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 The university courses timetabling problem (UCTP) is a popular subject 

among institutions and academics because occurs every academic year. In 

general, UCTP is the distribution of events through slots time for each room 

based on the list of constraints for instance (hard constraint and soft 

constraint) supplied in one semester, intending to avoid conflicts in such 

assignments. Under no circumstances should hard constraints be broken while 

attempting to fulfill as many soft constraints as feasible. this article presented 

a modified best-nests cuckoo search (BNCS) algorithm depend on the base 

cuckoo search (CS) algorithm. BNSC algorithm was achieved by dividing the 

nests into two groups (best-nests and normal-nests). The BNCS algorithm 

selection was limited to the best-nests to generate new solutions. The 

comparison between BNCS and basic CS based on the experimental result is 

achieved. For performance evaluation, the BNCS has been tested on four 

variant-size datasets. It was observed that the BNCS has performed high 

performance and is faster at finding a solution from CS. 
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1. INTRODUCTION 

Timetabling is a control that has always been in existence. This problem can be found in a variety of 

fields, including education, sports, and transportation [1]. The educational timetabling problem, which is 

challenging for educational institutions, involves a group of events for instance courses that should be 

allocated to specific rooms and slots-time while adhering to a group of constraints [2]. Constraints are 

divided into hard constraints and soft constraints. Hard constraints must not be broken for a solution to be 

regarded as practical, whereas soft constraints just increase the quality of the solution but are not required to 

be satisfied [3]. It is a Nondeterministic Polynomial Hard (NP-Hard) task to solve the university course 

timetable problem (UCTP). Several strategies may be used to solve this problem, but no promise can be 

made that the best answer will be found [4]. As a result, solving this problem is extremely difficult, and it 

becomes increasingly more difficult as the issue size grows. In the last several years, researchers use different 

timetabling methods using population-based methods, constraint-based methods (ant colony optimization [5], 

genetic algorithms [6], [7] and memetic algorithms [8]), the metaheuristic methods (simulated annealing [9], 

tabu search [10], and great deluge [11]), variable neighborhood search, and hybrid and hyper-hybrid 

approaches, etc. As a result of this diversity in the use of algorithms, further consideration should be given to 

the UCTP study. UCTP is an issue that involves fitting a set of events for instance teaching, into a predefined 

(room and time) bundle while meeting all of the constraints of the problem. A bundle (b) of room (r) and 

time (t) is formulated in (1). 
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b =  (r, t)  (1) 
 

First, the UCTP resource is room, where that differ in (ownership, location, capacity, and 

specialization) for example the capacity size for (lecture rooms, lesson rooms, and lab rooms). The second 

resource is time, it may differ from one university to the next, and it may vary on every week, every day, 

every hour, or even every minute basis. For instance, a university may apply a (45) limit minute, while 

another university may apply a (90) limit minute. A lecturer (l) teaching a certain class (c) to a group of 

students (s) is defined as an event (e) in (2). 
 

e =  (l, c, s)  (2) 
 

As a result, a timetable is a collection of all events that are divided into several or all bundles. A join 

(j) is a connection between a bundle and an event, as defined by (3). 
 

j =  (b, e)  (3) 
 

According to previous research [3], this study only used one type of constraint: the Hard-Constraint. 

Hard-Constraint is a stipulation that must be fulfilled. Soft-constraint may be considered, but due to the scope 

of this study, they are not taken into account. When all events are given a time slot while not violating any of 

the hard constraints, the problem is considered solved. A solution (timetable) is considered acceptable when 

all of the following hard constraints are fulfilled:  

− A time slot is assigned to each event in each course. 

− No student group can hold two events at the same time. 

− No lecturer should have two events going on at the same time. 

− All events are held in the appropriate room. 

− No two events take place at the same time in the same room. 

− No event is held in a room that is smaller than the number of students expected to attend. 

In this article, the UCTP is solved using the best-nests cuckoo search (BNCS) algorithm. The base 

cuckoo search (CS) algorithm is used by the BNCS algorithm. By dividing the nests into two groups, the 

BNSC algorithm was created (best-nests and normal-nests). To generate new solutions, the BNCS algorithm 

was limited to the best-nests. This article is divided into six sections, the remainder organized as; section 2 

shows the related work, section 3 shows the CS, section 4 shows BNCS, section 5 shows how the testing has 

been carried out and the results, last but not least, section 6 talks about the conclusion suggest possible future 

work is presented. 

 

 

2. RELATED WORKS 

Some researchers have been inspired by the idea that research at high cost should be explored more 

and at a low cost more exploited. Therefore, the simulated annealing with reheating (SAR) algorithm for 

timeline problems was proposed by Babaei et al. [12]. It is through the initial temperature and reheating that 

the research exploration is directed. The methodology does not require setting the final temperature because 

the temperature is reheated if the research is stopped. Moreover, the algorithm does not need to run any set of 

different time limits. The method showed outstanding results without the need for strict tuning of some 

parameters (start temperature, end temperature, and Markov chain length), which are often required in 

conventional simulated Annealing. 

For the SAR algorithm to work well, a manual setup of the neighborhood architecture is required to 

get good results. Goh et al. further developed the algorithm and proposed an algorithm called simulated 

annealing with improved reheating and learning [13]. The average cost changes were incorporated into the 

reheated temperature function. Furthermore, the reinforcement learning method was used to tune the 

composition of adjacent structures during the research. Overall, better results have been reported. Using a 

two-stage approach to the problem by Nagata [14]. In the first stage, an algorithm based on tabu search was 

used to build an initial solution. As for the second stage, reduce violations of the soft constraint by using 

random partial neighborhood search (RPNS). RPNS is based on Tabu Search except that the duration of Tabu 

is set to zero. It was found that varying neighborhood sizes during research work best for RPNS. The RPNS 

was configured for each data set in terms of neighborhood structure, proportion, update strategy, and several 

iterations. Very competitive results have been reported for the tested datasets especially International 

Timetabling Competition (ITC) 2007. 

A parallel hybrid approach, proposed by Gozali et al., to generate primary timescales for the 

application of a genetic algorithm (GA) improves the quality of the timelines by creating a hybrid algorithm 
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based on the parallel genetic algorithm and local search to solve the course schedule problem [15]. To ensure 

that the most fundamental restrictions are never broken, this combines a direct representation of the timetable 

with heuristic crossover operators. To solve the students' splitting, the multi-depth genetic algorithm 

(MDGA) was proposed by Alfian A. Gozali et al., UCTP [16]. MDGA calculates GA using multiple stages, 

including multi-level mutagenesis and multi-depth constraint consideration. He demonstrates that MDGA can 

provide a viable timetable for student segmentation difficulties and that the outcomes are superior to earlier 

work and existing UCTP solutions.  

 

 

3. CUCKOO SEARCH 

Through the brood parasitism of some species of cuckoos, the CS was inspired, in which they lay 

their eggs in the nests of other host birds (of other species). The offending cuckoo has been observed to 

engage in head-to-head fights with some of the host birds. The host bird will either get rid of the foreign eggs 

or leave the nest and create a new nest elsewhere if it realizes that the eggs are not it is own. The host's nest is 

often the choice of the parasitic cuckoo in which to lay its eggs. Moreover, the timing of ovulation in some 

species is incredible. When the host bird has recently produced eggs at most, this nest is an option for the 

parasitic cuckoo. Its initial instinct for a cuckoo chick after hatching is to blindly push the host's eggs to expel 

from the nest so that the cuckoo chick's share of the food provided by the host bird is large. According to 

research [17], the cuckoo chick imitates the host chicks' sound to enhance the chances of foraging. Animals 

in the wild are haphazard in their quest for food. Because the next step is predicated on the present 

location/state and the transition probability to the next place, an animal's foraging path is practically a 

random walk. Its decision is based on an implicit probability that may be mathematically represented. The 

flying manner of numerous insects and animals has been proven in several investigations to exhibit the basic 

features of Levy flights [18]. Three idealistic rules [18] underpin CS: 

a. Each cuckoo lays one egg at a time and deposits it in a nest that is picked at random.  

b. The best nests with the highest quality eggs will be passed down to future generations.  

c. Since the count of host nests is fixed, with a probability of pa (0, 1) the host bird correctly identifies the 

cuckoo egg, the host bird can either abandon it and start a new nest or discard the cuckoo egg. by the 

host, bird discovering act on a set of worst nests with a probability Pa (0, 1), and identified solutions 

ejected from further computations. 

An important issue is the use of random walks and Levy flights (LF) in the generic equation to 

generate novel solutions. When generating new solutions Xi^(t+1) by (4). 
 

Xi (t + 1)  =  Xi(t)  +  a ∗  levy(λ)  (4) 
 

The step size where it denotes a>0, which should be related to the problem metrics. In conditions of 

the great majority, use a=1. The LF simulates a random walk by using a Levy distribution to determine 

duration of each random stride is shown in (5). 
 

levy(λ)  =  t(−λ)0.25 <  λ ≤  2  (5) 
 

It has an infinite mean and an unlimited variance. The steps effectively constitute a random walk 

process with a heavy tail and a power-law step-length distribution. Levy's roundup of the best solutions 

obtained so far should provide some new solutions, that will increase the speed of your local search. To 

protect that the system does not get stuck at the local optimum, a significant portion of the new solutions 

must be generated via remote domain randomization, with locations sufficiently far from the existing best 

solutions [19]. The CS can be summarized by basic steps in the pseudo-code presented by [17]: . 
 
CS Algorithm: 

BEGIN 

Objective function f(p), p= (p1,p2…pn) 

Generating initial population (P) of n host nests Pi (i=1 to n) 

While (t<MaxGenerations) and (!stop criterion) 

Get a cuckoo randomly via Lévy flights 

Evaluate its fitness Fi 

If( fj > Fi) Replace j by the new solution; 

Fraction pɑ of worse nests are abandoned and new nests are being built; 

Keep the best solutions or nests with quality solutions; 

Rank the solutions and find the current best  

End while 

Post process and visualize results 

End 
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A cuckoo's sequential jumps/steps effectively create a random walk process with a heavy tail that 

follows a power-law step-length distribution. Furthermore, via random walks and mixing, a percentage of the 

poorest nests can be abandoned so that new nests may be formed at new sites. Random permutation can be 

used to mix the eggs/solutions based on their similarity/difference to the host eggs [17]. CS is successfully 

used to solve timetabling problems. Many applications, such as job scheduling [20], where CS algorithm was 

used to solve flexible-job scheduling problems, transposition ciphers attacks [21], and medical estimation 

systems [22], have used CS algorithm. CS is well suited to this type of behavior and can be applied to a 

variety of optimization problems [23], such as multi-objective optimization of distribution network 

configuration [24] and increasing DG capacity while minimizing system power loss by optimizing the 

location and capacity of distributed generators (DGs) [25]. 

 

 

4. BEST-NESTS CUCKOO SEARCH 

Best-nests cuckoo search (BNCS) improved the CS algorithm by depending on the best solutions to 

create new solutions. In the basic CS generating solution, the selected of the worst solution was randomly in 

state space. This might result in a slower convergence to the optimal solution. Therefore, suggests splitting 

part of nests into two groups according to evaluation/fitness, the first group will be called the best-nests and 

the second will be normal-nests. The best-nests group size represents a ratio(m) of the total number of nests, 

while the rest of the nests are considered a normal-nests group. The new solution is created by selecting a 

nest at random from the group of best-nests. And then, compare with the group of normal-nests randomly. 

The fundamental phases in the pseudo-code described below summarize the BNCS. 
 
BNCS Algorithm: 

BEGIN 

Objective function f(p), p= (p1,p2…pn) 

Generate initial population of (P) host nests Pi (i=1 to n) 

m = ratio best-nests  

While (t < MaxGeneration) or (stop criterion) 

evaluate its quality/fitness Pi and sort from best to worst 

divide P into two groups of nests (best-nests(m) and normal-nests(n-m)) 

Get a cuckoo randomly by Lévy flights from best-nests 

evaluate its quality/fitness Fi 

Choose a nest Fj among normal-nests randomly  

if (Fi > Fj) replace j by the new solution; 

Aggregation best-nests and normal-nests to P 

A fraction (pa) of worse nests is abandoned and new ones are built;  

Keep the best solutions (or nests with quality solutions);  

Rank the solutions and find the current best  

End while 

Postprocess results and visualization 

END 
 

A best-nests group is the major source of randomly selected new solutions (Fi), whereas a normal-

nests group is the major source of randomly selected current solutions (Fj). Then comparing the new solution 

(Fi) with the current solution (Fj)., If the new solution (Fi) is better than the current solution (Fj), it will be 

replaced. Then, into the P nests, combine the two groups (best-nests and normal-nests). The rest of the steps 

in the algorithm as CS work. 

 

 

5. EXPERIMENTAL RESULT 

In this section, you'll find an explanation of datasets as well as their most notable features. Also, the 

setting of parameters for the CS and BNCS algorithms was demonstrated. Finally, there will be a discussion 

and analysis of the results. 

 

5.1.  Dataset description 

To study the outcomes of algorithms' behavior, it is necessary to select various and appropriate 

datasets for testing. The dataset's input various data was provided by the Royal Institute of Technology 

(KTH) [3]. The number of student groups in each of the four input data files varies, as do the needed courses 

and classes. Each student group has two courses, with one to three events each course that must be arranged. 

The event density is calculated by dividing the number of events by the number of timeslots. The number of 

events to available timeslots density was taken into mind while creating the input files so that they did not 

differ too much. Also, the datasets are categorized into (kth_S, kth_M, kth_L, and kth_XL) depend on the 

size of (total events and total time slots). Table 1 summarizes the different data sets. The types of rooms are 
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lecture, lesson, and lab. A week is divided into five weekdays, Sunday to Thursday, and a weekday is divided 

into four timeslots of two hours each. This means that every room has a total of 20 timeslots. for instance, if 

the timetable has 8 rooms the total time slots equal 8x20=160. 

 

 

Table 1. Summary of the different test data sets [3] 
Input data file kth_S kth_M kth_L kth_XL 

Lecture rooms  2  2 3 6 
Lesson rooms  3  5 6 10 

Lab rooms  3  5 7 11 

Courses  12  15 21 29 
Lecturers  9  12 15 21 

Student groups  6  8 12 21 

Total events  70  115 159 293 
Total time slots  160  240 320 540 

Event density  0.44  0.48 0.50 0.54 

 

 

5.2.  Parameter setting 

The CS parameters are as follows: 

a. The size of the population or the number of nests, which ranges from 8 to 40 with an increment of  

b. The number of iterations (10000, 20000, 40000, and 60000) is determined by the size of the dataset. 

c. And the λ parameter that of Levy flights (LF) parameter, which ranges from 0.25 to 2.0. 

d. probability of pa with a value of 0.25. 

e. BNCS also has the same number of parameters as CS, in addition, the ratio best-nests parameter, which 

has a range of 15% to 35%. 

Table 2 shows the values of the parameters that were considered. Then solve them by the obtained 

algorithms. Figure 1 (a)-(d) shows the results. As it can be seen, for BNCS and CS the best population size is 40. 

The aim of the LF function is to return required the length of the step for a new solution from the 

current solution, where the length of the step integer value started from one-step and increments by one. The 

results of the length of the step were analyzed depending on a λ parameter change. It was found that length 

one step is repeated at different rates according to the value of λ. The best value is 1.0 because has a 50% of 

one step from a total of the result. Table 3 shows the values of the λ parameters vs percentage of one-step 

length. 

 

 

Table 2. Used parameter for testing 
No. Parameter Name Value 

1 Populations size (nests) 8, 12, 16, 20, 24, 28, 32, 36, 40  

2 Iteration 10000, 20000, 40000, 60000 

3 λ value 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 
4 Pa 0.25 

5 Raito best-nests 15%, 25%, 35%  

 

 

  

(a) (b) 
  

Figure 1. Average fitness value versus nests and express the difference as a percentage, (a) is small dataset, 

(b) is medium dataset 
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(c) (d) 
 

Figure 1. Average fitness value versus nests and express the difference as a percentage, (c) is large dataset, 

(d) is extra-large dataset 
 

 

Table 3. The LF function and compute the ratio of impressions of a one-step length are called for the 

different testing values of the parameter for 500 iterations 
𝜆 Value Total all step Total One-Step Percentage of One-Step 

0.25 500 36 7% 
0.5 500 116 23% 

0.75 500 187 37% 

1.0 500 246 49% 
1.25 500 312 62% 

1.5 500 405 81% 

1.75 500 452 90% 
2.0 500 500 100% 

 

 

5.3.  Discussion and analysis of the results 

Many experiments were carried out according to the parameters mentioned in Table 2. Used a 

programming language C# and a specification Computer (CPU Core i5, RAM 8 MB, OS Windows 10 64-bit, 

HDD 512 GB). The result has shown BNCS's performance on CS has improved. As the figure contains the 

fitness values vertically and the number of iterations horizontally. This is accomplished by taking five 

readings of average fitness values on every iteration. BNCS accelerates to the optimal solution from CS. The 

difference in performance between CS and BNCS was clearly shown in Figure 2 (a)-(d). where (a) test with 

the kth-S dataset was considered as a small dataset. And (b) test with the kth-M dataset was considered as a 

medium dataset. Also, (c) and (d) was the test with the kth-L kth-XL datasets were considered large and 

extra-large datasets. 
 

 

  

(a) (b) 
  

Figure 2. Average fitness value versus iterations, (a) is small dataset, (b) is medium dataset 
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(c) (d) 
 

Figure 2. Average fitness value versus iterations, (c) is large dataset, (d) is extra-large dataset (continue) 

  
6. CONCLUSION 

The UCTP is a fascinating and challenging academic topic; research in this field should focus on 

improving techniques to solving UCTP. The BNCS (BNCS) algorithm is presented in this research to solve 

the UCTP. The approach takes into consideration representations of both the basic CS and excellent nests to 

optimize the UCTP and to be the major source for selection. The BNCS algorithm's experimental findings are 

encouraging. Despite the problem's great complexity and Nondeterministic Polynomial Hard (NP-Hard), the 

performance of the BNCS is excellent. Within a short processing period, good results were obtained This is 

done through parameter values (Nests=40, λ=1, Pa=0.25, Raito Best-Nests=1.0). Even if the mathematical 

model can provide the ideal schedule for a specific instance of the issue, the needed process time to attain 

optimality in real-world settings would be unrealistic. As a result, heuristic strategies must constantly be 

employed. In this sense, other ways should be studied as well, despite the BNCS's strong performance. As a 

result, in the second supplement of this study, we would want to develop and experiment with different 

heuristic strategies to compare their performance. 
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