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 This research aims to develop a tsunami vulnerability assessment model on 

land use and land cover using information on NDVI, NDWI, MDWI, 

MSAVI, and NDBI extracted from sentinel 2 A and ASTER satellite images. 

The optimization model using algorithms LASSO and linear regression. The 

validation test is MSE, ME, RMSE and MAE which show that the linear 

regression has a higher accuracy than the LASSO. The NDWI interpolation 

values are 0.00 - (-0.35) and MNDWI interpolation values are 0.00 - (-0.40) 

which are interpreted as the presence of water surfaces along a coast. 

MSAVI are values (-0.20) - (-0.35) which are interpreted as the presence of 

no vegetation. The NDBI interpolation values are values 0.15-0.20 which are 

interpreted as the presence of built-up lands with social and economic 

activities. While the NDVI interpolation values are 0.20-0.30 which are 

interpreted as the presence of vegetation densities, biomass growths from the 

photosynthesis process, and moderate to low levels of vegetation health. The 

digital elevation model ASTER analysis shows that all areas with high 

socioeconomic activities, low NDVI, high NDWI/MDWI, high MSAVI and 

high NDBI are in areas with low elevation (<10 meters) so they have a high 

vulnerability to tsunami waves. 
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1. INTRODUCTION 

The territory of Indonesia is in a geographical position with a very high disaster complexity, both 

tectonically, and volcanically. Literature studies show that historically Indonesia has a potential for large 

Tsunami disasters caused by tsunamigenic megathrust earthquakes, especially in Southern Java, Palu, and 

Eastern Indonesia [1], [2]. The term Tsunami comes from a Japanese word "tsu" (meaning harbor) and 

"nami" (meaning wave). Physically, a Tsunami is defined as a series of ocean waves caused by sudden 

displacement of a large amount of seawater. The extraordinary volume of sea water movement makes a 

Tsunami so destructive and it can destroy coastal areas far inland [3]. Literature studies also show that 

currently computer models of various aspects of tsunamis such as inundation, topography, geomorphology, 

land use, and coastal cover have been developed using digital elevation model (DEM) data [4], [5]. DEM is a 

digital cartographic model with regularly spaced intervals covering the x, y, and z axes that reference a 

vertical datum. DEM provides a 3-dimensional description of the topography of the earth's surface, precise 

orthorectification of satellite imageries, urban development studies, archeology, topography, Tsunami 

assessments, glacier observations, geomorphology, plant cover research, 3D spatial analysis, multi-criteria 

https://creativecommons.org/licenses/by-sa/4.0/
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decision support systems, hydrography modeling, and deformation monitoring [6]. DEM that was originally 

made through a field survey process, by considering the effectiveness, efficiency and accuracy, and DEM 

was developed again with remote sensing technology. Remote sensing technologies that are used to develop 

DEM data are photogrammetry, interferometric synthetic aperture radar (InSAR) and light detection and 

ranging (LiDAR) [7]. Currently, almost 80% of the world's territories have been mapped using DEM models 

and the ones that are available for free are the shuttle radar topographic mission (SRTM) and the advanced 

spaceborne thermal emission and reflection radiometer (ASTER) [8]. Literature studies show that in Japan, 

Indonesia, Portugal, Mediterranean, and Thailand, SRTM and ASTER images have been used to model 

various aspects and impacts of tsunamis such as geomorphology, topography, building damages, land 

elevations, run-up inundations, changes in land use land cover (LULC), and altimetry of tsunami-prone areas 

[9], [10]. The level of tsunami vulnerability in an area has a strong correlation with the dynamics of changes 

in LULC throughout the year so that LULC can be used as an indicator in determining areas that are safe for 

residents [11], [12]. Currently, there are many algorithms that are used to model LULC changes, such as 

cellular Automata-Markov chain, analytical hierarchy process, analytical equation-based models, statistical 

models, evolutionary models, cellular models, Markov models, hybrid models, expert system models, and 

multiagent models [13], [14]. Literature studies show that until now there have not been many publications 

made by experts on predictions of changes in LULC as a result of tsunamis.  

Thus, this research is focused on providing solutions to 3 research problems, are: i) this research 

needs valid indicators to assess and monitor coastal areas based on land use functionally and economically 

and based on land cover which refers to biophysical characteristics of the earth's surface, including the 

distribution of vegetation, water, soil, and other physical features of a land; ii) this research needs computer 

models to accurately assess the dynamics of LULC based on the classification and prediction of VI data; 

iii) LULC dynamics can be important information in assessing the level of vulnerability of tsunami impacts. 

The purpose of this research is to develop a tsunami vulnerability assessment model on land use and land 

cover using information of normalized differential vegetation index (NDVI), normalized difference water index 

(NDWI), modified difference water index (MDWI), modified soil-adjusted vegetation index (MSAVI), and 

normalized difference built-up index (NDBI) vegetation indices extracted from sentinel 2A and ASTER satellite 

imageries. Prediction and classification of vegetation indices information was carried out using the least absolute 

shrinkage and selection operator (LASSO) and linear regression algorithms. The vulnerability of the research area 

was identified using contour analysis of the ASTER DEM imageries. The research proposed conceptual 

framework of LULC vulnerability identification are: i) supervised classification methods on sentinel 2A images, ii) 

classification methods of ASTER with Contour and Hillshade, iii) supervised classification methods of VI to 

determine LULC, iv) mehods of LASSO and linear regression for vegetation index (VI) prediction, and v) 

interpolation with ordinary Kriging in determining the unknown data. 

 

 

2. THEORETICAL FRAMEWORK 

ASTER imagery is a product of cooperation between the Japan’s ministry of economy, trade and 

industry (METI) and the U.S. national aeronautics and space administration (NASA). METI and NASA 

perform scheduling for data acquisition, instrument calibration, archiving, and distribution of data to users. 

The spatial resolution of the ASTER imagery is 15 m on horizontal plane [15]. ASTER has 3 channels of 

visible near infra-red (VNIR) spectrum, 6 channels of short wave infra-red (SWIR), and 5 channels of 

thermal infra-red (TIR) spectrum [16]. ASTER and SRTM imageries combined with VI analysis of sentinel 

2A image will produce periodic LULC dynamics information. VI is a mathematical transformation that is 

combined linearly from the reflectance measurement data of different spectral bands, especially the visible 

light red, green, and blue (RGB) and near infrared (NIR) bands from remotely sensed images. The 

mathematical transformation process was carried out in the form of addition, division, and multiplication 

operations to produce a single value. VI is used for the classification process that separates vegetated and 

non-vegetated areas, water bodies and land areas, as well as vacant lands and built-up lands on land cover or 

biomass from image pixels [17], [18]. Visible light and NIR bands are used in VI because they have high 

sensitivity in detecting the presence of vegetation on the earth's surface [19]. NDVI is one of the VI data 

which represents the level of greenery or vegetation biomass as an indicator of the health and activities of 

photosynthesis. The NDVI value is calculated using the VNIR band with wavelengths of 705-865 nm and the 

red band with a wavelength of 665 nm. The value of the NDVI calculation is range of values -1 and 1. A 

value of 0 represents no photosynthetic activity or no vegetation and a value of 1 represents a high 

photosynthetic activity [20]. The NDWI is a type of VI which is used as an indicator to detect the surface of 

water bodies using the VNIR band with wavelengths of 705-865 nm and the green band with a wavelength of 

560 nm and effectively represents the effective surface of water bodies and built lands [21]. The NDWI 

equation is shown in Table 1. 
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Table 1. Equation vegetation indices  
References Vegetation indices Formula Equation number 

[22] NDVI 𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 

 (1) 

    

[23] MNDWI 𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑀𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑀𝐼𝑅 

 
(2) 

    

[24] NDWI 𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅 

 (3) 

    

[25] NDBI 𝜌𝑆𝑊𝐼𝑅 − 𝜌𝑁𝐼𝑅 

𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑁𝐼𝑅 

 (4) 

    
[26] MSAVI 𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 +  𝜌𝑟𝑒𝑑 + 𝐿𝑜

(1 + 𝐿𝑜) (5) 

 

 

The NDBI is a type of VI which represents the built-up areas and other types of land cover. NDBI is 

determined using the VNIR band with wavelengths of 705-865 nm and the SWIR band with wavelengths of 

940-2190 nm [27]. MSAVI is a type of VI applied to overcome the weaknesses of NDVI, especially in 

relation to large open lands. MSAVI has the ability to reduce the reflectance function of the soil surface and 

increase the reflectance function of the vegetation canopy density and soil slope. MSAVI requires 

information on soil brightness factor (L) with values ranging from 0 representing high vegetation cover and 1 

representing low vegetation cover. Generally, researchers use medium level of soil brightness factor i.e., 0.5 

[28], [29]. Literature study shows that machine learning (ML) is the effective algorithm for predicting and 

classifying vegetation growth which is represented in the form of VI [30]. ML is a dominant data processing 

paradigm for extracting information from remotely sensed data. ML works through model development 

based on prior knowledge as a limited number of labeled samples. However, the basic problem is that sample 

collection is very expensive and time consuming [31]. Various ML methods that are usually used to predict 

an earthquake as a tsunami trigger include the LASSO [32], [33]. LASSO is an ML algorithm that works in 2 

steps, namely regularization and feature selection. Regularization is done by determining the absolute value 

of a parameter while regularization is done by shrinking the value of the variable coefficient set to a value of 

0. If there is a feature that has a variable coefficient value of not 0, it will be in the regularization process and 

it will be selected as part of the model. The purpose of this process is to reduce prediction errors [34]. The 

LASSO equation is shown in (5). 
 

𝑚𝑖𝑛𝛽0,𝛽{||𝑦𝑖 − 𝛽01𝑁 − 𝑥𝛽||2
2} 𝑠. 𝑡 ||𝛽||1 ≤ (6) 

 

Where 𝑦𝑖  is the ith observation data, 𝛽 is the regression coefficient, the notation x is the data matrix, t is the 

iteration to validate the prediction result [31].  

Linear regression is a method to predict the response variable by using two or more independent 

variables. Assuming the response variable is y, independent variable is x, then 𝑥 = (𝑥0, 𝑥1, … 𝑥𝑛), 𝑥0 = 1, and the 

regression coefficient is 𝛽 = (𝛽0, 𝛽1, … 𝛼𝑛), 𝑥0 = 1. The regression coefficient is formulated with the (6) [6]. 
 

𝑦 = 𝛽0 + 𝛽1𝑥1 … 𝛽𝑛𝑥𝑛 + 𝜖 (7) 
 

Ordinary Kriging (OK) is an interpolation method that works using the spatial autocorrelation 

principle, which assumes that a point closer to the prediction point has a greater value than the sample point 

farther from the prediction point. OK is defined using the (7). 
 

𝛾(𝑑) =
1

2𝑁(𝑑)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + 𝑑)]2𝑁(𝑑)

𝑖=1  (8) 

 

Where 𝛾(𝑑) is the variogram value at 𝑑 distance, 𝑍(𝑥𝑖) is the variable value observed at (𝑥𝑖) location, 

notation 𝑁(𝑑) is the total number of all observation points at 𝑑 distance. The prediction of variable 

distribution is calculated using linier regression 𝑍 ∗ (𝑥), as shown in (8). 
 

𝑍 ∗ (𝑥) − 𝑚(𝑥) = ∑ 𝜆𝑖(𝑥)[𝑍(𝑥𝑖) − 𝑚(𝑥𝑖)]𝑛(𝑥)
𝑖=1  (9) 

 

Where 𝜆𝑖(𝑥) is the weight, 𝑚(𝑥) and 𝑚(𝑥𝑖) are mathematical expectations on random variables 𝑍 ∗ (𝑥) and 

𝑍(𝑥𝑖) [35]. 
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3. PROPOSED FRAMEWORK  

The main idea of this research is to develop a computer model in identifying the dynamics of LULC, 

based on changes in the physical environmental of coastal areas using VI indicators. VI consists of NDVI 

representing vegetation density, MNDWI and NDWI representing water bodies, MSAVI representing open 

land, and modified normalized difference built-up index (MNDBI) representing built-up land. LULC 

dynamics are predicted using LASSO and linear regression methods. The spatial distribution of LULC 

elements is predicted using the ordinary Kriging spatial interpolation method. The overlay of the results of 

the ordinary Kriging analysis with contour and hillshade results LULC classification of areas that have a high 

tsunami vulnerability. This concept and algorithms pseudocode are the novelty of this research as shown in 

Figure 1 (a) to (e). The proposed pseudocode algorithms 1: 
 

 

Parameter 

NDVI 

MSAVI 

MNDWI 

NDWI 

NDBI 

 

Parameter 

Contour 

Hill shade 

 

Data 

Sentinel 2A 

Vector Location 

 

(a) LULC Based Supervised 
Classification

(a) LULC Based Supervised 
Classification

(c) Dynamic LULC Based 
Vegetation Indices

(c) Dynamic LULC Based 
Vegetation Indices

(e) Dynamic LULC Based Vegetation 
Indices using Ordinary Kriging 

(e) Dynamic LULC Based Vegetation 
Indices using Ordinary Kriging 

(b) Contour and Hillshade from 
ASTER DEM 

(b) Contour and Hillshade from 
ASTER DEM 

(d) Machine Learning Based 
LASSO and Linear Regression

(d) Machine Learning Based 
LASSO and Linear Regression

Location NDVI NDWI MNDWI MSAVI MNDBI Contour 

A Middle  Low Low Low Low High 

B Middle Low Low Low Low High 

C Middle Low Low Low Low High 

D Low High High High High Low 
 

 
 

Figure 1. Proposed framework concept for LULC vulnerability identification; (a) the method of supervised 

classification on sentinel 2A images, (b) classification of ASTER G-DEM with contour and hillshade,  

(c) guided classification of VI to determine LULC, (d) the method of LASSO and linear regression for VI 

prediction, and (e) interpolation with ordinary Kriging in determining the unknown data 
 
 

The proposed pseudocode algorithms 1 
Begin 

 Numeric Data Sentinel-2 ESA = {ML, QL, AL, MρQcal, Aρ} 

 Numeric Aster G-DEM = {contour, Hillshade} 

 Radiometric correction process: 

  Step 1: Conversion DN to TOA Radiance: Lλ = MLQcal + AL 

  Step 2: Conversion DN to TOA Reflectance: ρλ‘= MρQcal + Aρ 

 Atmospheric Correction process:  

ρ*(λ) =ρr(λ) + ρa(λ) + ρra(λ) + T(λ) ρg(λ) + t(λ) ρwc(λ) + t(λ) ρBOA(λ) 

 Geometric Corection process 

 Vegetation Indices process: 

  NDVI = 
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 
 ; MNDWI = 

𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑀𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑀𝐼𝑅 
 ; NDWI = 

𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅 

𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅 
 ; NDBI = 

𝜌𝑆𝑊𝐼𝑅 − 𝜌𝑁𝐼𝑅 

𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑁𝐼𝑅 
 

  MSAVI = 
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑 

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑+𝐿𝑜
(1 + 𝐿𝑜) 

 Lasso process: 𝑚𝑖𝑛𝛽0,𝛽{||𝑦𝑖 − 𝛽01𝑁 − 𝑥𝛽||2
2} 𝑠. 𝑡 ||𝛽||1 ≤ 𝑡 

 Linear Regression: 𝑦 = 𝛽0 + 𝛽1𝑥1 … 𝛽𝑛𝑥𝑛 + 𝜖  

 Ordinary Kriging: (𝑑) =
1

2𝑁(𝑑)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + 𝑑)]2𝑁(𝑑)

𝑖=1 ; 𝑍 ∗ (𝑥) − 𝑚(𝑥) = ∑ 𝜆𝑖(𝑥)[𝑍(𝑥𝑖) − 𝑚(𝑥𝑖)]𝑛(𝑥)
𝑖=1  

 Accuration Prediction Count: MSE = ∑
(𝑌′−𝑌)2

𝑛
 ; MAE = ∑

|𝑌′−𝑌|

𝑛
 ; RMSE = √

(𝑌′−𝑌)2

𝑛
 

 Spatial Interpolatioan  Aster G-DEM 

 Display matrix Higher Vulnerability, Middle Vulnerability, Lower Vulnerability 
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4. RESEARCH METHOD  

4.1.  Research location 

This research was conducted in areas that have a high Tsunami vulnerability, namely the areas of 

Cilacap Regency of Central Java Province, Indonesia. Those areas are shown in Table 2. The determination 

of high tsunami susceptibility areas is based on the regulation of Peraturan Daerah Kabupaten Cilacap Nomor 

9 Tahun 2011 tentang rencana tata ruang Wilayah Kabupaten Cilacap tahun 2011-2031 (in Indonesian). The 

existing document informs that the total area with a high Tsunami risk is 5,856 Ha. The Tsunami-prone area 

in this research is defined as an area with a low elevation beach and/or an area that has capability or has 

experienced a Tsunami which includes areas in 7 sub-districts as shown in Table 2 and Figure 2. The 

research area has various land uses, namely: vegetation, industrial areas, rice fields, fisheries, residential 

areas, and beaches. 
 

 

Table 2. Areas with a high Tsunami vulnerability in Cilacap Regency of Central Java Province, Indonesia 
No Name of Sub-District Latitude Longitude 

1 Adipala Sub-District -7.6680 109.1642 

2 Kesugihan Sub-District -7.6201 109.0810 

3 Cilacap Utara Sub-District -7.6690 109.0275 
4 Cilacap Tengah Sub-District -7.6865 108.9859 

5 Cilacap Selatan Sub-District -7.7497 108.9621 

6 Kawunganten Sub-District -7.5961 108.9265 
7 Kampunglaut Sub-District -7.6712 108.8670 

 

 

 
 

Figure 2. Research area consisting 7 sub-districts in Cilacap Regency with a high Tsunami vulnerability 

 

 

4.2.  Research data 

Research data is classified into two types of DEM data, namely: i) ASTER. ASTER data is used to 

determine the aspect, slope, and contour, ii) VI data is extracted from sentinel 2A images. Data VI consists of 

5 types, namely NDVI, NDWI, MNDWI, NDBI, and MSAVI. Data VI is used to determine the 

characteristics and dynamics of LULC patterns. 

 

4.3.  Stages of experimental procedure  

Figure 3 shows stages of experimental procedure by; i) DEM data preprocessing. This stage is 

performed by downloading the ASTER image data through the portal https://earthexplorer.usgs.gov/ and 

selecting the research area according to its coordinates, ii) preprocessing satellite image data. This stage is 

performed by downloading sentinel 2 A image data from portal https://earthexplorer.usgs.gov/, selecting the 

research area according to its coordinates and performing atmospheric, radiometric, and geometric 

corrections, iii) analysis and interpretation of DEM data. This stage is performed by determining hillshade 

and elevation, iv) the VI time series data extraction. This stage is carried out using NDVI, NDWI, MNDWI, 

NDBI, and MSAVI algorithms, v) prediction of VI data. This stage is done using LASSO algorithm and 

linear regression, vi) the accuracy test of the prediction results. This stage is performed using MSE, ME, 

RMSE, and MAE methods, vii) prediction VI results are mapped in areas with high tsunami susceptibility 

using the ordinary Kriging method. 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Radiometric 
Correction

Atmospheric 
Correction

Geometric 
Correction

Sentinel-2 ESA

DATA  PREPROCESSING 

NDVI

NDWI

MNDVI

MSAVI

MNDBI

MACHINE LEARNING ALGORITHMS

LASSO

LINEAR REGRESSION

VI ALGORITHMS ACCURATION PREDICTION

MSE, ME, 
RMSE, MAE

Spatial 
InterpolationASTER G-DEM

Contour Hillshade

Higher Vulnerability

Matrix Vulnerability

Middle Vulnerability

Lower Vulnerability
 

 

Figure 3. Experimental procedure of the satellite imagery for Tsunami inundation framework based on 

vegetation indices 
 

 

5. RESULTS AND DISCUSSION  

The composition and structure of vegetation in LULC is dynamic, which they fluctuate over a long 

period of time following seasonal patterns and they can also fluctuate in a short time according to 

anthropogenic pressures. The computational experiment of sentinel 2A band images in time series show that 

the composition and structure of vegetation in LULC are determined using NDVI, NDWI, MNDWI, MSAVI, 

dan NDBI [8]. Reference source shows that VI and terrain aspects (slope, elevation, and aspect) are the 

essential parameters used to monitor the intensity of anthropogenic dynamics of coastal beaches which are 

caused by anthropogenic activities [9], [36].  

The changes in NDVI value are in line with the long-term seasonal pattern observational data, 

LASSO prediction and linear regression prediction (Figures 4 (a) to (c)) indicates a change in land use which 

affects on vegetation density. The changes in vegetation density caused by natural cycle of plant seasonal and 

society’s socio-economy activities.  
 

 

   
(a) (b) (c) 

   

Figures 4. The NDVI spatial pattern for (a) observational data, (b) LASSO prediction data, and (c) linear 

regression prediction data are indicates a change in land use which affects on vegetation density caused by 

natural cycle of plant seasonal and society’s socio-economy activities 
 

 

The results show that the NDVI value is in the range of 0.20-0.30 which is interpreted that the study 

area has vegetation density, biomass growth from photosynthesis, various canopy formations, and has a 

moderate to low vegetation health. Tsunami propagation was affected by elevation, coastal topography and 

coast-to-land distance which can be extracted from DEM images [37]. The coastal topography is dominated 

by mangroves or pine forests and the built environment so that to a certain extent it has an influence on 

propagation, inundation, and absorption of Tsunami energy [38]. Coastal topographic structures can be 

identified and predicted using VI, namely NDVI, MNDWI, NDWI, MSAVI, and NDBI. The use of VI is 

based on the following considerations: i) VI focuses on certain types of land cover (vegetation type, water 

body, and soil surface), ii) the disturbing background effects can be reduced, and iii) atmospheric distortion 

effect caused by the angle of the sun and the angle of view of the sensor can be reduced [37].  

The MNDWI indices in observational data, LASSO prediction data and linear regression data 

(Figures 5(a) to (c)) are calculated using green band and SWIR band spectrums. The MNDWI value is in a 

range of -1 to +1 where water body is indicated by pixels between 0 and +1. The separation of water pixels 

from non-water pixels is made using the image binarization method, namely the use of the optimal threshold 

for converting the spectrum index into two classes, namely discrete 0, binary 1. The algorithm converts the 

pixel value of an image less than 0 with a value of 0 and converts the pixel value of an image more than 1 

with a value of 1. With this concept, all pixels with a code of 1 represent water bodies and those pixels with a 

code of 0 represent non-water bodies [39].  
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(a) (b) (c) 

   

Figures 5. The NDWI spatial pattern for (a) observational data, (b) LASSO prediction data, and (c) linear 

regression data are affected by long-term seasonal pattern which occurred naturally, short-term seasonal 

pattern which occurred because of socio-economy activities of the coastal society 
 

 

Figures 5(a) to (c) show blue, green, yellow to red colors with an interpolation value of 0 - (-0.3) 

which represent the water surface of shrimp ponds and rice fields along a coast. The changes in NDWI and 

MNDWI values are also affected by long-term seasonal pattern which occurred naturally, short-term seasonal 

pattern which occurred because of socio-economy activities of the coastal society, such as in stocking season 

and harvest season in fishery industry as shown in Figures 6(a) to (c). The NDWI is one of the indicators to 

determine if there is a wide water body and water puddles such as rivers and rice fields during the rainy 

season. Figures 6(a) to (c) are in the range of 0.00 - (-0.40) and NDWI is in the range of 0.00 - ( -0.35) which 

represent water surfaces of shrimp ponds and rice fields. All coastal areas show land uses for economic, 

social, and residential activities.  

 

 

   
(a) (b) (c) 

 

Figures 6. The MNDWI spatial pattern for (a) observational data, (b) LASSO prediction data, and (c) linear 

regression prediction data are also affected by long-term seasonal pattern which occurred naturally, short-

term seasonal pattern which occurred because of socio-economy activities such as in stocking season and 

harvest season in fishery industry 

 

 

The changes in short-term NDBI value shows the changing in the land use which is massively 

conducted in the coastal area as physical development activities on the coastal area as shown in  

Figures 7(a) to (c). The physical development is the land-use change from open land to buildings, mesh 

networks, and fishery industry, such as shrimp embankments. 

 

 

   
(a) (b) (c) 

   

Figures 7. The NDBI spatial pattern for (a) observational data, (b) LASSO prediction data, and (c) linear 

regression prediction data. The changes in short-term NDBI value shows the changing in the land use which 

is massively conducted in the coastal area as physical development activities on the coastal area 

 

 

MSAVI in Figures 8(a) to (c) is the vegetation index used as a correction for NDVI index to remove 

the effect of a background in the calculation of VI. MSAVI has a higher dynamic response of vegetation and 

lower background variation when compared to NDVI and SAVI. MSAVI is determined using band  

3 (red) and band 4 (NIR) reflectance. A high MSAVI value indicates a good and healthy vegetation, while a 

value close to or equal to -1 indicates no vegetation, i.e., an open land or barren land [39], [40].  
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(a) (b) (c) 

 

Figures 8. The MSAVI spatial pattern for (a) observational data, (b) LASSO prediction data, and (c) linear 

regression prediction data is the vegetation index used as a correction for NDVI index to remove the effect of 

a background in the calculation of VI 

 

 

MSAVI in Figures 8(a) to (c) shows that it is in the range -0.20 to -0.35 which indicating low values, 

and it is interpreted that the study areas are open lands and have no vegetation. NDBI is the VI used to map 

built-up lands with the range of values 0.15-0.20 indicating low values, and it is interpreted that most of the 

study areas are built-up lands. The NDBI value lies between -1 to +1, where a negative value represents a 

water body and a positive value represents a development area. 

Based on the VI historical data, the following experiment is a prediction to find out the VI data in 

one period in the future using the linear regression method. In some references, the linear regression method 

shows good accuracy in predicting VI from sentinel images in its relations to the land coverage [41]. The 

data results of VI prediction are classified based on the grouping or data class using the LASSO algorithm. 

The classification and prediction results are tested for their accuracy and validation using various statistical 

methods, such as the MSE, ME, RMSE, and MAE. The MSE, ME, and MAE testing results which are close 

to zero will have higher accuracy, on the other hand, the results which are not close to zero have lower 

accuracy level (Table 3 and Table 4). In order to find out the spatial distribution pattern in every VI, the 

ordinary Kriging (OK) method is used. OK is a method to determine the unknown VI value because it is not 

the sample points [42]. The visualization of the spatial pattern using the OK method in the VI data and VI 

prediction data is presented in Figure 4(a), (b), (c) to Figure 8(a), (b), (c).  

 

 

Table 3. Results of accuracy and validation tests of 

LASSO algorithm using MSE, ME, RMSE, and 

MAE 
 NDVI MSAVI NDWI MNDWI NDBI 

Minimum 0.172 -0.183 -0.605 -0.395 -0.324 

Average 0.296 -0.036 -0.313 -0.171 -0.159 
Maximum 0.433 0.058 -0.147 0.072 0.038 

MSE 0.004 0.018 0.003 0.004 0.001 

ME 0.005 0.003 -0.001 -0.002 0.002 
RMSE 0.065 0.135 0.055 0.067 0.027 

MAE 0.050 0.109 0.046 0.055 0.019 
 

Table 4. Results of accuracy and validation tests of 

linier regression algorithm using MSE, ME, RMSE, 

and MAE  
 NDVI MSAVI NDWI MNDWI NDBI 

Minimum 0.155 -0.226 -0.651 -0.440 -0.350 

Average 0.297 -0.036 -0.313 -0.171 -0.159 
Maximum 0.454 0.077 -0.124 0.098 0.067 

MSE 0.004 0.018 0.003 0.004 0.001 

ME 0.004 0.003 0.000 -0.002 0.002 
RMSE 0.066 0.134 0.056 0.067 0.025 

MAE 0.048 0.108 0.044 0.053 0.018 
 

 

 

Coastal topography in the study area can be visualized using hillshade method as shown in  

Figures 9. Hillshade is a method for visualizing the relief of the earth's surface with raster data sources DEM 

in 2-dimensional format by adding light to make it appears as a 3-dimensional object. The purpose of using 

the hillshade method is to sharpen relief visualization of the earth's surface. The hill shade and elevation 

visualizations are shown in Figure 9(A, B, and C). representing the characteristic model of the relief and 

elevation of earth's surface in 3D format as the background where vegetations NDVI, water bodies MNDWI, 

open lands MSAVI, and built lands MNDBI are located. Figures 9(A, B, and C) shows a visualization of the 

terrain on the coast of Nusakambangan Island which is dominated by hills which theoretically can protect the 

island from high tsunami waves. Elevations in A, B, and C indicate that the points are at an altitude > 40 

meters above sea level Figure 5. These areas are more protected from a tsunami because these areas are hilly 

and heavily forested. Land use and socio-economic activities on Nusakambangan Island are lower when 

compared to that of Cilacap City (D). Cilacap City and its coastal areas have high land use and socio-economic 

activities. However, Cilacap City shows the existence of open coastal terrains without natural protection of 

hills. The tsunami barriers of Cilacap City are buildings and city park’s vegetations. The correlation between 

VI and the studied areas’ elevation can be represented in a relation matrix of the components to determine the 

affected areas, as seen in Table 5. The Nusakambangan Island areas (A, B, and C) have middle to high 

vegetation levels, although the island’s water surface, open space, and buildings are on the low level, and it has 

high elevations in the form of hills. Area D is Cilacap City which has low vegetation level, but it has a wide 

water surface, open space, and built-up lands.  
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Table 5. Relation matrix of location, VI and contour components to determine the vulnerability degree of the 

affected areas 
Location NDVI NDWI MNDWI MSAVI MNDBI Contour 

A Middle  Low Low Low Low High 
B Middle Low Low Low Low High 

C Middle Low Low Low Low High 

D Low High High High High Low 

 

 

 
 

Figure 9. Characteristic model of the earth's surface relief and elevation at 4 observational points 

 

 

6. CONCLUSION 

The tsunami vulnerability assessment model on land use and land cover using information of NDVI, 

NDWI, MDWI, MSAVI, and NDBI vegetation indices extracted from sentinel 2 A and ASTER satellite 

imageries shows an effective performance. The test of machine learning algorithm, namely LASSO and 

linear regression and the test of spatial interpolation, namely Universal Kriging by using MSE, ME, RMSE, 

and MAE statistical methods show a high accuracy. Spatial interpolation analysis using Universal Kriging 

shows that the linear regression algorithm is closer to the observation data than that of the LASSO algorithm. 

Interpolation NDWI 0.00-(-0.35) and MNDWI 0.00-(-0.40) are interpreted as water body or water surface 

along a coast. MSAVI (-0.20)-(-0.35) is interpreted as open land and no vegetation. NDBI 0.15-0.20 is 

interpreted as built up land with social and economic activities. NDVI 0.20-0.30 is interpreted as vegetation 

density, biomass growth from photosynthesis, various canopy formations, and moderate to low level of 

vegetation health. The DEM ASTER analysis shows that there are high socioeconomic activities, low 

vegetation densities, large water bodies, wide open lands, and large buildings located in an area with low 

elevation (<10 meters) so that it has a high vulnerability to tsunami waves. The relations of VI and the 

studied area elevation can be represented in a relation matrix between components. Nusakambangan Island 

(A, B, and C) has middle to high levels of vegetation, but its water surface, open space and buildings are in 

the low levels, and it has high elevation level in form of hills. The D area is Cilacap City which has low 

vegetation density level, but there are wide areas of water surface, open space and built-lands. 
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