
Bulletin of Electrical Engineering and Informatics

Vol. 11, No. 1, February 2022, pp. 150~157

ISSN: 2302-9285, DOI: 10.11591/eei.v11i1.3278  150

Journal homepage: http://beei.org

Extractive text summarization for scientific journal articles

using long short-term memory and gated recurrent units

Devi Fitrianah, Raihan Nugroho Jauhari
Department of Informatics, Faculty of Computer Science Universitas Mercu Buana, Jakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Jun 12, 2021

Revised Sep 27, 2021

Accepted Dec 29, 2021

 Along with the increasing number of scientific publications, many scientific

communities must read the entire text to get the essence of information from

a journal article. This will be quite inconvenient if the scientific journal

article is quite long and there are more than one journals. Motivated by this

problem, encourages the need for a method of text summarization that can

automatically, concisely, and accurately summarize a scientific article

document. The purpose of this research is to create an extractive text

summarization by doing feature engineering to extract the semantic

information from the original text. Comparing the long short-term memory

algorithm and gated recurrent units and were used to get the most relevant

sentences to be served as a summary. The results showed that both

algorithms yielded relatively similar accuracy results, with gated recurrent

units at 98.40% and long short-term memory at 98.68%. The evaluation

method with matrix recall-oriented understudy for gisting evaluation

(ROUGE) is used to evaluate the summary results. The summary results

produced by the LSTM model compared to the summary results using the

latent semantic analysis (LSA) method were then obtained recall values at

ROUGE-1, ROUGE-2, and ROUGE-L respectively were 76.25%, 59.49%,

and 72.72%.

Keywords:

Extractive approach

Gated recurrent units

Journal articles

Long short-term memory

Text summarization

This is an open access article under the CC BY-SA license.

Corresponding Author:

Raihan Nugroho Jauhari

Faculty of Computer Science, Universitas Mercu Buana

Jalan Raya Meruya Selatan no. 1, Kembangan Jakarta Barat-16550, Indonesia

Email: raihanrnj@gmail.com

1. INTRODUCTION

A journal article is a scientific publication containing academic articles written for the scientific

community. In general, journal articles are also accessible to the public. But the target audience is narrow

including academics, students, researchers, and other student communities. Most readers often want a

summary of a journal article quickly without reading the contents of the entire scientific article document.

However, it is difficult for people to manually extract summaries from large text documents [1]. A text

summarization system is thus required to help automatically obtain summary results from a document. A

summary is the result of a collection of words, sentences, and paragraphs that are less than half the length of

the original text [2]-[4]. With this summarization system, it is expected that readers will acquire summaries

containing important sentences easily, quickly, and precisely without having to read the entire content of the

original source text.

There are two types of text compactions that are most popular. First, extractive techniques extract

important sentences from document texts and combine them into a summary [5], [6]. Usually, the resulting

sentences are arranged the same as the sentences in the original document. The second type is the abstractive

technique, which produces summary sentences that are different from the original sentence since humans

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Extractive text summarization for scientific journal articles using long short-term … (Devi Fitrianah)

151

take the essence of a document read. Abstract summaries start with reducing the main concept of the

document in fewer words [7]. Thus, the resulting sentences may seem simpler, natural, and not rigid [8].

Various studies in the field of automated text summarization using extractive methods have been widely

done. Previous research was conducted by Prabowo et al. [9], where documents were summarized by

filtering important words using sentence scoring with the term frequenc -inverse document frequency

(TF-IDF) method. In the TF-IDF method, the value of each word is calculated based on the frequency of its

occurrence in the document [10]. The sentence-scoring process is obtained by summarizing the weight of

each word so that the final weight of each sentence is produced [11]. Summary results were obtained from

the sentences that had the highest rank at the time of the weighting process. This study successfully produced

summary results related to the main topic of the document text. However, optimization is still needed in the

selection of sentences that will be used as a summary result not only by calculating the sentences that have

the highest weight, one solution is to extract hidden features from the text. Generally, the sentence with the

highest weight is a sentence containing important or certain scientific words so that the sentence is less

descriptive to be summarized [12], [13].

Geetha [14] conducted a study in the case of Kannada language. Geetha uses the latent semantic

analysis (LSA) method, which extracts semantic structures or hidden meanings in a sentence and then

produces a general or broad meaningful summary. The LSA method applies a linear singular value

decomposition (SVD) algebraic approach by forming a representation matrix based on term associations,

which are words in related documents based on TF-IDF weighting [15]. However, one of the shortcomings of

the LSA is that the representation obtained is not explicit and can degrade the performance process for large

and multilingual documents. Still, the LSA has the advantage that the summary results consistently represent

the conceptual relationship between words, sentences, and paragraphs [16]. Concerning the studies

mentioned above, this study proposes extractive text summarization that can perform text summarization

against a scientific journal article that has a varied structure and tagging. In order to extract likelier semantic

meanings that are contained in a document, the researchers used weighted sentences by doing feature

engineering, which includes sentence-length cut-off features, fixed phrase features, paragraph location,

thematic word features, and uppercase word features. Then from these features, the classification process was

done by using the long short-term memory (LSTM) algorithm and gated recurrent units (GRU) to determine

the most relevant sentences to the topic and represent the entire text.

Simple neural networks are not sufficient for handling classification cases against sequential data,

such as text data consisting of strings of words and sentences [17]. The LSTM network is a variant of the

recurrent neural network (RNN). LSTM is popular because it can reduce the problem of explosion and

diffusion gradients [18]. LSTM transforms the memory structure of cells in the RNN by transforming the

tanh activation function layer in the RNN into a structure containing memory units and gate mechanisms. It

aims to decide how to utilize and update information stored in memory cells. Due to this structure, this

reduces the problem of gradient diffusion glue and explosion [19], [20]. LSTM is proposed to overcome the

occurrence of vanishing gradients in RNN when processing long sequential data. RNN has several

architectures, one of which is the GRU. The GRU has a “gate” reminder to bring information from previous

circumstances. GRU has also undergone many developments, one of which is bidirectional GRU (BiGRU),

which applies the concept of GRU in a forward and backward manner so that it has information from the

previous and the following states [21] and so that it knows the surrounding information.

2. RESEARCH METHOD

The method in this research will take several stages. The first is the process of collecting datasets of

scientific journal articles obtained from open libraries on the internet. Then the data will be extracted with

metadata such as the abstract section, title, author, and year of publication. After that, the dataset will go through

the pre-processing stage and then proceed to the feature engineering stage to extract semantic information from

the text. After the features have been extracted, 75 final features will be generated, all of which are binary

values. In labeling the data, the researcher used the latent semantic analysis technique to find the most important

sentence in the text. At the model training stage, the researchers compared two algorithms: LSTM and GRU.

Finally, the model evaluation is used to determine how well the model performs and which algorithm gives the

best results and performance. Figure 1 describes the stages in this research.

2.1. Dataset collection

Dataset collection is done manually by downloading scientific articles from the Arxiv open access

repository. Scientific journal article data, as many as 41,000 research topics related to artificial intelligence, machine

learning, and computer vision, were taken from the open-source library. The PDF-formatted set of articles will then

go through the dataset-build stage to extract the metadata and proceed to the data-labeling process.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 1, February 2022: 150-157

152

Figure 1. Research methodology

2.2. Build datasets

At this stage, 41,000 scientific journal articles in PDF format that have previously been collected

will go through pre-processing data and meta-data extraction to be used as attributes in the dataset.

2.2.1. Pre-processing

The pre-processing stage is related to preparing a number of data results for the dataset build, which

will then be used for learning materials for computers. These data are some of the components that determine

how well the model’s results are built. In this step, we conduct some data-cleaning processes, including the

following: i) uniform words by changing all text letters to lowercase and removing some character letters that

are regarded as delimiters; this process is called case folding [22]; ii) the next step is the tokenization process

by separating the word string from the sentencing document; iii) stopword is a process used to eliminate

words that are considered unimportant [23]; iv) the final step of preprocessing stems from changing the form

of the word to make it the root word.

2.2.2. Create the dataset

Section extraction is done automatically using Python to generate attributes, such as the title,

abstract, and year. After obtaining the attribute, the next step is the data-labeling process. In this study, the

researchers tried to use abstract attributes as original texts for compaction. Target data or labels will be

generated automatically using the LSA method to generate summary results.

The summary result is then encoded into an index sentence that represents the sentence index in the

text. The sentence index is stored in the summary column and will be used as the target column in the dataset.

After the data-labeling process, the dataset will have 41,000 rows of data with several columns, including

title, abstract, year, and summary. The stages in building the dataset are illustrated in Figure 2.

Figure 2. Stages of building the dataset

2.3. Feature engineering

At this stage, feature engineering extracts new features that will later be used for scoring each

sentence. Feature engineering uses abstract columns to make or organize several categories of feature

scoring, which are as shown in:

2.3.1. Sentences-length cut-off features

Usually, short sentences tend not to be included in summaries [24]. Here the threshold is given for

each sentence (e.g., 20 words). If the sentence contains more words than the threshold length, then this feature

will be worth 1, and if it contains fewer words than the threshold length, then the feature will be worth 0.

f (x)={
1 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

2.3.2. Fixed phrase features

Some phrases including the conclusion, summary, and essence tend to be representative of

summaries and generally imply that sentences containing those key phrases are important sentences. There

are 26 indicator phrases; if a sentence contains at least one of these keywords, then the feature will be worth

1 and if it does not contain these keywords, then the feature will be worth 0.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Extractive text summarization for scientific journal articles using long short-term … (Devi Fitrianah)

153

f (x)={
1 𝑖𝑓 𝑓𝑟𝑎𝑠𝑒_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

2.3.3. Paragraph location

The position of a sentence in a paragraph in general also tends to have in identifying whether a

sentence is repressive to the summary or not [25]. This feature is discrete (3, 2, 1), so the sentence will be

categorized into three groups: the sentence at the beginning of the sentence is 3, the sentence in the middle of

the paragraph is 2, and the sentence at the end of the paragraph is 1.

f (x)={
 3 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ

2 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ ,𝑎𝑛𝑑 1 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

2.3.4. Thematic word features

The two or three selected words that appear most frequently in the text (excluding stopwords) are

called thematic words. Sentences containing at least one thematic word will be 1, and if there is no thematic

word in it, it will be 0.

f (x)={
1 𝑖𝑓 𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐_𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

2.3.5. Uppercase word features

In general, words that contain capital letters, such as the example acronym ASA (American

Statistical Association), tend to represent the importance of the sentence's in a paragraph. This feature will be

binary; sentences are sorted by the frequency of words with the most capital letters. The top-ranked sentence

will receive a value of 1; otherwise, it will be 0.

f (x)={
1 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒=𝑡𝑜𝑝_𝑢𝑝𝑝𝑒𝑟𝑐𝑎𝑠𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒

2.4. Model training

The ready data will be divided into two parts: the training set and the test set. The training set data will be

used during the training process, while the test set data will be used to perform performance tests on the model. There

are 75 features resulting from the feature engineering process that will be used as inputs. This input will then be

processed by LSTM or GRU cells to produce an output that can then be channeled to the hidden layer. In hidden

layers, the trained data will be stored in the logistical form to continuously update the weight and other values to meet

the target output. To obtain weights that are close to the output value, the decoder uses the attention layer to focus the

result of the previously hidden layer. After that, the process of decoding will be done to the sentence index data to

form the text, which will then be displayed as the output result.

2.5. Evaluation

The evaluation stage calculates accuracy by obtaining precision, recall, and F-Measure values.

Precision is a measurement of the accuracy of the summary results produced by automatic text

summarization, and it can measure how relevant the chances are of a text being taken to be used as a

summary. Recall is a measurement of the summary success value generated by the system and can measure a

relevant text’s chances of being taken as a summary result. F-measure is the value used to determine the

accuracy level of the summary results obtained.

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 Precision=

𝑇𝑃

 𝑇𝑃+𝐹𝑃
 Recall=

𝑇𝑃

𝑇𝑃+𝐹𝑁
 F1 Score=

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where: TP=true positive is a sentence that is in the summary of the LSA and appears in the summary of the system

FP=false positive sentence that is in the summary of the LSA but does not appear in the system

FN=false negative is a sentence that is in the summary of the LSA but does not appear in the system

TP=true negative is a sentence that is not in the LSA summary or system summary

3. RESULTS AND DISCUSSION

3.1. Train-test split evaluation

This study produced the value of accuracy for the summary results by predicting the implementation

of classification methods. The models used for testing were the LSTM comparison algorithm and gated

recurrent units. Table 1 shows the results of split test data sharing, with the best results being 60% train set

data and 40% test set data with a value of 98.7%.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 1, February 2022: 150-157

154

Table 1. The accuracy result is based on the distribution of the train test split
Split train test Accuracy LSTM Accuracy GRU

90/ 0.9849 0.9822
80/20 0.9857 0.9829

70/30 0.9853 0.9856

60/40 0.9871 0.9859

3.2. Hyperparameters tuning

In this research scenario, we performed several hyperparameter settings to influence the output

results and improve model performance. The hyperparameters used included epoch, batch_size, learning rate,

and neuron activation function.

a. Epoch and batch size

The results of batch size and epoch adjustment are shown in Table 2. The result provides an LSTM accuracy

of 93.73% with a total batch_size of 32 and epoch 100, while the compute time is 386.7663 seconds.

b. Learning rate

The results of the tuning learning rate are shown in Table 3. The best accuracy is LSTM with a value of

0.9860 when the learning rate is 0.001. The computing time in this process was 386.8756 seconds.

c. Algorithm optimization

The scenario results for the tuning optimizer algorithm are shown in Table 4. This experiment

demonstrated the best accuracy with LSTM at 98.60% when using the Adam optimizer algorithm. The

duration of the process in this scenario is 386.7442 seconds.

d. Neuron activation function

Table 5 displays the results of the tuning activation function experiment. The best result accuracy was

achieved by LSTM, with a value of 98.60% when using the hard_sigmoid function. The computed time to

process this experiment was 386.9453 seconds.

Table 2. The accuracy score of batch size and epoch tuning
Algoritma Epoch/Batch_size Epoch=30 Epoch=50 Epoch=100

GRU Bs=20 0.9857 0.9835 0.9852

Bs=32 0.9849 0.9868 0.9840

Bs=40 0.9863 0.9851 0.9851

LSTM Bs=20 0.9855 0.9868 0.9872

Bs=32 0.9860 0.9870 0.9873

Bs=40 0.9871 0.9870 0.9869

Table 3. The accuracy score of learning rate tuning
Learning rate Accuracy LSTM Accuracy GRU

0.001 0.9860 0.9802
0.01 0.9486 0.9758

0.1 0.9486 0.9752

Table 4. The accuracy score of optimizer

algorithm tuning
Optimizer Accuracy LSTM Accuracy GRU

SGD 0.9542 0.9745
RMSProp 0.9803 0.9852

Adagrad 0.9696 0.6683

Adadelta 0.9544 0.9739
Adam 0.9860 0.9802

Table 5. The accuracy score of activation function

tuning
Activation function Accuracy LSTM Accuracy GRU

Softmax 0.9865 0.9857
Relu 0.9822 0.9853

tanh 0.9583 0.9802

Sigmoid 0.9838 0.9864
Hard Sigmoid 0.9873 0.9859

3.3. Model testing and evaluation

At this stage, we evaluated the LSTM and GRU models against a dataset of scientific journal

articles that we had previously conducted in the training process. Table 6 shows a comparison of the

evaluation values between LSTM and GRU. It can be seen that LSTM gave relatively similar results

compared to GRU, with a GRU accuracy of 98.40% and an LSTM of 98.68%. At this stage, we also applied

all parameter value settings that had the best accuracy composition from previous experiments, including

batch_size=32, epoch=100, learning_rate=0.001, optimizer=Adam, and neuron activation

function=hard_sigmoid to our model. Table 7 shows the evaluation values for LSTM before and after setting

the parameters. The results showed that after tuning the parameters, the accuracy score increased from

98.33% to 98.68%. We defined every 15 sentences in the text with a label to help us choose which label to

represent as a summary. The accuracy results of the 15 labels are shown in Figure 3.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Extractive text summarization for scientific journal articles using long short-term … (Devi Fitrianah)

155

Table 6. Evaluation report between LSTM and

GRU
Evaluation Score LSTM GRU

F1-Score 0.9826 0.9750

Precision 0.9756 0.9635

Recall 0.9906 0.9879
Accuracy 0.9868 0.9840

Time (seconds) 386 303 (21.50% faster)

Table 7. LSTM evaluation report before and after

parameter tunning
Evaluation Score LSTM before tunning LSTM after tunning

F1-Score 0.9368 0.9826

Precision 0.9623 0.9756

Recall 0.9279 0.9906
Accuracy 0.9833 0.9868

Time (seconds) 386 386

Figure 3. Confusion matrix results

3.4. Test summarizing the text

After the LSTM model was determined as the best model, and the most optimal hyper tuning

parameter settings were selected. Then we tested the model to summarize the abstract section of journal

articles manually inputted into the system compared with the summary results using the LSA. Table 8 shows

displays the results of this comparison.

Table 8. Comparison of LSA summary results and LSTM model summaries
Text original Summary generate by LSA Summary generate by LSTM model

The detection of Covid-19 is an important step to make early
for suspected Covid-19 patients can be done further steps. One

way of detection is through x-ray images of the lungs.

However, besides that, we need an algorithm model that can
produce high language, light computation What is needed so

that it can be applied in a detection device. Models in CNN

can performs detection with accuracy but tends to require
large memory usage. CNN with fewer parameters can provide

both storage and memory usage so that it can be processed in

real time both in the form of a detection tool and decision
making via the cloud. Besides, CNN with smaller parameters

it can also be applied to FPGA and other hardware has limited

memory capacity. To produce accurate detection of COVID-

19 on lung x-ray images but the computation is also light, we

CNN architecture is small but reliable to use a channel

exchange technique called ShuffleNet. In this study, we tested
and compared capabilities of ShuffleNet, EfficientNet, and

ResNet50 because they have a smaller number of parameters

compared to CNN in general such as VGGNet or FullConv
which uses a convolutional layer full but has capable detection

capabilities. We used 1125 x-ray images and achieved an

accuracy of 86.93% with the number of model parameters that
were 18.55 times less than EfficientNet and 22.36 times less

than ResNet50 to wait for 3 categories namely Covid-19,

Pneumonia, and normal through a 5-fold cross validation test.
The memory required by each of these CNN architectures for

performs detection linearly with the number of parameters

where ShuffleNet only requires GPU memory of 0.646 GB or
0.43 times that of ResNet50, 0.2 times of EfficientNet, and

0.53 times times from FullConv. Furthermore, ShuffleNet

performs the fastest detection of 0.0027 seconds.

To produce accurate
detection of COVID-19 on

lung x-ray images but the

computation is also light,
we CNN architecture is

small but reliable to use a

channel exchange
technique called

ShuffleNet. We used 1125

x-ray images and achieved
an accuracy of 86.93%

with the number of model

parameters that were 18.55

times less than EfficientNet

and 22.36 times less than

ResNet50 to wait for 3
categories namely Covid-

19, Pneumonia, and normal

through a 5-fold cross
validation test.

to produce accurate detection of
covid 19 on lung x ray images but

the computation is also light we cnn

architecture is small but reliable to
use a channel exchange technique

called shufflenet we used 1125 x

ray images and achieved an
accuracy of 8693 with the number

of model parameters that were 1855

times less than efficientnet and
2236 times less than resnet50 to

wait for 3 categories namely covid

19 pneumonia and normal through a

5 fold cross validation test

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 11, No. 1, February 2022: 150-157

156

To determine the summary accuracy results generated by the LSTM and LSA models from the table

above, we used ROUGE. Table 9 shows that ROUGE-1, which measures the match rate of unigrams, gets a

precision score of 75% between the LSTM model compared to the LSA results; ROUGE-2, which measures

the match rate of a bigram, gets a precision score of 59%; and ROUGE-L, which measures the longest

common subsequence (LCS), gets a precision score of 74%.

Table 9. Evaluation results of the ROUGE metric against the summary of the model and summary of the

LSA
Evaluation Score F1 Score Precision Recall

ROUGE-1 0.7577 0.7530 0.7625

ROUGE-2 0.5911 0.5875 0.5949
ROUGE-L 0.7441 0.7619 0.7272

4. CONCLUSION

From all the experimental scenarios conducted in this study, the results show that the new method

that we introduced by combining one-hot encoding for each sentence and feature engineering to extract

semantic meaning can produce extractive summaries that are just as effective as those done by the LSA

algorithm. Different from LSA, because we use a deep-learning approach, our method can also be

customized by changing the data-labeling method using another approach such as clustering or manual

methods. GRU and LSTM provide very similar accuracy performances of 98.40% and 98.68%, respectively.

LSTM performed slightly better because it has a more complex gate architecture, while GRU excels in the

time it takes in the training process because each cell has only two gates. Tuning parameters also improved

accuracy from 98.33% to 98.68% for LSTM. The configuration values on tuning parameters that produce the

best performance are batch_size=32, epoch=100, learning_rate=0.001, optimizer=Adam, and neuron

activation function=hard_sigmoid.

REFERENCES
[1] A. Quadros, I. No and J. Pinto, “Text Summarizer for URL and .DOCX files,” International Journal of Advanced Research in

Computer Science, vol. 11, no. 4, pp. 18-22, 2020, doi: 10.26483/ijarcs.v11i4.6639.

[2] T. Uçkan and A. Karcı, “Extractive multi-document text summarization based on graph independent sets,” Egyptian Informatics
Journal, vol. 21, pp. 145-157, 2020, doi: 10.1016/j.eij.2019.12.002.

[3] A. Pramita et al., “Review of automatic text summarization techniques & methods,” Journal of King Saud University - Computer

and Information Sciences, 2020, doi: 10.1016/j.jksuci.2020.05.006.
[4] A. K. Singh and M. Shashi, “Deep Learning Architecture for Multi-Document Summarization as a cascade of Abstractive and

Extractive Summarization approaches,” International Journal of Computer Sciences and Engineering, vol. 7, no. 3, pp. 950-954,

2019, doi: 10.26438/ijcse/v7i3.950954.
[5] W. Yulita, S. Priyanta, and A. SN, “Automatic Text Summarization Based on Semantic Networks and Corpus Statistics,” JCCS

(Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 2, p. 137, 2019, doi: 10.22146/ijccs.38261.

[6] Chu, Edward & Huang, Zi-Zhe, “DBOS: A Dialog-Based Object Query System for Hospital Nurses,” Sensors, vol. 2, pages.
6639, 2016, doi: 10.3390/s20226639.

[7] S. M. Patel, V. Dabho and H. B. Prajapati, “Extractive Based Automatic Text Summarization,” Journal of Computers, vol. 12, no.

6, pp. 550-563, 2017, doi: 10.17706/jcp.12.6.550-563.
[8] N. Bansal, A. Sharma and R. K. Singh, “Recurrent neural network for abstractive summarization of documents,” Journal of

Discrete Mathematical Sciences and Cryptography, vol. 23, p. 65-72, 2020, doi: 10.1080/09720529.2020.1721873.
[9] D. A. Prabowo, M. Fadli, M. A. Najib, H. A. Fauzi, and I. Cholissodin, “TF-IDF-Enhanced Genetic Algorithm Untuk Extractive

Automatic Text Summarization,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, p. 208, 2016, doi:

10.25126/jtiik.201633217.
[10] Á. Hernández-Castañeda, R. A. García-Hernández, Y. Ledeneva and C. E. Millán-Hernández, "Extractive Automatic Text

Summarization Based on Lexical-Semantic Keywords," in IEEE Access, vol. 8, pp. 49896-49907, 2020, doi:

10.1109/ACCESS.2020.2980226.
[11] S. Lagrini, M. Redjimi and N. Azizi, “Automatic Arabic Text Summarization Approaches,” International Journal of Computer

Applications, vol. 164, no. 5, pp. 31-37, 2017, doi: 10.5120/ijca2017913628.

[12] Y. Du and H. Huo, "News Text Summarization Based on Multi-Feature and Fuzzy Logic," in IEEE Access, vol. 8, pp. 140261-
140272, 2020, doi: 10.1109/ACCESS.2020.3007763.

[13] G. Shang, W. Ding, Z. Zhang, A. J.-P. Tixer, P. Meladianos, M. Vazirgiannis and J. Lorre, “Unsupervised Abstractive Meeting

Summarization with Multi-Sentence Compression and Budgeted Submodular Maximization,” Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, vol. 1, 2018, doi: 10.18653/v1/P18-1062, 2018.

[14] J. K. Geetha and N. Deepamala, "Kannada text summarization using Latent Semantic Analysis," 2015 International Conference

on Advances in Computing, Communications and Informatics (ICACCI), 2015, pp. 1508-1512, doi:
10.1109/ICACCI.2015.7275826.

[15] D. Cai, L. Chang and D. Ji, "Latent semantic analysis based on space integration," 2012 IEEE 2nd International Conference on

Cloud Computing and Intelligence Systems, 2012, pp. 1430-1434, doi: 10.1109/CCIS.2012.6664621.
[16] P. Kherwa and P. Bansal, "Latent Semantic Analysis: An Approach to Understand Semantic of Text," 2017 International

Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), 2017, pp. 870-874, doi:

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Extractive text summarization for scientific journal articles using long short-term … (Devi Fitrianah)

157

10.1109/CTCEEC.2017.8455018.
[17] R. Nallapati, F. Zhai and B. Zhou, “Summarunner: a recurrent neural network-based sequence model for extractive summarization

of documents,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 3075-3081, 2016, doi:

10.5555/3298483.3298681.
[18] R. Khan, Y. Qian and S. Naeem, “Extractive based Text Summarization Using KMeans and TF-IDF,” vol. 11, no. 3, pp. 33-44,

2019, doi: 10.5815/ijieeb.2019.03.05.

[19] W. Huang, G. Rao, Z. Feng and Q. Cong, "LSTM with sentence representations for Document-level Sentiment Classification,"
Neurocomputing, vol. 308, no. 45, pp. 49-57, 2018, doi: 10.1016/j.neucom.2018.04.045.

[20] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” in

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha, Qatar, pp.
1724-1734, 2014, doi: 10.3115/v1/D14-1179.

[21] R. Adelia, S. Suyanto and U. Wisesty, “Indonesian Abstractive Text Summarization Using Bidirectional Gated Recurrent Unit,”

Procedia Computer Science, vol. 157, pp. 581-588, 2019, doi: 10.1016/j.procs.2019.09.017.
[22] M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M. Abdelmajeed, A. Mehmood and M. T. Sadiq, "Document-Level Text Classification

Using Single-Layer Multisize Filters Convolutional Neural Network," in IEEE Access, vol. 8, pp. 42689-42707, 2020, doi:

10.1109/ACCESS.2020.2976744.
[23] K. Shetty and J. S. Kallimani, "Automatic extractive text summarization using K-means clustering," 2017 International

Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp. 1-9,

doi: 10.1109/ICEECCOT.2017.8284627.
[24] M. -H. Su, C. -H. Wu and H. -T. Cheng, "A Two-Stage Transformer-Based Approach for Variable-Length Abstractive

Summarization," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2061-2072, 2020, doi:

10.1109/TASLP.2020.3006731.
[25] Y. Chen and Q. Song, "News Text Summarization Method based on BART-TextRank Model," 2021 IEEE 5th Advanced

Information Technology, Electronic and Automation Control Conference (IAEAC), 2021, pp. 2005-2010, doi:

10.1109/IAEAC50856.2021.9390683.

BIOGRAPHIES OF AUTHORS

Devi Fitrianah she received the Bachelor’s degree in Computer Science from Bina

Nusantara University, Jakarta, Indonesia, in 2000, and the Master’s degree in Information

Technology and Ph.D. degree in Computer Science from the Universitas Indonesia, Depok,

Indonesia, in 2008 and 2015, respectively. In 2014, she had a sandwich program at the

Laboratory for Pattern Recognition and Image Processing and GIS (PRIPGIS Lab) Department

of Computer Science, Michigan State University, East Lansing, Michigan, USA. She is currently

a Faculty Member with the Department of Computer Science, Universitas Mercu Buana. Her

research interests include machine learning, data mining, applied remote sensing, and geographic

information system. She can be contacted at email: devi.fitrianah@mercubuana.ac.id.

Raihan Nugroho Jauhari received his bachelor's degree in Computer Science from

Universitas Mercu Buana, Jakarta Indonesia in 2021. His concentration is on data science

specialization and his research interest is in machine learning. He can be contacted at email:

raihanrnj@gmail.com.

https://orcid.org/0000-0001-5029-8149
https://scholar.google.co.id/citations?hl=id&user=lNf2RckAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55990199600
https://publons.com/researcher/4142368/devi-fitrianah/

