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 Deep neural networks have accomplished enormous progress in tackling many 

problems. More specifically, convolutional neural network (CNN) is a 

category of deep networks that have been a dominant technique in computer 

vision tasks. Despite that these deep neural networks are highly effective; the 

ideal structure is still an issue that needs a lot of investigation. Deep 

Convolutional Neural Network model is usually designed manually by trials 

and repeated tests which enormously constrain its application. Many hyper-

parameters of the CNN can affect the model performance. These parameters 

are depth of the network, numbers of convolutional layers, and numbers of 

kernels with their sizes. Therefore, it may be a huge challenge to design an 

appropriate CNN model that uses optimized hyper-parameters and reduces the 

reliance on manual involvement and domain expertise. In this paper, a design 

architecture method for CNNs is proposed by utilization of particle swarm 

optimization (PSO) algorithm to learn the optimal CNN hyper-parameters 

values. In the experiment, we used Modified National Institute of Standards 

and Technology (MNIST) database of handwritten digit recognition. The 

experiments showed that our proposed approach can find an architecture that 

is competitive to the state-of-the-art models with a testing error of 0.87%. 
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1. INTRODUCTION 

One of the major tasks in computer vision is the image classification task, which includes a lot of 

applications [1]. Convolutional neural network (CNN) is considered the base for most image classification 

methods and had shown an amazing performance and results [2], [3]. CNN also has been widely used in 

speech recognition, image processing including handwritten classification, scene classification, pattern 

recognition, and gesture recognition [4], [5]. CNN architecture has two fundamental blocks [6]. The first 

block is the convolutional layers that provide the features extraction process. The second part is a fully 

connected network that is responsible for the classification.  

CNN is a type of deep networks that solves a lot of computer vision tasks. It was first introduced in 

the 1980s by Yann LeCun [7]. The blocks of CNN are the convolutional layers, pooling layers, and fully 

connected layers [8]. These blocks are shown in Figure 1. 

The core block of CNN is the convolutional layer. This layer consists of a set of filters (kernels) that 

detect the features with random sizes. Each filter is convolved across the image by sliding it with a given 

horizontal step, then moves vertically with another step, until the full image has been checked. If we add 

more convolution steps so, more deep features can be recognized. For example, in the task of classification, 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 :  3377 – 3384 

3378 

CNN detects edges from pixels in the 1st stage, then detects simple shapes in the 2nd stage, and then detects 

higher-level features. The outputs of the convolution process are passed through a nonlinear activation 

function. The most common nonlinear activation function is the rectified linear unit (ReLU). Decreasing the 

dimensionality of the feature map and keeping the critical data is the task of the pooling layer as shown in 

Figure 2. This layer has a filter component called the kernel, the yield of a kernel is the (mean or 

max) value of the region. 

 

 

 
 

Figure 1. The CNN building blocks 

 

 

 
 

Figure 2. The pooling layer 

 

 

After that, a fully connected layer is added to the network which can be any kind of classifier such 

as a multi-layer perceptron. When applying CNN-based methods, choosing the ideal hyper-parameters is a 

challenging task. From the machine learning perspective, there is no definite method to specify a 

certain structure of the network that will enhance the performance. Also, most architectures of the network 

are selected with prediction instead of a contemplate choice. We propose a method to learn the optimal CNN 

hyper-parameters values automatically that can lead to a competitive CNN structure and can deploy it to any 

application that uses CNN. This approach is based on PSO algorithm, only with 15 particles and 30 

iterations, we can find architectures that achieve a testing error that is competitive to others designs and can 
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be applied to most of the CNN architectures with no encoding strategy during computations or using parallel 

layers, it is just with simple CNN. Since the training of a CNN is a time-consuming task, we chose to use the 

PSO algorithm in the process of optimal CNN architectures searching; because its convergence is faster than 

genetic algorithms [9], [10]. Our contributions are: 

- Introducing a CNN that uses optimized parameters in a simple way. 

- Finding CNN architecture that achieves a testing error that is competitive to other designs. 

- Using CNN architectures with no encoding strategy during computations or using parallel layers. 

- First research that tests the CNN hyperparameters optimization problem with bee colony algorithm.  

The organization of the paper is as follows; section 2 shows the related work. Section 3 shows the 

proposed method. The evaluation of the performance is performed using the MNIST dataset in section 4. The 

last section includes the conclusion. 

 

 

2. RELATED WORK 

Numerous researches had suggested many CNN architectures as AlexNet [11], also some of them 

increased the network depth to enhance the accuracy [12]. Others chose to add new inner 

configurations [13]. Although these models have demonstrated their productivity, a lot of them were 

designed manually. On the other hand, there are many attempts to design appropriate models such as Sehla 

and Afef [14] who attempted to optimize the CNN parameters based on genetic algorithm. More methods for 

optimization of the hyperparameters have been proposed by David et al. [15], Ilya and Frank [16], Francisco 

and Gary [17] who applied evolutionary algorithms (EAs). Also, several works have been done to optimize 

CNN hyper-parameters based on particle swarm optimization (PSO), Foysal et. al. applied a modified CNN 

form by optimizing only one CNN parameter which is convolution size [18]. The optimization was done by 

the model-based selection technique of particle swarm optimization. They used synthetic datasets and the 

classification accuracy was around 95. Sinha et al. [19] used PSO to optimize The CNN hyper-parameters of 

the first layer of a 13-layer CNN and got a classification error of 18.53% on CIFAR-10 dataset. Also, on the 

same dataset, they got an error of 22.5% of the 8-layer AlexNet. So, deeper CNN yields higher accuracy, but 

more computation cost is needed. 

The parameters used in this paper are size of input image, filter size, and number of filters and they 

need an encoding strategy during the computations. Guo et al. [20] proposed that the configuration of CNN 

parameters is an optimization problem, and a distributed PSO (DPSO) was used to optimize it and get the 

best model of CNN globally and automatically. In DPSO, they designed the mix-variable encoding strategy 

and updated the operations to each particle so, each particle represents a CNN. Also, the distributed 

framework reduces the running time. Experimental results on MNIST dataset get an accuracy of 99.25% for 

PSO and 99.2% for DPSO. Yamasaki et al. [21] applied PSO to get the optimal parameters for CNN 

automatically. The best setting of the parameter was obtained for Alexnet with different five datasets. 

Accuracy was enhanced from 0.7% to 5.7% of the standard Alexnet-CNN. The global best parameters could 

not be guaranteed in this algorithm due to its randomness. Also, the best parameters change frequently and 

are not constant. Wang et al. [22] proposed three mechanisms, acceleration coefficients vectorizing for 

adaptation different ranges of CNN hyper-parameters, compound normal confidence distribution for 

exploration capability enhancing, and linear estimation scheme for fast fitness evaluation. PSO is used with 

these mechanisms to improve the quality of CNN hyper-parameters and less the computation cost. 

Experimental results on CIFAR-10 get a classification error of 8.67%. 

 

 

3. RESEARCH METHOD 

Swarm intelligence (SI) is based on the behavior of groups intelligence. The SI algorithms can 

powerfully find the optimal solution. The Bee colony algorithm is an optimization algorithm inspired by the 

behavior of honeybees to find the optimal solution and was proposed in 2005 [23], [24]. Kennedy and 

Eberhart developed the PSO algorithm in 2001 and it is considered one of the evolutionary algorithms [25]. 

PSO algorithm consists of several steps. First, initialization of particles (searching agents) positions (x) and 

the velocities (v). Second, insert the particles into a cost function to find local bests (pbest) and global best 

(gbest). The smallest cost for each particle is the pbest and the smallest cost among all the pbest is the gbest. 

The cost function is calculated based on the problem, such as an error that needs to be minimized or accuracy 

that needs to be maximized. Third, update the particles by (1) and (2) [25]. 

 

𝑣𝑛+1 = 𝑣𝑛 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑛) +  𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑛)  (1) 

 

𝑥𝑛+1 =  𝑥𝑛 +  𝑣𝑛+1  (2) 
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In (1) and (2), n is particle number, c1, c2 are learning factors to adjust each iteration step length, 

usually in practice equals 2 which gives best results in many problems, and it can be set with trails and errors, 

v is the particle velocity which based on pbest and gbest, x is the current particle (solution), r1() and r2() are 

random variables between (0,1). 

To design a CNN model with an optimized parameter for our classification problem, we deployed 

the PSO algorithm to the CNN architecture. So, we have to solve a problem with numbers of factors that 

expresses the hyper-parameters of the CNN whereas guaranteeing a high classification accuracy. A CNN 

architecture is defined by various hyper-parameters. In this work, we will focus on the optimization of the 

convolution layer size and kernel size parameters that form the CNN structure. The fitness function is set to 

be the classification accuracy. So, we aim to find the ideal hyper-parameters values with higher accuracy and 

less error. Figure 3 shows a flowchart of the proposed method. 

 

 

 
 

Figure 3. Proposed method flowchart 

 

 

We define the hyper-parameters which are a set that contains first, the convolutional layer’s 

parameters which contains the filters number and the filter size, second, fully connected layer’s parameters 

which contains the size of the layer. So, the proposed method of hyper-parameters optimization aims to 

discover the hyper-parameters that maximize the classification accuracy of CNN. The first population is 

created randomly. The fitness function is set to be the classification accuracy of the CNN. If no change 

occurred in the individual hyper-parameters so, no need for CNN re-training. This process will be repeated 

until the iteration numbers are ended. The proposed method steps: 

- Initialize parameters of the PSO (population size, iteration number, acceleration constants c1 and c2). 

- Set the position and velocity of the particles corresponding to pre-defined CNN hyper- parameters. 

- Train the CNN with the parameters’ value of all particles. 

- Measure the fitness value (classification accuracy) of all particles, after this select pbest and the swarm 

best particle position. 

- Update the position X and velocity V of each particle. 

- End this process and design the model of the CNN using the optimized parameters if the iteration 

numbers are finished. Else, repeat the process from step 3. 
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4. RESULTS AND DISCUSSION 

We evaluated the proposed approach in this section using the MNIST dataset; sample image of the 

dataset is shown in Figure 4. The dataset has images of 28 × 28 grayscale pixel size of handwritten digits 

from 0 to 9. It has a 60,000 training and 10,000 testing samples. No further preprocessing is done on the data. 

The parameters that used in the experiments are shown in Table 1. These parameters are chosen by trials and 

errors. At the end of each epoch, a permutation is done to the training samples. To save the time of the 

training and avoid overfitting; if the loss of the training was less than the loss of validation, we terminate the 

training, else, continue till the end of the training iterations. 

 

 

 
 

Figure 4. Sample of MINST dataset [26] 

 

 

Table 1. Experiments parameters 
Parameter Value 

PSO: 
Swarm size 15 

Number of iterations 30 

Acceleration factors c1=2, c2 = 2 
CNN initialization: 

Convolution layers number 2 

Convolution kernel size 1-8 
Number of kernels 1-128 

Neurons numbers in the fully connected layer 1-300 

CNN training: 
Number of epochs 100 

Batch size 50 

Learning rate 0.55 

 

 

The global best parameters of PSO are convolutional layer’s parameters={(6, 5), (36, 5)} and 

connected layer’s parameters={192}. The proposed method is consistently enhancing the gbest particle 

training accuracy after each iteration. Figure 5 shows training accuracy for 10 iterations as a sample from 30 

iterations. 

 

 

 
 

Figure 5. Training accuracy during the optimization process 

 

 

The results of the experiments are represented in Table 2. We compared this result with a subset of 

representative methods which are psoCNN that automatically search for meaningful CNNs architectures with 

PSO algorithm [11], DPSO [14], LeNet-1 [27], LeNet- 4 [27], LeNet-5 [27], recurrent CNN that incorporate 

recurrent connections into each convolutional layer [28], PCANet-2, RANDNet-2 that employed the 
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principal component, binary hashing and block-wise histograms analysis to the deep learning network [29], 

CAE-1 and CAE-2 that present an approach for training deterministic auto-encoders [30]. It showed that the 

optimized method is not just a competitive method but also it helps to improve other methods. We also tested 

our CNN hyperparameters optimization problem with another swarm intelligent algorithm which is the bee 

colony optimization algorithm. 

 

 

Table 2. Comparison of MINST classification error of the state-of-the-art methods 
Method Test Error in % 

psoCNN [17] 0.44 
DPSO [20] 0.8 

LeNet-1 [27] 1.7 

LeNet-4 [27] 1.1 
LeNet-5 [27] 0.95 

Recurrent CNN [28] 0.31 

PCANet-2 [29] 1.06 

RANDNet-2 [29] 1.27 

CAE-1 [30] 2.83 

CAE-2 [30] 2.48 
Proposed method 0.87 

bee colony  1.02 

 

 

Table 2 shows that our proposed method has a testing error of 0.87% using simple CNN with PSO 

and if we incorporate the skip connection or parallel layers it may yield less error. This error is competitive to 

the previously mentioned methods except for the psoCNN that has a testing error of 0.44%, considering that 

its architecture is more complex than our method, needs an encoding strategy during the computations, and 

the running time is longer, DPSO that has a testing error of 0.8, but its architecture was more complex as it 

designs a mix-variable encoding strategy and distributed framework to reduce the running time. Also, 

recurrent CNN has a testing error of 0.31% but it did not explore the best configuration and limited the search 

in constrained hyper-parameter space, meaning that no optimization is done in this method and it uses 

recurrent connections. LeNet-1, LeNet- 4, and LeNet-5 obtained a testing error of 1.7, 1.1, and 0.95 

respectively, these networks have a small number of parameters with different types of last layer classifier. 

PCANet-2, RANDNet-2 that employed the principal component, binary hashing, and block-wise histograms 

analysis to the deep learning network obtained a testing error of 1.06 and 1.27 respectively. CAE-1 and CAE-

2 that present an approach for training deterministic auto-encoders obtained a testing error of 2.83 and 2.48 

respectively. Also, optimization with the bee colony algorithm gives an error of 1.02. 

 

 

5. CONCLUSION AND FUTURE WORK 

We proposed a method of CNN hyper-parameters optimization based on particle swarm 

optimization algorithm. The experiments on the MNIST dataset demonstrate an improvement to some of the 

state-of-the-art methods. The results represent that this method was able to find optimized parameters of the 

CNN model. With 15 particles and 30 iterations, we can find architectures that achieve a testing error of 0.87 

which is competitive to other designs. We aim to extend the proposed method and add more hyper-

parameters in the optimization process for our future work. 
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