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 This paper introduces a stacking ensemble model, which combines three 

single models, to improve intrusion detection in supervisory control and data 

acquisition (SCADA) systems. The first layer of the proposed model is the 

combination of random forest, light boosting gradient machine, and eXtreme 

gradient boosting models. We use an multilayer perceptron (MLP) network 

as a meta-classifier of the model. The proposed model is optimized and 

tested on an international dataset (gas pipeline dataset). The tested results 

show an accuracy of 99.72% with the f1-score of 99.72% for binary 

classification tasks (attacked or non-attacked detection). For categorical 

tasks, the detection rates of almost all attack types are higher than 97.55% 

(except for denial of service (DoS)-95.17%), with an overall accuracy of 

99.62%. 
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1. INTRODUCTION  

Nowadays, supervisory control and data acquisition (SCADA) systems are widely used in power 

transformer stations and industrial factories. To keep the regular operation of such systems, data collection, 

data processing, and, ensuring the integrity of the data are very important. SCADA systems can be attacked 

not only on the physical infrastructures but also on the communication and supervisory control layers, as 

shown in Figure 1 [1]. A1, A2, A3 are attack points aimed at the supervisory control layer and through 

applications on a web server to spread viruses that destroy the control and supervising network configuration. 

The attack at point A4 is to occupy access to communication channels between the control center and 

stations. A5, A6 are attack points aimed at the communication link between MTU and PLC/RTU. A7 is an 

attack point on the network connection between factories and their contractors. The attack at point A8 aims at 

field terminal devices. The attack at points A9 and A10 aim at the signal lines from controllers to actuators, 

and the feedback signals from sensors to controllers, respectively. At point A0, attacks are all direct 

mechanical impacts to physical layer devices of SCADA systems. To exploit SCADA protocol weaknesses, 

attackers usually use four general types of attack: interception, interruption, modification, and fabrication [2], 

[3]. They can target the network infrastructure, RTU/PLC, and HMI of SCADA systems. Therefore, data 

safety studies for industrial control systems are of great interest. There are two main directions: the research 

on new attack types to test the ability of information security methods, and the second research direction is to 

focus on building methods to detect intrusions. 

According to the first research direction, it is possible to classify several attack methods as denial of 

service (DoS) attacks, data integrity attacks (between layers, or in each layer of a control system) such as 

https://creativecommons.org/licenses/by-sa/4.0/
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falsifying information, inserting fake information [5]. The second research direction, which is on information 

security, is currently received much attention [6]. For data intrusion detection problem, traditional machine 

learning approaches [7]-[11] and deep learning neural network architectures (for big data problems) [12]-[16] 

are widely used. Otherwise, many attempts to build datasets for SCADA intrusion detection have been 

accomplished [14], [17]-[19]. 
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Figure 1. Possible attack points to SCADA systems [4] 

 

 

A standard simulation dataset (gas pipeline dataset) of data falsification attacks in industrial 

networks is provided by Mississippi State University's in-house SCADA lab in 2015 [17]. Using this dataset, 

many methods are proposed to improve the ability of intrusion detection. The authors presented an approach 

of using the random forrest (RF) model to examine three data-split strategies for classifying categories of 

SCADA attacks [20]. 70-30 split strategy results showed 5-17% and 2-8% improvement of accuracy for the 

classification of reading response attacks and write command attacks, respectively. The authors proposed a 

hybrid model which consists of a GoogLeNet neural network and a long short-term memory neural network 

(GoogLeNet-LSTM) for intrusion detection of industrial control systems [21]. The accuracy of the proposed 

model reached 97.56%. Two separate model (support vector machine (SVM) and RF) were trained and 

evaluated [3]. The proposed RF model reached the accuracies of 99.58% and 99.41% for binary and 

categorical classification tasks, respectively. An ensemble of stacked autoencoder model proposed in [22] 

achieved the accuracy of 95.86% and 93.83% for f1-score. The authors of [23] presented a LSTM model 

which showed the accuracy and f1-score of 92% and 85% respectively. Different classification methods 

(including K-means, Naïve Bayes (NB), principal component analysis-singular value decomposition (PCA-

SVD), guassian mixture model (GMM)) were examined for detecting intrusion of gas pipline dataset [24]. 

Among them, the K-means model showed the best accuracy of 83.19%. Some machine learning models 

(HoeffdingTree, NaiveBayes, RandomTree, BayesNet and OneR) were investigated with some techniques of 

cost-sensitive learning and Fisher’s (linear) discriminant analysis (FDA) [25]. The random tree algorithm 

combined with cost-sensitive learning enhancements showed the best prediction performance with the 

accuracy of 97.8%. 

This paper proposes a stacking ensemble model that combines three single models to detect data 

intrusion in SCADA systems. The gas pipeline dataset will be used to validate our proposed model. The 

following parts of the paper are organized as shown in: the second section presents the dataset and 

methodology; experiments and results are shown in the third section; finally, some conclusions and our future 

works are presented in section 4. 

https://ieeexplore.ieee.org/abstract/document/9086038%20showed%20%2095.86
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2. DATA SET AND METHODOLOGY 

2.1.  Gas pipeline dataset 

The gas pipeline dataset consists of 274,628 instances, and each instance contains 17 features. These 

instances indicate the state and parameters of Modbus frames in a gas pipeline SCADA system, with three 

different types of labels showing the state of the network. The 17 features of each instance indicate the 

network (Adress, CRC, C/R, …) and payload information in Table 1. The network status information is 

divided into three groups: binary results, categorical results, and specific results. In this work, only binary 

and categorical results are used. The Binary results contain two states: Normal and Attacked states. The 

categorical results consist of 7 types of attacked and normal states in Table 2. The dataset was also 

introduced as a heavily imbalanced dataset, with the number of Normal instances accounts for 78.1% and the 

number of attacked samples comprises 21.9% of the total cases. 

 

 

Table 1. Three first rows of the raw dataset with 17 features and 2 label types 
Adress Function Length Payload CRC C/R Timestamp Binary result Categorical result 

4 3 16 ?,?,?,?,?,?,?,?,?,?,? 12869 1 1418682163.170388 0 0 

4 3 46 ?,?,?,?,?,?,?,?,?,?,0.689655 12356 0 1418682163.269946 0 0 

4 16 90 10,115,0.2,0.5,1,0,0,1,0,0,? 17219 1 1418682164.995590 0 0 

 

 

Table 2. Description, category of the attacks 
Attack description Threat type Abbreviation 

Normal  N/A  Normal (0)  

Naïve malicious response injection Modification/Fabrication  NMRI (1)  
Complex malicious response injection  Modification/Fabrication  CMRI (2)  

Malicious state command injection  Modification/Fabrication  MSCI (3)  

Malicious parameter command injection  Modification/Fabrication  MPCI (4) 
Malicious function code injection  Modification/Fabrication MFCI (5)  

DoS Interruption  DoS (6)  

Reconnaissance  Interception  Recon (7)  

 

 

2.2.  Data pre-processing 

As seen in Table 1, many payload features are not available, making it impossible to train any 

classifier on these data since machine learning models usually require fixed-size inputs. Missing data 

commonly occurs in machine learning, and many approaches can be used to handle this problem. In this 

research, we used the "keep prior values" strategy, which was one of four methods demonstrated in [3] to 

impute all missing values of the dataset. In this way, all missing values of a row in the dataset will be 

attributed to the nearest non-missing row values above/below it (Table 3). After handling missing data, the 

dataset is divided into a training and a testing set (with the rate of 80%-20%, respectively) to train and 

validate our classification method, both training and testing set have the same attack/normal ratio. The  

min-max normalization is applied to normalize datasets. 

 

 

Table 3. Three first rows of the raw dataset after using the "keep prior values" imputation strategy 

Address Function Length Payload CRC C/R Timestamp 
Binary 

result 

Categorical 

result 

4 3 16 10,115,0.2,0.5,1,0,0,1,0,0,0.689655 12869 1 1418682163.170388 0 0 

4 3 46 10,115,0.2,0.5,1,0,0,1,0,0,0.689655 12356 0 1418682163.269946 0 0 
4 16 90 10,115,0.2,0.5,1,0,0,1,0,0,0.689655 17219 1 1418682164.995590 0 0 

 

 

2.3.    Machine learning techniques 

2.3.1. Classification metrics 

The most ubiquitous metric for classification tasks is accuracy, which can be formulated as the ratio 

of total correct predictions to all predictions. As described earlier, the gas pipeline dataset is exceptionally 

imbalanced, making the accuracy be an ineffective metric for classification tasks. For example, regarding this 

dataset, if all instances are predicted as 0 (normal state), the accuracy, in this case, is 78.1% (equal to the 

proportion of the normal state), which is considerably high for a classification task. Still, the model's 

performance is awful. It is even worse when applying to intrusion detection, where incorrectly detecting any 

attack to be normal is more severe than misclassifying a normal state as an attack. Because of that, using 

other metrics to evaluate a classification model rather than the accuracy only is necessary. Notions and 
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formulas of some standard metrics-which are prevalent in imbalanced dataset classification tasks-are 

presented in (1) to (4). The accuracy score is defined as in (1): 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
∗ 100% (1) 

 

Precision is defined as the ratio of correctly predicted positive observations to the total predicted 

positive observations, which as shown in (2): 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

Recall is defined as the ratio of correctly predicted positive observations to all observations in class 

0 (Normal). It is indicated as in (3): 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

f1-score is the weighted average of precision and recall, as shown in (4): 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

 

Where true positives (TP): the number of instances in class 0 (normal) which the model indeed predicts; true 

negatives (TN): the number of instances in class 1 (attack) which the model truly predicts; false positives 

(FP): the number of instances in class 0 (normal) which are falsely predicted by the model. false negatives 

(FN): the number of instances in class 1 (attack) which the model falsely predicts. 

The values of precision, recall, and f1-score are non-negative numbers and smaller than one. High 

precision relates to the high rate of correctly classifying positive instances. A high value of recall means that 

the true positive rate is high (the rate of misclassifying positive instances is low). The f1-score takes both 

false positives and false negatives into account, and it is used to seek a balance between precision and recall, 

which is significant in evaluating an imbalanced dataset. 

 

2.3.2. Classification models 

In this work, we choose four different models, which are RF [26], light gradient boosting machine 

(LGBM) [27], eXtreme gradient boosting (XGBoost) [28], and multilayer perceptron (MLP), to construct our 

ensemble model for the intrusion detection task. RF, LGBM, and XGBoost are the same type of tree-based 

models. These models are chosen because of their fast training-speed and effectiveness in classification tasks. 

MLP will be used to make the final decision. 

In machine learning, there are various types of models that can be used for classification tasks. 

Every model has its own merits and defects. This type of model can perform well in a specific situation but 

maybe bad for others. Therefore, to combine the advantages of individual models, many approaches called 

ensemble learnings were developed. Ensemble learning combines multiple models to build a stronger one to 

solve a particular problem. Some popular ensemble algorithms are boosting, bagging, and stacking. Bagging 

(stands for bootstrap aggregating) is a way to decrease the variance of the prediction. This is done by 

generating additional data for training from the original dataset. By increasing the size of the training set, the 

variance of predictions can be decreased to increase the reliability of predictions. The boosting algorithm first 

uses subsets of the original data to produce a series of averagely performing models and then "boosts" their 

performance by combining them, using a particular cost function (majority vote). Unlike bagging, in classical 

boosting, the subset creation is not random. It depends on the performance of previous models. Every new 

subset contains the elements that previous models misclassified. For the stacking approach, first, several 

models are applied to original data. Then, a meta-level classifier is used to make final decisions. This 

classifier uses outputs of every first-level model as its input data. For RF, LGBM, and XGBoost, RF is a 

bagging model, while LGBM and XGBoost are boosting models. These three models use multiple decision 

tree classifiers to generate the final prediction. 

In this work, we propose an ensemble model, which uses a stacking strategy to combine three 

different classifiers. The structure of our stacking model is presented in Figure 2. The best hyper-parameter 

set of each model will be chosen in the first level, using cross-validation (CV) and random search. When all 

hyper-parameters for each first-level model are selected, these classifiers will be trained on the whole training 

dataset. Outputs of these models, then, will be used to train a multilayer perceptron neural network (MLP) as 

the meta-classifier of the stacking model. 

http://en.wikipedia.org/wiki/Bootstrap_aggregating
http://en.wikipedia.org/wiki/Boosting_(machine_learning)
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf
http://en.wikipedia.org/wiki/Ensemble_learning#Stacking
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Figure 2. The architecture of the stacking model 

 

 

3. IMPLEMENTATION AND RESULTS 

In this work, to implement the RF model, the Scikit-learn package was used [29]. The LightGBM 

library was used for the LGBM model, and the XGBoost package was used for the XGB model. The Scikit-

learn package was also used to normalize data, train and evaluate models. Finally, the stacking model was 

trained by using the Mlxtend package. All our codes are written in Python language. 

 

3.1.  Model parameter selection 

The parameter selection for first-level models is implemented on training data, using a 5-fold CV 

and random search. By this way, the training data was equally divided into five separate subsets. Each first-

level model (with a hyperparameter set) will be trained five times, separately. At each time, four subsets will 

be used for training and the remaining one will be used for evaluation. Then, the average accuracy of five 

folds will be used to choose the best hyperparameter set of each first-level model. The results are shown in 

Figure 3. Twenty tree-based classifiers with different parameter sets are tested and evaluated. 

According to the binary detection task (2 classes of Normal/Attacked), as shown in Figure 3(a), the 

LGBM model reaches the best accuracy of 95.08%, with the hyper-parameter set of {'n_estimators': 104, 

'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'auto', 'max_depth': 61, 'bootstrap': False}. For 

RF model, the best accuracy score is 96.56%, with the hyper-parameter set of {'colsample_bytree': 

0.4029038429583326, 'max_depth': 39, 'min_child_samples': 293, 'min_child_weight': 1e-05, 'n_estimators': 

865, 'num_leaves': 48, 'scale_pos_weight': 1, 'subsample': 0.20256029767506548}. For XGB model, the 

highest accuracy is 98.51%, archieved with the parameter of {'colsample_bytree': 0.6173735153519851, 

'gamma': 1.5, 'max_depth': 94, 'min_child_weight': 5, 'n_estimators': 163, 'subsample': 0.935523447634425}. 

Regarding the categorical detection task (8 classes: 1 Normal/7 types of Attacked), Figure 3(b) 

shows that, the LGBM model reaches an accuracy of 96.68% with the hyper-parameter set of {'n_estimators': 

272, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'auto', 'max_depth': None, 'bootstrap': 

True}. The best accuracy score of RF model is 97.99%, achieved with the hyper-parameter set of 

{'colsample_bytree': 0.9182559913420497, 'min_child_samples': 336, 'min_child_weight': 0.01, 

'n_estimators': 824, 'num_leaves': 47, 'reg_alpha': 0.1, 'reg_lambda': 0, 'scale_pos_weight': 2, 'subsample': 

0.46476797298571926}. For XGB model, the highest accuracy is 99.21%, achieved with the parameter set of 

{'colsample_bytree': 0.9048840146153558, 'gamma': 0.5, 'max_depth': 38, 'min_child_weight': 10, 

'n_estimators': 242, 'subsample': 0.600878069464399}. 

The models with the highest accuracy score were chosen, trained, and evaluated on a full 

training/testing dataset. The final efficiency of each model is given in Table 4 and Table 5. All predictions of 

these models will be used to optimize hyper-parameters of the MLP meta-classifier. For MLP, we fix the 

number of hidden layers as one. Then, the number of neurons in the hidden layer is optimized using a random 

search strategy. The optimization results are shown in Figure 4. For the binary detection task, the stacking 

model reaches an accuracy of 99.72%, with 24 neurons in the hidden layer of the MLP meta-classifier in 

Figure 4(a). For the categorical detection task, the accuracy of the stacking model is up to 99.62%, with 97 

neurons in the hidden layer of the MLP in Figure 4(b). 
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(a) (b) 

  

Figure 3. Performance of first-level models by random search CV (a) for 2 classes and (b) 8 classes  
 

 

  

(a) (b) 

  

Figure 4. Performance of meta-classifier on the test set by the random search (a) for 2 classes and (b) 8 classes  
 

 

Table 4. Performance of each classifier on test set for the binary detection task  
classification report-2 classes (7 attack types + normal) 

Model 
LGBM RF XGB  

Precision Recall f1-score precision Recall f1-score precision Recall f1-score Support 

Normal(0) 98.76037 95.24922 96.97302 99.46873 98.90639 99.18677 99.93243 99.46657 99.69895 43117 
Attack(1) 82.398 94.89835 88.20751 96.06994 98.06221 97.05585 98.08493 99.75442 98.91263 11809 

Weighted avg 95.1725 95.18261 95.05638 98.72181 98.72556 98.72082 0.995295 0.995285 0.99527 54926 

Accuracy 95.18261 98.72556 99.52846  

 

 

Table 5. Performance of each classifier on test set for 8-classes detection task 
classification report - 8 classes (7 attack types + normal) 

Model 
LGBM RF XGB  

Precision Recall f1-score Precision Recall r1-score Precision Recall f1-score Support 

Normal (0) 98.80697 97.75462 98.27798 99.53863 98.59669 99.06542 99.93709 99.44814 99.69201 43127 

NMRI (1) 76.66022 82.17001 79.31955 86.8472 93.02486 89.82994 95.68021 97.63158 96.64604 1520 
CMRI (2) 80.13042 85.89638 82.91328 88.4158 94.27403 91.25099 96.39432 98.58768 97.47867 2549 

MSCI (3) 91.64557 96.92102 94.2095 98.29114 99.16986 98.72854 97.8481 99.93536 98.88072 1547 

MPCI (4) 99.43655 100 99.71748 97.15826 99.89924 98.50969 98.67712 99.97518 99.32191 4029 
MFCI (5) 100 98.89001 99.44191 100 98.79032 99.39148 100 99.08999 99.54292 989 

DoS (6) 79.77011 93.531 86.10422 94.25287 98.79518 96.47059 93.7931 99.7555 96.68246 409 

Recon (7) 97.29032 100 98.62655 97.16129 98.56021 97.85575 97.54839 100 98.75898 756 
Weighted avg 97.12042 96.98503 97.03749 98.43663 98.37236 98.39378 99.42612 99.41376 99.41707 54926 

Accuracy 96.98503 98.37236 99.41376  
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3.2.  Prediction results 

All classification metrics (precision, recall, f1-score) of three individual models (LGBM, RF, XGB) 

for 2-class and 8-class detection tasks are shown in Table 4 and Table 5, respectively. As seen in both tables, 

the XGB is the best among three individual classifiers, and the LGBM is the worst model. The f1-score of the 

XGB model reaches 99.53% for the binary detection task and 98.37% for the categorical detection task.  

Table 6 and Table 7 show the prediction results of our proposed stacking models. The results of both 

stacking models are more accurate than that of three individual classifiers. For the binary task, the accuracy and f1-

score of the stacking model are the same, with 99.72%. For categorical tasks, the accuracy and f1-score are 99.62% 

and 99.63%, respectively. Moreover, Figure 5 shows the detailed quality of two stacking models through confusion 

matrices. The detection rates (recall) of attacked and normal states are greater than 99.32%, with an overall accuracy 

of 99.83% in Figure 5(a). For categorical tasks, the detection rates of almost all attack types are higher than 97.55% 

(except for DoS-95.17%), with an overall accuracy of 99.62% in Figure 5(b). 
 
 

Table 6. Performance of the stacking model on test set for 2-class detection task 
2 classes Precision Recall f1-score Support 

Normal (0) 99.80898 99.83456 99.82177 42916 

Attack (1) 99.40828 99.31724 99.36274 12010 
Weighted avg 99.72136 99.72144 99.7214 54926 

Accuracy 99.72144 

 
 

Table 7. Performance of the stacking model on test set for 8-class detection task 
8 classes Precision Recall f1-score Support 

Normal (0) 99.86019 99.75095 99.80554 42963 
NMRI (1) 97.54997 97.48711 97.51853 1552 

CMRI (2) 98.04373 98.57308 98.30769 2593 

MSCI (3) 99.36709 99.43002 99.39854 1579 
MPCI (4) 99.75502 99.85287 99.80392 4078 

MFCI (5) 100 99.39148 99.69481 986 

DoS (6) 95.17241 99.51923 97.2973 416 
Recon (7) 97.93548 100 98.95698 759 

Weighted avg 99.62759 99.62495 99.62568 54926 

Accuracy 99.62495 
 

 

 

 

(a) (b) 
  

Figure 5. Detailed quality through confusion matrices (a) confusion matrix of binary classification task and (b) 

categorical classification task  
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A comparison of prediction results of our proposed model with other recent works which 

implemented on the same gas pipeline dataset is given in Table 8. As seen in Table 8, almost works take 

single classification, except the ensemble of SAE model in [22], which achieved an accuracy of 95.86% and 

93.83% for f1-score. Our proposed model showed a relatively high prediction rate for both binary and 

categorical tasks, as compare to another. 
 

 

Table 8. Comparitive results of our proposed model with other recent works 

Methods 
Binary task Categorical task 

Accuracy (%) f1-score (%)) Accuracy (%)) f1-score (%)) 

Bagged tree [20] 98.2    
LSTM [23] 92 85 - - 

K-means, NB, PCA-SVD, GMM [24]] 83.19 (K-means)) 86.05 (NB) - - 

Ensemble of SAE [22] 95.86 93.83 - - 
GoogLeNet-LSTM [21] 97.56 - - - 

RF [22] 99.58 99.58 99.41 99.41 

RandomTree [25]  97.8 - - - 
Our ensemble model  99.72% 99.72 99.62 99.62 

 

 

4. CONCLUSION 

In this work, we have proposed one type of stacking model to improve the quality of intrusion 

detection in SCADA systems. The first layer of the proposed model is the combination of random forest, 

light boosting gradient machine, and eXtreme gradient boosting models. We use an MLP network as a meta-

classifier of the model. The proposed model is optimized and tested on an international dataset (gas pipeline 

dataset). Testing results are a prospect, in which the detection accuracy is 99.72% and 99.62% for binary and 

categorical detection tasks, respectively. In our future works, all the binary, categorical and specific results in 

the gas pipeline dataset are considered. A variant version of the proposed stacking model will be developed 

and tested to deal with this problem.  
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