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 Power quality disturbances (PQD) degrades the quality of power. Detection of 

these PQDs in real time using smart systems connected to the power grid is a 

challenge due to the integration of energy generation units and electronic 

devices. Deep learning methods have shown advantages for PQD 

classification accurately. PQD events are non-stationary and occur at discrete 

events. Pre-processing of power signal using dual tree complex wavelet 

transform in localizing the disturbances according to time-frequency-phase 

information improves classification accuracy. Phase space reconstruction of 

complex wavelet sub bands to 2D data and use of fully connected feed 

forward neural network improves classification accuracy. In this work, a 

combination of DTCWT-PSR and FC-FFNN is used to classify different 

complex PSDs accurately. The proposed algorithm is evaluated for its 

performance considering different network configurations and the most 

optimum structure is developed. The classification accuracy is demonstrated 

to be 99.71% for complex PQDs and is suitable for real time activity with 

reduced complexity. 
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1. INTRODUCTION  

The renewable energy generated are integrated with power grid and monitored through smart 

systems have been increasing with encouragement from government and amicable policies. Voltage and 

frequency variations arise when renewable energy sources are integrated into the grid system since they are 

intermittent. Dealing with these variances is the most challenging difficulty for modern renewable energy 

resources [1], [2]. In order to minimize losses and improve efficiency of smart grid network, it is required to 

continuously monitor power quality and sources of disturbances that affect power quality. Accurately 

detecting power quality disturbances (PQD) will help in developing control strategy for power generation, 

conversion and distribution. PQDs are defined for interoperability as in EN50160, IEC 61000 and IEEE 1159 

standards. PQD detection is a two-step process: detection of features from power signal and classification of 

features as PQDs. Over the last two decades several techniques have been reported in literature for PQD 

detection and classification. Feature detection using “fourier transforms, short time fourier transform, wavelet 

transform, s-transform and hilbert hung transform” is popular methods [3]-[6]. Feature classification methods 

such as “Decision tree, artificial neural network, probabilistic neural network, support vector machines, fuzzy 

logic, genetic algorithm” are few of the reported methods [7]-[12]. Convolutional neural networks (CNN), a 
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deep learning approach has been a prominent approach for PQD classification in recent years. Deep learning 

algorithm automatically helps in identifying optimal features at multiple levels of abstraction from the input 

signal. Deep learning models such as “CNNs, long short term memory (LSTM), deep belief network (DBF) 

and hybrid CNNs” are demonstrated [13]-[15]. 
The complexity in use of deep learning methods for power signal analysis is the huge data sequence 

that needs to be analysed and most of the data samples will be without distortion. Distortions will occur 

randomly and will be for short durations. The 1D data need to be sequentially analyzed to detect these short 

duration randomness which is a complex process. The work reported in [16] uses image files of PQ events 

instead of sampled voltage data. Deep learning algorithms are used to classify image data demonstrating 

100% accuracy. A complete framework for PQ event classification using 2D CNNs and space phasor model 

(SPM) is presented in [17] demonstrating improved accuracy in both classification and characterization. The 

work carried out in [18] have used phase space reconstruction as a pre-processing method that converts 1D to 

2D phasor diagrams and CNN based classification is used to classify 2D images. Real time data from IEE 

working group was used to evaluate the algorithm and 20 events for each PQD were classified at a rate of 

98.8%. A dual neural-network-based methodology that combines adaptive linear network (ADALINE) and 

feed forward neural network (FFNN) has been used to detect and classify PQD’s in [19]. A novel method 

that combines compressive sensing (CS), singular spectrum analysis (SSA), wavelet methods (WT) and deep 

learning model for PQD classification is reported in [20] achieves classification accuracy of 99.56% for 

classifying 15 PQDs. Combining SSA, CS and DNN is recommended to be the best method for complex 

PQD classification as compared with wavelet based methods. A new approach presented in [21] uses 

machine learning algorithms based on K-nearest neighbour algorithm, decision tree and SVM to classify the 

Stockwell features. Classification accuracy of 97.6% is reported in classifying 13 PQDs with 5 features. 

PQDs are non-stationary events and it is required to capture non-stationary features for classification 

of these features by training a deep learning model that is dependent on training features. In this work shift 

invariant transform such as dual tree complex wavelet transform (DTCWT) is used as pre-processor to 

capture non-stationary events at different complex sub bands with hierarchal time-frequency resolution. 

phase space reconstruction (PSR) is used in converting the 1D complex sub bands into 2D complex PSRs 

those are processed independently to classify the PQDs. Complex PSRD are used for evaluation of proposed 

algorithm. Detailed discussion on proposed method is presented in this paper.  

 

 

2. DTCWT  

Selesnick et al. [22] have reported the advantages of DTCWT over DWT in signal decomposition 

such as shift invariant and good directionality approximately analytic wavelets defined as in (1), 
 

ψc(t) =  ψr(t) + jψi(t) (1) 
 

where, j stands for imaginary unit. The imaginary part of the wavelet ψi(t), is the Hilbert transform of the real 

part ψr(t). The FIR scaling filters in three stages dual-tree complex wavelet transforms are denoted by 

{h0(n), g0(n)}. The two trees FIR wavelet filters are denoted by {h1(n), g1(n)}. The two scaling filters are 

made to approximate the half-sample delay condition as seen in (2).  
 

g0(t) = h0 (n −
1

2
) (2) 

 

A 2-channel perfect reconstruction filter bank's filters must satisfy the requirements in (3) and (4), 

where H0(z),F0(z) are the Z-domain representations of low pass filters and H1(z), F1(z) are the Z-domain 

representations of high pass filters. 

 

H0(z)F0(z) + H1(z)F1(z) = 2z − 1 (3) 

 

H0(−z)F0(z) + H1(−z)F1(z) = 0 (4) 
 

In this work, power signal is pre-processed using three-level DTCWT to generate multiple complex 

sub bands for localizing the PQDs in different sub bands. The input signal is decomposed in the first stage by 

three levels to generate both real and imaginary sub bands denoted as (1_R, 2_R, 3_R, 4_R, 1_I, 2_I, 3_I, 

4_I). In the second level, the low pass sub band 4_R and 4_I are further decomposed into 3 levels to generate 

lower level sub bands. The total number of sub bands generated is presented in Table 1. 

The PQD are of short duration and the dominant information in the signal is the undistorted power 

signal of 50 Hz and hence the computation complexity in 1D data processing is reduced by transforming the 

complex wavelet sub band data into PSR diagrams and is termed as complex wavelet PSRs. 
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Table 1. PQD events in DTCWT sub bands 

Frequency (Hz) 
Sub Band 

No. of Wavelet PSR PQD events 
Real Imaginary 

1664-3328 1_R 1_I Not considered Noise 

832-1664 

416-832 
0-416 

218-416 

104-218 

2_R 

3_R 
4_R 

4_1_R 

4_2_R 

2_I 

3_I 
4_I 

4_1_I 

4_2_I 

2 

2 
Decomposed to lower bands 

2 

2 

Harmonics, Flicker and 

Transients 

52-104 

0-52 

4_3_R 

4_4_R 

4_3_I 

4_4_I 

2 

2 

Sag and Swell 

 

 

3. PSR OF COMPLEX WAVELET SUB BANDS 

Phase space reconstruction (PSR) in [23] is a time series representation of signal trajectory in a 

chaotic system. Considering a time series variable x1, x2, x3, x4, …., xN, an m-dimensional phase space with 

time intervals τ, 2τ, 3τ, 4τ, …, (m-1)τ can be constructed embedding the dimension and delay parameter in 

the time series as shown in (5), where i= 1, 2, 3, ……, L and L = N –(m-1)τ, N is the total number of 

samples.  

 

Xi = [Xi, Xi+τ, …… … . , Xi+(m−1)τ]
T
 (5) 

 

Using (5), a phase space matrix representing the coordinates of signal trajectory is produced as 

shown in (6), 

 

X = [

X1

X2

⋮
XL

] =

[
 
 
 
X1, X1+τ, …… … . , X1+(m−1)τ

X2, X2+τ, … … … . , X2+(m−1)τ

⋮
XL, XL+τ, …… … . , XL+(m−1)τ]

 
 
 
T

 (6) 

 

The PQ events are transformed into 2D data using the phase space reconstruction process that 

provides information on deviations or nonlinearities in the signal from the regular behaviour of time series 

data. Considering the 2D phase space reconstruction diagrams the traditional 1D time series analysis is 

converted to 2D time-frequency analysis.  

Figure 1, presents the PSR diagrams for undistorted PQ signal and PQD signal with swell. The time 

domain representation is presented at the top of figure. The PSR diagram for PQD with swell is distorted and 

has two parabolas and short duration distortion (left bottom of PSR) that links both parabolas. Changes in 

swell amplitude will change the major and minor axes geometries. A short spike is observed on the smaller 

parabola that protrudes towards origin. Similarly PSR models Signal with sag, transients, harmonics and 

Signal with flicker events were developed accordingly. 

 

 

  
(a) (b) 

 

Figure 1. PSR models, (a) undistorted PQ, (b) signal with swell 
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4. RESEARCH METHOD 

The following is a block diagram representation of the suggested methodology for PQD 

classification: 

 

4.1.  PQD classification 

The novel method for PQD classification is presented in Figure 2, input data (PQ signal with 

different events) are generated by setting the event parameters. To get the wavelet sub bands and complex 

wavelet sub bands for each PQD signal, both DWT and DTCWT transformations are used. From the wavelet 

sub bands generated SPM diagrams are computed. PSR diagrams generated from low pass sub bands and all 

high pass sub bands are organized in order to identify the information content. Each of the PSR diagrams 

generated from wavelet sub band information content is identified by computing entropy. From the entropy 

of information identified from wavelet SPMs the most significant wavelet PSR is selected for further 

processing. Each of the selected wavelet PSRs is resized and reordered. The reordered 1D wavelet PSR is 

normalized and is grouped into training data set and test data set. Fully connected feed forward neural 

network (FC-FFNN) model is defined by setting input layer, hidden layer and output layer parameters. The 

network is trained to perform classification of reordered Wavelet PSR events. The network is trained until it 

is capable of accurately classifying PQD events using 1D wavelet PSR. Classified as expected (CAE) 

parameter is considered for optimizing training of the network and change in network parameters. The 

trained network with optimum weights and biases will be used for classification of PQDs.  

 

 

 
 

Figure 2. Flow diagram for PQD classification 

 

 

4.2.  Resizing and reordering of complex wavelet PSR 

The low pass PSR diagrams are of 8 x 8 resolutions and the high pass PSRs are of varied sizes and 

hence in this work a normalization algorithm is developed to resize all the images to 16 x 16. The 

normalization algorithm considers the region of Interest (ROI) and the background data which is white (pixel 

intensity of 255) is removed. Considering the ROI data in the image the resizing algorithm generates 16 x 16 

images. Resizing all the PSR diagrams generates 12 images for every PQD event of which 6 of them are real 

PSR diagrams and 6 of them are imaginary PSR diagrams. 

The Figure 3 presents the reordering process for converting 16 x 16 images to 256 x 1 vectors. For 

illustration 4 x 4 images is reordered to 16 x 1 vectors. The reordering algorithm circular scanning logic is 

developed that scans the pixels from the centre of the image. The advantage of this scanning method is the 

information content in the PSR diagrams are localized in the middle of the image are scanned and placed at 

the top of 1D vector. The background in the PSR diagram is placed at the bottom of 1D vector. 

Considering the complex wavelet PSR diagrams (12 images of size 16 x 16) for each of the power 

quality disturbance events, after reordering and rearranging the input data vector size will be 256 x 12. The 

first 6 column vectors represent the real wavelet coefficients and the next 6 represent imaginary wavelet 

coefficient. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 :  2980 – 2988 

2984 

 
 

Figure 3. Reordering of PSR based on circular scanning method 

 

 

5. FC-FFNN CLASSIFIER 

The proposed multi-layered FC-FFNN structure for classification of PQD events is represented in 

Figure 4. The input layer is a 256 x 12 x 1 data vector that is grouped into two data vectors of 256 x 6 of real 

and imaginary data. Each of the 256 x 6 data is processed the two separate hidden layers that comprises of N1 

neurons and tansig network activation function. Each of the two hidden layers processes the real and 

imaginary data to generated N1 outputs. The total number of neurons in the hidden layer 1 is 2N1 and 

intermediate outputs at the hidden layer are 2N1. The second hidden layer has N2 neurons and is designed to 

process 2N1 inputs from the hidden layer 1 output. The network activation function of hidden layer 2 is set to 

tansig. The third layer and the output layer are also set with tansig activation function.  
 

 

 
 

Figure 4. Proposed FC-FFNN for PQD classification 

 

 

5.1.  Network training 

The FC FFNN network model is trained with three initial layers and each layer having 140, 16 and 1 

neurons respectively. The 256-140-16-1 classifier network is trained by setting the training parameters as 500 

epochs and mean square error to 10-5. Figure 5 presents the performance plots of designed network, the 

performance plots during training, validations and testing. 
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Figure 5. Mean squared error (MSE) performance of 256-140-16-1 network 

 

 

MSE of designed network during training phase is approximately 10-2 and during validation phase is 

between 10-2 and 10-3. The validation is carried out considering 20% of data from the test vectors and hence 

the MSE is found to be better compared with training MSE. From the performance graphs obtained it is 

found that the network is able to reach global minima point in 143 epochs and requires 28% of total training 

epochs set. The best MSE is found to be 0.0021327 at 143 epochs, gradient at 149 epochs is 0.0018451 and 

MU at 149 epochs is found to be 0.001. Similarly, training was done for several FC-FFNN classifier 

networks, and the results were compared in Table 2. 

 

 

6. RESULTS AND DISCUSSION  

This section displays the proposed technique's network performance and classification accuracy. 

 

6.1.  FC-FFNN network performances 

The performance metrics of validation, MSE, gradient and MU (control parameter) for the 256-128-

32-6 network is 8.5964e-14, 5.93e-14, 1.00e-07 and 1e-11 respectively at 303 epoch with regression parameter 

being 1. These parameters compared with 256-200-48-1 network parameters. Comparing 256-200-48-1 

network model and 256-128-32-6 network model is found to be better in terms of network performance 

parameters. Table 2 compares the FC-FFNN network performances for different configurations of network 

structures. The MSE for 256-140-16-1, 256-200-48-1 and 256-128-32-6 are the lowest and achieve 

regression of 1 in classifying the training data sets. 

 

 

Table 2. Comparison of different FC-FFNN models performances 
Network Topology 256-140-16-1 256-180-90-1 256-200-48-1 256-128-32-6 256-64-140-1 

Best Validation 

Performance (MSE) 
Epoch 

Mu 

Gradient 
Slope of Local Minima 

2.31e-5 

3.90e-5 
124 

1.00 e-5 

0.000438 
0.00684 

0.018796 

0.0418 
19 

0.0100 

0.00936 
0.02931 

1.1537e-11 

1.05e-11 
426 

1*e-9 

9.95*e-8 
0.00009 

8.5964e-14 

5.93e-14 
303 

1.00e-11 

1.00e-7 
0.00009 

0.013946 

0.0410 
48 

0.00100 

0.00701 
0.03962 

 

 

6.2.  Classification accuracy 

Table 3, shows the performances of the best-proposed DTCWT-PSR-FC-FFNN as related to other 

literature-documented classification algorithms. The approaches provided accuracy statistics in proportion to 

noise levels of 20db. Rodriguez et al. [19] performs the classification of 12PQD’s by achieving classification 

accuracy is 90.58% which is lower than proposed method . The suggested method has better classification 

accuracy than the findings in [20] of average precision 99.40 percent and 99.32 percent for 15 different types 

of PQDs. The combination of stockwell-transform+competitive swarm optimization algorithm+support 

vector machine (ST+CSO+SVM) were implemented in [21] by considering 13 types of PQ disturbances, 

obtaining classification accuracy of 97.6% in an average. Fast ST and embedded DT considered 12 types of 
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PQ disturbances achiving classification accuracy of 91.50% in [24]. In order to boost the classification rate of 

PQ signals, S transform and a probabilistic neural network (PNN) were used , resulting in a classification 

accuracy of 98.38 percent by considering only nine forms of PQ disruptions into account in [25]. Wavelet 

with PNN network in [26] considered 14 PQDs with classification accuracy of 86.86%, However the 

suggested approach considers 15 different forms of PQ disturbances, with a classification accuracy rate of 

99.871 percent. According to the results of the comparative analysis, the suggested approach focused on 

DTCWT-PSR-FC-FFNN is ideally adapted to identify several PQ disturbances with a high precision of 

classification accuracy. 

 

 

Table 3. Performances of proposed algorithm compared with references 
Network Type Reference No. of PQDs Classification Accuracy 

ADALINE+FNN [19] 12 90.58 

SSA-CS and DNN 
WT-CS and DNN 

[20] 15 
15 

99.40 
99.32 

ST + CSO + SVM 

Fast ST + Embedded DT 
ST + PNN 

Wavelet +PNN 

DTCWT–PSR– FC-FFNN 

[21] 

[24] 
[25] 

[26] 

Proposed 

13 

12 
9 

14 

15 

97.6 

91.50 
98.38 

86.86 

99.71 

 

 

Table 4 compares the collected findings in this paper with the published results in other studies in 

order to assess the efficacy and viability of the proposed algorithm. Except for sag, swell, and flicker in [20] 

and except harmonics in [27]. Each PQ disturbance has a lower classification accuracy than the proposed 

technique. The proposed method's mean classification accuracy produces better results than those found in 

the literature. 
 

 

Table 4. Classification of PQD events 
PQDs Proposed Method [20] [27] 

Swell with voltage raise (5%) 
Swell with voltage raise (10%) 

Swell with voltage raise (15%) 

99.76 100 96.45 

Sag with voltage dip (5%) 
Sag with voltage dip (10%) 

Sag with voltage dip (15%) 

99.56 100 92.75 

Transient  
Harmonic  

Flicker  

Swell with Transient  
Sag with Transient  

Swell with Harmonics 

Sag with Harmonics  
Swell with Flicker  

Sag with Flicker  

99.81 
99.87 

99.78 

99.40 
99.32 

99.81 

99.87 
99.89 

99.78 

99.40 
98.89 

100 

- 
- 

99.31 

99.40 
99.80 

99.00 

98.01 
100 

97.13 

- 
- 

96.4 

95.44 
- 

- 

 

 

7. CONCLUSION 

In this paper, a new algorithm based on DTCWT-PSR-FC−FFNN is used for accurate classification 

of PQ signals with 15 disturbances. Dual tree complex wavelet transform is used for pre-processing of power 

signal for localizing the disturbances according to time-frequency-phase information is carried out. 

Preprocessing of signals is carried out by filtering the signal with low pass filters with cut-off frequency 

limited to 5th harmonic of signal disturbances. The preprocessed signal is further checked for voltage rise 

and voltage dips of greater than 20% of 220V. Phasor diagrams are generated signals with 50 Hz and for 

signal 100 Hz and greater to compare the phasor diagrams. The computation complexity in 1D data 

processing is reduced by transforming the complex wavelet sub band data into phase space reconstruction 

(PSR) diagrams and is termed as complex wavelet PSRs. The most significant wavelet PSR is selected for 

further processing from entropy. Each of the selected Wavelet PSRs is resized and reordered. The reordered 

1D wavelet PSR is normalized and is grouped into training data set and test data set. Fully connected feed 

forward neural network (FC-FFNN) model is used to classify 15 different complex PQDs accurately. The 

proposed algorithm is tested for its performance in various network configurations, and the best framework is 

created. The classification accuracy has been demonstrated to be 99.71 percent, making it ideal for real-time 

operation with reduced complexity. 
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