging tasks in the field of high 

performance computing (HPC) and extreme scale systems. Components fail 

more often in such systems, results in application abort. Adopting fault–

tolerance techniques can be consistently detect failures and continue 

application’s execution even if the failures exist. A prominent parallel 

programming specification, message passing interface (MPI), as it would be 

used to implement failure detection and consensus algorithm in this paper. 

Although the MPI does not facilitate fault tolerant behavior, this work 

presents a fault tolerant, matrix based failure detection and consensus 

algorithm. The proposed algorithm uses Gossiping. To detect failures, 

randomised pinging will be applied during the execution of the algorithm by 

using piggybacked gossip messages. In order to achieve consensus on the 

failures in the system, failed processes’ information will be sent using the 

same piggybacked gossip messages to all the alive processes. The algorithm 

was implemented in MPI framework and is completely fault tolerant. The 

results exhibit all the MPI process failures were detected using randomised 

pinging and global consensus has achieved on failed MPI process in the 

system. 
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1. INTRODUCTION 

Large–scale and extreme–scale systems are required to work under component failures very often. 

Fault tolerance approach is essential for future extreme, large system sizes which fail more frequently due to 

components (node and process) failure. Such systems continue to increase components count, individual 

component reliability decreases and software complexity increase [1]. To ensure parallel application 

correctness and execution efficiency in the realm of large scale distributed systems, frequent failures must 

overcome. Complete application is aborted due to frequent component failures. Adopting fault tolerant, 

scalable failure detection and consensus approaches will allow to continue the application’s execution even in 

the presence of failures. 

Epidemic failure detection [2] is one of the foundation of fault tolerance in distributed systems. 

Failure detection can takes place through gossiping known as gossip–based failure detection in which each 

process announces its aliveness to its neighbour processes frequently. With this notion, every process in the 

system will come to know about every other process and decide whether a process is alive or failed. This 

information is gradually disseminated through the network using the same Gossiping. In the field of fault–

tolerant computing, the consensus problem is the formation of an agreement may be made on any value 

among the fault–free processes in order to keep up the integrity and performance of the system [3]. The 
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notion of consensus (agreement) is to share information within a group of processes, ideally in a fault tolerant 

way i.e. the fault free processes should be able to agree on and give accurate results. 

The details of the consensus problem is illustrated in [3]-[5] (chapter 14, section 14.1.1). The paper 

[6] contributes two state-of-the-art Gossip based algorithms that use randomized pinging to detect all the 

process failures before and during the execution of the algorithms at high speed during Gossip cycles. 

Failures are circulated to each of the alive processes and consensus is being achieved on the failed processes 

with the help of consensus algorithms. Implementation and testing are performed with an extreme scale 

simulator. Consensus is being detected correctly by all the alive processes when they identify the existence of 

failed processes in the system. 

A part from failure detection and achieving consensus, disseminating global information and 

computing is also a challenging task in large scale, distributed systems [7]. Fault tolerant approaches are 

appropriate for this task to avoid bottlenecks and failures. Several aggregation protocols were developed and 

are broadly classified as: (i) tree based protocols and (ii) epidemic protocols. Due to the use of randomized 

communication model, epidemic protocols are robust, scalable and support maximum number of 

communications contrast to tree based protocols. Epidemic protocols have the advantage of spreading the 

information at high speed without additional communication overhead which are inherently fault tolerant. An 

effective failure detection in large, distributed systems can be done by means of Gossip based protocols. In 

[8], a Gossip based failure detection and consensus algorithm is examined to mitigate resource utilization and 

consensus time. Due to its resilient nature, random gossiping among the nodes has been investigated for 

detecting failures in the system. Moreover, the Gossip protocols have the capability to scale up the processes 

count. 

Ayiad and Fatta [9] proposed an epidemic consensus protocol to achieve both global agreement 

(consensus) among all the nodes from local computation using a decentralised data aggregation. It is 

composed of four phases: Aggregation phase, Convergence phase, Agreement, and Commit phase. To 

function epidemic consensus protocol, two more protocols: node cache protocol and system size estimation 

protocol are used to achieve global agreement. The proposed work uses a single epidemic protocol to achieve 

consensus on MPI process failures. Katti and Lilja [10] proposed a combined epidemic failure detection and 

consensus algorithm which is acceptable for a very large scale systems. The PING REPLY mechanism used 

to detect process failures and consensus. The mechanism gossips the information with a single process and 

spread the information to all alive processes using the same PING REPLY in the startup phase, growth phase, 

shrink phase and final phase. The proposed algorithm is separated into four logical tasks: matrix 

initialization, detecting failures, merging the fault matrices, and check for consensus according to MPI 

primitives. 

In a large scale distributed systems, reaching an agreement among the processes is a fundamental 

need even in the presence of fault processes. A new epidemic approach i.e. information dissemination 

application [11] is proposed that simulate spreading process information and achieve global consensus in a 

decentralised fashion. Instead of using a separate application for disseminating the MPI processes 

information, the proposed work can be of use the same Gossiping approach in spreading process information. 

Katti et al. [12] introduced three algorithms based on epidemic protocols using xSim (extreme scale) 

Simulator for failure detection and consensus. In order to facilitate consensus detection, the first algorithm 

maintains an integer matrix at each process to store the status of all processes in the system. Thus the 

algorithm does not scale well. 

This paper supplements the work in [12] and focus primarily on the first algorithm to increase its 

scalability. The proposed algorithm scalability has increased by maintaining the system view at every 

individual process in the form of a boolean matrix as shown in Figure 1. Consensus (global agreement) is 

achieved with the help of alive processes using the same approach of Gossiping by preserving the status of all 

processes in a matrix. Every process in the system maintains the status of other processes in a fault matrix, 

say, ’Fm’ holds n∗n elements where ’n’ indicate number of processes. ’0’ indicate process is alive. ’1’ 

indicate process have failed. For instance, five processes ’P0 P4’ are shown in Figure 1. We can check for 

consensus at any one of the alive process say ’P2’. We can detect a particular process say ’P1’ is alive or 

failed with other alive processes ’P0, P1, P3, and P4’ by overlapping process ’P2’ with process ’P1’ which is 

shown in Figure 1 separately. Hence, in this case, consensus is detected by process ’P2’ for process ’P1’. The 

size of the fault matrix increases with the system size. To detect consensus, the number of Gossip cycles 

logarithmically increases with system size. The proposed algorithm is implemented and tested by means of 

MPI point – to – point communication primitives. 

Snir et al. [13] proposed a programming model, MPI, increases the performance, execution speed 

and scalability. Enthused by this, MPI, a standard, defines a set of library methods that are useful to 

implement portable and scalable parallel applications. It is designed by researchers from software industry 

and academia to build large-scale parallel applications. MPI allow users to create parallel programs in C or 

Fortran 77 that run on parallel architectures more efficiently. MPI is a standard programming paradigm 
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created by the MPI forum, widely used on scalable parallel computers (SPCs). The major goal of MPI are 

scalability, portability, reliable messages transmission, added credibility to parallel computing, compatible on 

heterogeneous systems and achieving high performance. Many features that were included in MPI are as 

follows: Point to point communication, process groups, process topologies, profiling interface, collective 

operations, communication domains, environmental management and inquiry, bindings for C and fortran 77 

languages. In the present work, out of all features available in MPI, point to point communication primitives 

were being used in implementing the proposed algorithm. 

 

 

 
 

Figure 1. Consensus detection on failure of process ’P1’ 

 

 

Margolin and Barak [14] presented a tree based fault tolerant algorithm using collective operations 

for parallel MPI applications that detect failures and failure recovery takes place as and when a failure has 

occurred. In [15], a user level failure mitigation (ULFM) specification is implemented in MPI to detect 

failures without stopping the applications execution in exascale systems. To solve the problem of studying 

and comparing different MPI fault tolerance techniques that helps in resuming system failures, Guo et al. 

[16] developed a bench mark suite: MATCH which will compare MPI fault tolerance designs for different 

scenarios. Chakraborty et al. [17] implemented a global restart model: EREINIT for bulk synchronous MPI 

applications to decrease failure recovery time and improve scalability. Failure detection, recover from failure 

and notification three basic mechanisms were optimized and implemented in MPI. Hassani et al. [18] 

designed a fault – aware MPI standard that implement fault – tolerant methods to confront the failures. A 

portable implementation of MPI tool, MPICH is introduced for developing parallel applications [19]. ULFM 

interface is used to program fault tolerant MPI in a large molecular dynamics application (a case study) [20]. 

[21] MPI is the best tool to implement parallelism in C, C++ and FORTRAN that has necessary standard 

libraries. Some studies has implemented the MPI according to their research problems. We have also 

implemented a unique MPI – based algorithm for our identified problem statement [14]–[21]. 

The paper is organized as: in section 2, details of the Gossip style matrix based failure detection and 

consensus algorithms are provided. Section 3 presents experimental results. Finally, section 4 concludes with 

presented work. 

 

 

2. METHOD 

Failure detection is essential for minimising failures and a core component of any resilience 

requiring infrastructure [22]. A failure detector is a distributed service capable of returning any processes and 

node’s status, whether alive or dead. The overall performance of the high performance computing systems 

will affect in terms of latency to detect and propagate failures, and in terms of communication overhead and 

computation. In general, any process and node in the communication channel can communicate to any other 

process and node by sending messages that takes maximal time to be delivered. If a process and node has 

failed, then all the communication channels are emptied and is treated as permanent failure. Gossip 

approaches potentially incorporate random failure detection and propagation times [23]. Process and node 

randomly choose other processes and nodes with whom they share their failure information using gossip style 

protocols which is an alternative approach to implement scalable failure detectors. These protocols transmits 

information about all currently known failures using ping reply messages. 

 

3.1.  Randomised pinging for failure detection 

This section discusses randomised pinging for failure detection as part of epidemic protocol. 

Failures are detected by a process by randomly pinging other process periodically. Process p selects process q 

randomly to ping during TGossip cycle of length. Until the end of ongoing TGossip cycle, if process q replies, 

then process p detects process q as alive; or else failed. Figure 2 shows the algorithm pseudo code. During 
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TGossip cycle, the chances to choose a process is 0 and 1 or more ping messages adhere to binomial 

distribution. Thus, the scalability of detecting a failed process by one or more alive processes have increased, 

thus achieving consensus by propagating the information. The implemented matrix based failure detection 

and consensus algorithm can permit medium-to-low delays and message losses, hence, it is completely fault 

tolerant. 

 

 
At each process p 

 

At every TGossip time (at each cycle) 

1 choose a random process q 
2 dispatch ping message to process q 

 

At an event: a ping message received from q 

3 dispatch reply message to process q 
 

At an event: reply not received from q before timeout 

4 write process q has failed 
 

 
Figure 2. Failure detection using randomised pinging 

 

 

2.2.  Achieving consensus using global knowledge 

This section discusses achieving consensus on MPI failed processes by enabling global consensus 

knowledge at every MPI process. Figure 3 shows the consensus algorithm where failures are detected by 

pinging random processes. The status of all the MPI processes is maintained in a boolean matrix Fi. An entry 

Fi[d, s] in the matrix denotes the status of process s as detected by process d. The consensus algorithm is 

separated into four logical sections as: i) initialisation, ii) detecting failures, iii) updating fault matrix and iv) 

check for consensus. 

 

2.2.1. Initialisation 

The line numbers 1 – 5 of Figure 3 assumes that every MPI process in the system is alive. No MPI 

process in the system detected any failures yet. 

 

2.2.2. Failure detection 

The line numbers 6 and 7 detects failures using randomised pinging by selecting a random process j, 

dispatching a ping message to process j piggybacking Fi fault matrix at every TGossip time. At line number 8, a 

timeout event is created during the current TGossip cycle to receive a reply message from process j. The line 

numbers 20 − 22 indicates a reply message is sent from process j piggybacking the fault matrix Fi. At line 

number 32, if no reply message is received by process i from process j at the end of the current TGossip cycle, 

process i detects (directly) process j to have failed. 

 

2.2.3. Fault matrix update 

The fault matrix is updated once a Gossip message (ping or reply) is received by process i from 

process q. The line numbers 23 − 27 and 29 − 31 updates the local fault matrix Fi by carrying out a logical 

OR operation between the corresponding elements in matrix Fq excluding ith row. At line number 28, an 

indirect local failure detection is performed by updating the process i in matrix Fi (row i in Fi) to incorporate 

the process q detections (row q in Fq). Sending entire fault matrix Fi information as part of Gossiping 

propagates process i detections along with other processes detection recognised by process i. 

 

2.2.4. Check for consensus 

Lastly the line numbers 9 – 19, consensus is checked on process s at i by carrying out a logical OR 

operation between sth column and its ith row corresponding elements. Thus, consensus has been reached 

when all alive processes in the system have detected a failed process. 
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At each process i 

TGossip cycle of length and 

Tout timeout period are required 

Matrix initialization: 

// Fi[d, s]: process s status as detected by process d 

// Fault Matrix Fi[d, s] where 0 ≤ d, s < n 

     1 for (d = 0, d < n, d + +) 

     2 for (s = 0, s < n, s + +) 

3 Fi[d, s] = 0 // Every process in the system is alive 

4 endfor 

5 endfor 
 

At every TGossip time (at each TGossip cycle) 

// Failure Detection using randomised pinging 

6 choose a random process j 

7 send a ping message to j piggybacking Fi 

8 receive a reply message from j by creating a timeout  

event Et =<present   cycle no + Tout, j > 

// check for consensus on process s 

     9  for (s = 0, s < n, s + +) 

     10 temp = 0 

11 for (d = 0, d < n, d + +) 

12 if (Fi[d, s] || Fi[i, d]) 

13 temp += 1 

14 endif 

15 endfor 

// a failed process is identified by all alive processes 

16 if (temp == n) 

17 consensus achieved on process s 

18 endif 

19 endfor 

At an event: a message received from q piggybacked with Fq 

20 if (message == ping) 

21 reply message dispatched to process q piggybacking Fi 

22 endif 

23  for (s = 0, s < n, s + +) 

24 for (d = 0, d < n, d + +) 

25 if (d != i) //transmitting remote failure detection 

26 Fi[d, s] = Fi[d, s] || Fq [d, s] 

27 else //indirect local failure detection 

28 Fi[i, s] = Fi[i, s] || Fq [q, s] 

29 endif 

30 endfor 

31 endfor //merging the fault matrices 
 

At an event: no reply message received from j within Tout and timeout event Et 

// (direct Failure Detection) mark j to have failed  

      32 Fi[i, j] = 1 

 

Figure 3. Failure consensus by global knowledge 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Algorithm analysis 

Epidemic protocols in large and extreme scale distributed systems are based on a peer-to-peer (P2P) 

model for computation and decentralised communication. In P2P networks, processes and nodes may join 

and leave the network arbitrarily (a.k.a Node churn [24]) in dynamic systems and may fail suddenly. It 

effects the robustness, efficiency of epidemic systems [25] and experimenting with a protocol during node 

churn is not an easy task. The proposed algorithm can be used to detect failures and achieve consensus using 

the MPI framework primitives. The implementation procedure for the proposed algorithm is given: 
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a. Generate random processes and iterations 

b. Failures were injected before and during the execution of the algorithm 

c. Initialise fault matrix 

d. MPI_MAX_ERROR_STRING is used for error handling of MPI 

e. MPI_Comm_size returns number of processes associated with a communicator 

f. MPI_Comm_rank returns rank of current process in the communicator 

g. MPI_Barrier will synchronise between MPI processes 

h. MPI_Gather collects local and global consensus information from all the processes 

i. MPI_Type_contiguous creates a new data type in contiguous memory locations for sending failure 

injection information  

j. MPI_Type_commit committing the new data type for communication 

k. MPI_Send the failure injection information is sent to the destination 

l. MPI_Recv the failure injection information is received from root 

m. MPI_Irecv start / post reception for incoming ping / reply messages 

n. MPI_Wtime returns an elapsed time in seconds 

o. MPI_Test tests whether a send / receive operation is completed 

p. Displaying the total number of MPI processes that have reached consensus 

q. Producing the fault matrix after achieving global consensus 

At every Gossip cycle, a ping reply communication is adopted in the algorithm in order to 

detect failures using randomised failure detection. During a Gossip cycle, a MPI process that receives 

ping messages follows binomial distribution. For this reason, the probability of receiving a single 

ping message/multiple ping messages by a failed process is very less. Therefore, at the earliest Gossip 

cycles, failed processes are detected. 

Using the same two Gossip messages (ping reply) in a Gossip cycle, failure detected 

information is sent to all the alive processes across the system. Upon failure detection, the proposed 

algorithm achieved consensus logarithmically with system size. The failure information dissemination 

speed is doubled as there are two Gossip messages. Moreover, it is found that the failure information 

dissemination speed has increased and consensus time has reduced during the direct failure detection by 

individual process. Gossip messages required by the algorithm in each Gossip cycle is 2. As a result, 

the total number of gossip messages needed by the proposed algorithm is as: 

 

 
 

The fault matrix is stored at each MPI process. Henceforth, the algorithm demand n2 memory units 

where n is total number of processes in the system. The algorithm is implemented using basic communication 

mechanism of MPIs “point to point communication operations” listed in section 3.1. The fault matrix is 

implemented as a boolean matrix to increase scalability of the algorithm. A process is excluded from further 

communication while simulating failure injection. The experiments were performed and tested on a single 

workstation desktop computer. The workstation system is running Ubuntu 18.04.1 LTS, openMPI 4.1.0 and 

gcc 7.4.0. Experiments were executed using openMPI to evaluate the proposed algorithm. 

Failures were injected right before the execution and during the execution of the algorithm using 

epidemic protocols. Consensus is reached on failures when the epidemic protocols spread the information 

exponentially. The time out duration for one Gossip cycle length was set to 3 ms for 25 system size. The 

cycle length can be varied for a given system size which will permit to finish the matrix merge operations 

within the given cycle length. The varied gossip cycle length for different system sizes is required as the 

matrix merge operations take maximum cycle time. The scalability of the matrix and fault tolerance is tested 

through experiments. Pinging to the same node more than once is also allowed in the algorithm to use 

redundancy feature in case of Gossiping. Failures were injected randomly to the selected MPI processes 

while the proposed algorithm is run. The consensus is reached by each process at a different cycle number on 

the injected failures and so the total number of consensus reached by each process is recorded. The 

aforementioned facts have all been verified through experiments. 

 

3.2.  Results 

Figure 4(a) shows the amount of gossip cycles consumed to achieve global consensus by each MPI 

process after single failure injection before the algorithm execution. Figure 4(b) shows the gossip cycles 

taken to reach global consensus during the algorithm execution. In both cases, it is observed that gossip 

Gossip messages needed at each process to detect consensus = 2 * Gossip cycles taken 
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cycles count increases with system size in order to reach global consensus. Figure 5 shows the percentage of 

failures detected information spread at each MPI process after failures injected. Figure 6(a) and Figure 6(b) 

shows multiple failures injection at random cycles before and during the execution of the algorithm to reach 

global consensus. Eight failures were injected right before and during the proposed algorithm that satisfies 

the property of fault tolerance. It is also noticed that, gossip cycles count taken to reach/achieve global 

consensus increased to a slight extent. Table 1 displays the gossip cycle number at which each MPI process 

achieved consensus for a single failure injected before and after execution of the proposed algorithm. Table 1 

displays the gossip cycle number at which each process achieved consensus for multiple ‘8’ failure injected 

before and after execution of the proposed algorithm. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Cycle number at which each process has reached consensus after single failure injection (a) before 

algorithm execution and (b) during algorithm execution 
 

 

 
 

Figure 5. Consensus detected locally after failure injection 
 

 

 
(a) 

 
(b) 

 

Figure 6. Cycle number at which each process has reached consensus after multiple ‘8’ failures injection 

(a) before algorithm execution and (b) during algorithm execution 
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Table 1. The statistical analysis of consensus achievement 

Gossip cycle # 
Single failure 

Gossip cycle # 
Multiple failures 

Before execution After execution Before execution After execution 
Process # Process # Process # Process # 

2 10, 11 − 4 10−14 − 
3 12−15 10−17 5 15−20 10−14 
4 16−23 18−25 6 21−26 15−20 
5 24−31 26−31 7 27−31 21−31 

 

 

4. CONCLUSION 

This paper presented a Gossip style, matrix based failure detection and consensus algorithm that 

use randomised pinging to detect MPI process failures. The algorithm is completely fault tolerant as it 

works even in the presence of single or multiple MPI process failures. Consensus is achieved on failed 

processes based on global knowledge: every process in the system maintains the status of all other 

processes. The proposed algorithm occupies more memory as every process uses a fault matrix of O(n2), 

n indicate total processes count in the system. Failures were detected using a Gossip style protocol and 

disseminate them through out the system using the same Gossip messages. Experiments were tested 

on a workstation personal computer with 2n MPI processes. The scalability of the algorithm has 

improved by implementing with boolean values in the fault matrix at each MPI process. 
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