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 Along with the increasing number of scientific publications, many scientific 

communities must read the entire text to get the essence of information from 

a journal article. This will be quite inconvenient if the scientific journal 

article is quite long and there are more than one journals. Motivated by this 

problem, encourages the need for a method of text summarization that can 

automatically, concisely, and accurately summarize a scientific article 

document. The purpose of this research is to create an extractive text 

summarization by doing feature engineering to extract the semantic 

information from the original text. Comparing the long short-term memory 

algorithm and gated recurrent units and were used to get the most relevant 

sentences to be served as a summary. The results showed that both 

algorithms yielded relatively similar accuracy results, with gated recurrent 

units at 98.40% and long short-term memory at 98.68%. The evaluation 

method with matrix recall-oriented understudy for gisting evaluation 

(ROUGE) is used to evaluate the summary results. The summary results 

produced by the LSTM model compared to the summary results using the 

latent semantic analysis (LSA) method were then obtained recall values at 

ROUGE-1, ROUGE-2, and ROUGE-L respectively were 76.25%, 59.49%, 

and 72.72%. 
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1. INTRODUCTION 

A journal article is a scientific publication containing academic articles written for the scientific 

community. In general, journal articles are also accessible to the public. But the target audience is narrow 

including academics, students, researchers, and other student communities. Most readers often want a 

summary of a journal article quickly without reading the contents of the entire scientific article document. 

However, it is difficult for people to manually extract summaries from large text documents [1]. A text 

summarization system is thus required to help automatically obtain summary results from a document. A 

summary is the result of a collection of words, sentences, and paragraphs that are less than half the length of 

the original text [2]-[4]. With this summarization system, it is expected that readers will acquire summaries 

containing important sentences easily, quickly, and precisely without having to read the entire content of the 

original source text.  

There are two types of text compactions that are most popular. First, extractive techniques extract 

important sentences from document texts and combine them into a summary [5], [6]. Usually, the resulting 

sentences are arranged the same as the sentences in the original document. The second type is the abstractive 

technique, which produces summary sentences that are different from the original sentence since humans 

https://creativecommons.org/licenses/by-sa/4.0/
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take the essence of a document read. Abstract summaries start with reducing the main concept of the 

document in fewer words [7]. Thus, the resulting sentences may seem simpler, natural, and not rigid [8]. 

Various studies in the field of automated text summarization using extractive methods have been widely 

done. Previous research was conducted by Prabowo et al. [9], where documents were summarized by 

filtering important words using sentence scoring with the term frequenc -inverse document frequency  

(TF-IDF) method. In the TF-IDF method, the value of each word is calculated based on the frequency of its 

occurrence in the document [10]. The sentence-scoring process is obtained by summarizing the weight of 

each word so that the final weight of each sentence is produced [11]. Summary results were obtained from 

the sentences that had the highest rank at the time of the weighting process. This study successfully produced 

summary results related to the main topic of the document text. However, optimization is still needed in the 

selection of sentences that will be used as a summary result not only by calculating the sentences that have 

the highest weight, one solution is to extract hidden features from the text. Generally, the sentence with the 

highest weight is a sentence containing important or certain scientific words so that the sentence is less 

descriptive to be summarized [12], [13].  

Geetha [14] conducted a study in the case of Kannada language. Geetha uses the latent semantic 

analysis (LSA) method, which extracts semantic structures or hidden meanings in a sentence and then 

produces a general or broad meaningful summary. The LSA method applies a linear singular value 

decomposition (SVD) algebraic approach by forming a representation matrix based on term associations, 

which are words in related documents based on TF-IDF weighting [15]. However, one of the shortcomings of 

the LSA is that the representation obtained is not explicit and can degrade the performance process for large 

and multilingual documents. Still, the LSA has the advantage that the summary results consistently represent 

the conceptual relationship between words, sentences, and paragraphs [16]. Concerning the studies 

mentioned above, this study proposes extractive text summarization that can perform text summarization 

against a scientific journal article that has a varied structure and tagging. In order to extract likelier semantic 

meanings that are contained in a document, the researchers used weighted sentences by doing feature 

engineering, which includes sentence-length cut-off features, fixed phrase features, paragraph location, 

thematic word features, and uppercase word features. Then from these features, the classification process was 

done by using the long short-term memory (LSTM) algorithm and gated recurrent units (GRU) to determine 

the most relevant sentences to the topic and represent the entire text. 

Simple neural networks are not sufficient for handling classification cases against sequential data, 

such as text data consisting of strings of words and sentences [17]. The LSTM network is a variant of the 

recurrent neural network (RNN). LSTM is popular because it can reduce the problem of explosion and 

diffusion gradients [18]. LSTM transforms the memory structure of cells in the RNN by transforming the 

tanh activation function layer in the RNN into a structure containing memory units and gate mechanisms. It 

aims to decide how to utilize and update information stored in memory cells. Due to this structure, this 

reduces the problem of gradient diffusion glue and explosion [19], [20]. LSTM is proposed to overcome the 

occurrence of vanishing gradients in RNN when processing long sequential data. RNN has several 

architectures, one of which is the GRU. The GRU has a “gate” reminder to bring information from previous 

circumstances. GRU has also undergone many developments, one of which is bidirectional GRU (BiGRU), 

which applies the concept of GRU in a forward and backward manner so that it has information from the 

previous and the following states [21] and so that it knows the surrounding information. 

 

 

2. RESEARCH METHOD  

The method in this research will take several stages. The first is the process of collecting datasets of 

scientific journal articles obtained from open libraries on the internet. Then the data will be extracted with 

metadata such as the abstract section, title, author, and year of publication. After that, the dataset will go through 

the pre-processing stage and then proceed to the feature engineering stage to extract semantic information from 

the text. After the features have been extracted, 75 final features will be generated, all of which are binary 

values. In labeling the data, the researcher used the latent semantic analysis technique to find the most important 

sentence in the text. At the model training stage, the researchers compared two algorithms: LSTM and GRU. 

Finally, the model evaluation is used to determine how well the model performs and which algorithm gives the 

best results and performance. Figure 1 describes the stages in this research. 

 

2.1.  Dataset collection  

Dataset collection is done manually by downloading scientific articles from the Arxiv open access 

repository. Scientific journal article data, as many as 41,000 research topics related to artificial intelligence, machine 

learning, and computer vision, were taken from the open-source library. The PDF-formatted set of articles will then 

go through the dataset-build stage to extract the metadata and proceed to the data-labeling process.  
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Figure 1. Research methodology 

 

 

2.2.  Build datasets 

At this stage, 41,000 scientific journal articles in PDF format that have previously been collected 

will go through pre-processing data and meta-data extraction to be used as attributes in the dataset. 

 

2.2.1. Pre-processing  

The pre-processing stage is related to preparing a number of data results for the dataset build, which 

will then be used for learning materials for computers. These data are some of the components that determine 

how well the model’s results are built. In this step, we conduct some data-cleaning processes, including the 

following: i) uniform words by changing all text letters to lowercase and removing some character letters that 

are regarded as delimiters; this process is called case folding [22]; ii) the next step is the tokenization process 

by separating the word string from the sentencing document; iii) stopword is a process used to eliminate 

words that are considered unimportant [23]; iv) the final step of preprocessing stems from changing the form 

of the word to make it the root word. 

 

2.2.2. Create the dataset 

Section extraction is done automatically using Python to generate attributes, such as the title, 

abstract, and year. After obtaining the attribute, the next step is the data-labeling process. In this study, the 

researchers tried to use abstract attributes as original texts for compaction. Target data or labels will be 

generated automatically using the LSA method to generate summary results. 

The summary result is then encoded into an index sentence that represents the sentence index in the 

text. The sentence index is stored in the summary column and will be used as the target column in the dataset. 

After the data-labeling process, the dataset will have 41,000 rows of data with several columns, including 

title, abstract, year, and summary. The stages in building the dataset are illustrated in Figure 2. 
 

 

 
 

Figure 2. Stages of building the dataset 

 

 

2.3. Feature engineering 

At this stage, feature engineering extracts new features that will later be used for scoring each 

sentence. Feature engineering uses abstract columns to make or organize several categories of feature 

scoring, which are as shown in: 

 

2.3.1. Sentences-length cut-off features 

Usually, short sentences tend not to be included in summaries [24]. Here the threshold is given for 

each sentence (e.g., 20 words). If the sentence contains more words than the threshold length, then this feature 

will be worth 1, and if it contains fewer words than the threshold length, then the feature will be worth 0. 
 

f (x)={ 
1 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 
  

 

2.3.2. Fixed phrase features 

Some phrases including the conclusion, summary, and essence tend to be representative of 

summaries and generally imply that sentences containing those key phrases are important sentences. There 

are 26 indicator phrases; if a sentence contains at least one of these keywords, then the feature will be worth 

1 and if it does not contain these keywords, then the feature will be worth 0. 
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f (x)={ 
1 𝑖𝑓 𝑓𝑟𝑎𝑠𝑒_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 
  

 

2.3.3. Paragraph location 

The position of a sentence in a paragraph in general also tends to have in identifying whether a 

sentence is repressive to the summary or not [25]. This feature is discrete (3, 2, 1), so the sentence will be 

categorized into three groups: the sentence at the beginning of the sentence is 3, the sentence in the middle of 

the paragraph is 2, and the sentence at the end of the paragraph is 1. 
 

f (x)={ 
 3 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ 

2 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ ,𝑎𝑛𝑑 1 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 
  

 

2.3.4. Thematic word features  

The two or three selected words that appear most frequently in the text (excluding stopwords) are 

called thematic words. Sentences containing at least one thematic word will be 1, and if there is no thematic 

word in it, it will be 0. 
 

f (x)={ 
1 𝑖𝑓 𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐_𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 
  

 

2.3.5. Uppercase word features 

In general, words that contain capital letters, such as the example acronym ASA (American 

Statistical Association), tend to represent the importance of the sentence's in a paragraph. This feature will be 

binary; sentences are sorted by the frequency of words with the most capital letters. The top-ranked sentence 

will receive a value of 1; otherwise, it will be 0. 
 

f (x)={ 
1 𝑖𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒=𝑡𝑜𝑝_𝑢𝑝𝑝𝑒𝑟𝑐𝑎𝑠𝑒_𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 
  

 

2.4.  Model training 

The ready data will be divided into two parts: the training set and the test set. The training set data will be 

used during the training process, while the test set data will be used to perform performance tests on the model. There 

are 75 features resulting from the feature engineering process that will be used as inputs. This input will then be 

processed by LSTM or GRU cells to produce an output that can then be channeled to the hidden layer. In hidden 

layers, the trained data will be stored in the logistical form to continuously update the weight and other values to meet 

the target output. To obtain weights that are close to the output value, the decoder uses the attention layer to focus the 

result of the previously hidden layer. After that, the process of decoding will be done to the sentence index data to 

form the text, which will then be displayed as the output result. 

 

2.5.  Evaluation 

The evaluation stage calculates accuracy by obtaining precision, recall, and F-Measure values. 

Precision is a measurement of the accuracy of the summary results produced by automatic text 

summarization, and it can measure how relevant the chances are of a text being taken to be used as a 

summary. Recall is a measurement of the summary success value generated by the system and can measure a 

relevant text’s chances of being taken as a summary result. F-measure is the value used to determine the 

accuracy level of the summary results obtained. 
 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  Precision=

𝑇𝑃

 𝑇𝑃+𝐹𝑃
  Recall=

𝑇𝑃

𝑇𝑃+𝐹𝑁
   F1 Score=

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  

 

where: TP=true positive is a sentence that is in the summary of the LSA and appears in the summary of the system 

FP=false positive sentence that is in the summary of the LSA but does not appear in the system 

FN=false negative is a sentence that is in the summary of the LSA but does not appear in the system 

TP=true negative is a sentence that is not in the LSA summary or system summary 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Train-test split evaluation 

This study produced the value of accuracy for the summary results by predicting the implementation 

of classification methods. The models used for testing were the LSTM comparison algorithm and gated 

recurrent units. Table 1 shows the results of split test data sharing, with the best results being 60% train set 

data and 40% test set data with a value of 98.7%. 
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Table 1. The accuracy result is based on the distribution of the train test split 
Split train test Accuracy LSTM Accuracy GRU 

90/ 0.9849 0.9822 
80/20 0.9857 0.9829 

70/30 0.9853 0.9856 

60/40 0.9871 0.9859 

 

 

3.2.  Hyperparameters tuning 

In this research scenario, we performed several hyperparameter settings to influence the output 

results and improve model performance. The hyperparameters used included epoch, batch_size, learning rate, 

and neuron activation function. 

a. Epoch and batch size 

The results of batch size and epoch adjustment are shown in Table 2. The result provides an LSTM accuracy 

of 93.73% with a total batch_size of 32 and epoch 100, while the compute time is 386.7663 seconds. 

b. Learning rate 

The results of the tuning learning rate are shown in Table 3. The best accuracy is LSTM with a value of 

0.9860 when the learning rate is 0.001. The computing time in this process was 386.8756 seconds. 

c. Algorithm optimization 

The scenario results for the tuning optimizer algorithm are shown in Table 4. This experiment 

demonstrated the best accuracy with LSTM at 98.60% when using the Adam optimizer algorithm. The 

duration of the process in this scenario is 386.7442 seconds. 

d. Neuron activation function 

Table 5 displays the results of the tuning activation function experiment. The best result accuracy was 

achieved by LSTM, with a value of 98.60% when using the hard_sigmoid function. The computed time to 

process this experiment was 386.9453 seconds. 
 

 

Table 2. The accuracy score of batch size and epoch tuning 
Algoritma Epoch/Batch_size Epoch=30 Epoch=50 Epoch=100 

GRU Bs=20 0.9857 0.9835 0.9852 

Bs=32 0.9849 0.9868 0.9840 

Bs=40 0.9863 0.9851 0.9851 

LSTM Bs=20 0.9855 0.9868 0.9872 

Bs=32 0.9860 0.9870 0.9873 

Bs=40 0.9871 0.9870 0.9869 
 

 

Table 3. The accuracy score of learning rate tuning 
Learning rate Accuracy LSTM Accuracy GRU 

0.001 0.9860 0.9802 
0.01 0.9486 0.9758 

0.1 0.9486 0.9752 
 

 

Table 4. The accuracy score of optimizer 

algorithm tuning 
Optimizer Accuracy LSTM Accuracy GRU 

SGD 0.9542 0.9745 
RMSProp 0.9803 0.9852 

Adagrad 0.9696 0.6683 

Adadelta 0.9544 0.9739 
Adam 0.9860 0.9802 

 

Table 5. The accuracy score of activation function 

tuning 
Activation function Accuracy LSTM Accuracy GRU 

Softmax 0.9865 0.9857 
Relu 0.9822 0.9853 

tanh 0.9583 0.9802 

Sigmoid 0.9838 0.9864 
Hard Sigmoid 0.9873 0.9859 

 

 

 

3.3.  Model testing and evaluation 

At this stage, we evaluated the LSTM and GRU models against a dataset of scientific journal 

articles that we had previously conducted in the training process. Table 6 shows a comparison of the 

evaluation values between LSTM and GRU. It can be seen that LSTM gave relatively similar results 

compared to GRU, with a GRU accuracy of 98.40% and an LSTM of 98.68%. At this stage, we also applied 

all parameter value settings that had the best accuracy composition from previous experiments, including 

batch_size=32, epoch=100, learning_rate=0.001, optimizer=Adam, and neuron activation 

function=hard_sigmoid to our model. Table 7 shows the evaluation values for LSTM before and after setting 

the parameters. The results showed that after tuning the parameters, the accuracy score increased from 

98.33% to 98.68%. We defined every 15 sentences in the text with a label to help us choose which label to 

represent as a summary. The accuracy results of the 15 labels are shown in Figure 3. 
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Table 6. Evaluation report between LSTM and 

GRU  
Evaluation Score LSTM GRU 

F1-Score 0.9826 0.9750 

Precision 0.9756 0.9635 

Recall 0.9906 0.9879 
Accuracy 0.9868 0.9840 

Time (seconds) 386 303 (21.50% faster) 
 

Table 7. LSTM evaluation report before and after 

parameter tunning 
Evaluation Score LSTM before tunning LSTM after tunning 

F1-Score 0.9368 0.9826 

Precision 0.9623 0.9756 

Recall 0.9279 0.9906 
Accuracy 0.9833 0.9868 

Time (seconds) 386 386 
 

 

 

 
 

Figure 3. Confusion matrix results 

 

 

3.4.  Test summarizing the text 

After the LSTM model was determined as the best model, and the most optimal hyper tuning 

parameter settings were selected. Then we tested the model to summarize the abstract section of journal 

articles manually inputted into the system compared with the summary results using the LSA. Table 8 shows 

displays the results of this comparison. 

 

 

Table 8. Comparison of LSA summary results and LSTM model summaries 
Text original Summary generate by LSA Summary generate by LSTM model 

The detection of Covid-19 is an important step to make early 
for suspected Covid-19 patients can be done further steps. One 

way of detection is through x-ray images of the lungs. 

However, besides that, we need an algorithm model that can 
produce high language, light computation What is needed so 

that it can be applied in a detection device. Models in CNN 

can performs detection with accuracy but tends to require 
large memory usage. CNN with fewer parameters can provide 

both storage and memory usage so that it can be processed in 

real time both in the form of a detection tool and decision 
making via the cloud. Besides, CNN with smaller parameters 

it can also be applied to FPGA and other hardware has limited 

memory capacity. To produce accurate detection of COVID-

19 on lung x-ray images but the computation is also light, we 

CNN architecture is small but reliable to use a channel 

exchange technique called ShuffleNet. In this study, we tested 
and compared capabilities of ShuffleNet, EfficientNet, and 

ResNet50 because they have a smaller number of parameters 

compared to CNN in general such as VGGNet or FullConv 
which uses a convolutional layer full but has capable detection 

capabilities. We used 1125 x-ray images and achieved an 

accuracy of 86.93% with the number of model parameters that 
were 18.55 times less than EfficientNet and 22.36 times less 

than ResNet50 to wait for 3 categories namely Covid-19, 

Pneumonia, and normal through a 5-fold cross validation test. 
The memory required by each of these CNN architectures for 

performs detection linearly with the number of parameters 

where ShuffleNet only requires GPU memory of 0.646 GB or 
0.43 times that of ResNet50, 0.2 times of EfficientNet, and 

0.53 times times from FullConv. Furthermore, ShuffleNet 

performs the fastest detection of 0.0027 seconds. 

To produce accurate 
detection of COVID-19 on 

lung x-ray images but the 

computation is also light, 
we CNN architecture is 

small but reliable to use a 

channel exchange 
technique called 

ShuffleNet. We used 1125 

x-ray images and achieved 
an accuracy of 86.93% 

with the number of model 

parameters that were 18.55 

times less than EfficientNet 

and 22.36 times less than 

ResNet50 to wait for 3 
categories namely Covid-

19, Pneumonia, and normal 

through a 5-fold cross 
validation test. 

to produce accurate detection of 
covid 19 on lung x ray images but 

the computation is also light we cnn 

architecture is small but reliable to 
use a channel exchange technique 

called shufflenet we used 1125 x 

ray images and achieved an 
accuracy of 8693 with the number 

of model parameters that were 1855 

times less than efficientnet and 
2236 times less than resnet50 to 

wait for 3 categories namely covid 

19 pneumonia and normal through a 

5 fold cross validation test 
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To determine the summary accuracy results generated by the LSTM and LSA models from the table 

above, we used ROUGE. Table 9 shows that ROUGE-1, which measures the match rate of unigrams, gets a 

precision score of 75% between the LSTM model compared to the LSA results; ROUGE-2, which measures 

the match rate of a bigram, gets a precision score of 59%; and ROUGE-L, which measures the longest 

common subsequence (LCS), gets a precision score of 74%. 
 

 

Table 9. Evaluation results of the ROUGE metric against the summary of the model and summary of the 

LSA 
Evaluation Score F1 Score Precision Recall 

ROUGE-1 0.7577 0.7530 0.7625 

ROUGE-2 0.5911 0.5875 0.5949 
ROUGE-L 0.7441 0.7619 0.7272 

 

 

4. CONCLUSION  

From all the experimental scenarios conducted in this study, the results show that the new method 

that we introduced by combining one-hot encoding for each sentence and feature engineering to extract 

semantic meaning can produce extractive summaries that are just as effective as those done by the LSA 

algorithm. Different from LSA, because we use a deep-learning approach, our method can also be 

customized by changing the data-labeling method using another approach such as clustering or manual 

methods. GRU and LSTM provide very similar accuracy performances of 98.40% and 98.68%, respectively. 

LSTM performed slightly better because it has a more complex gate architecture, while GRU excels in the 

time it takes in the training process because each cell has only two gates. Tuning parameters also improved 

accuracy from 98.33% to 98.68% for LSTM. The configuration values on tuning parameters that produce the 

best performance are batch_size=32, epoch=100, learning_rate=0.001, optimizer=Adam, and neuron 

activation function=hard_sigmoid. 
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