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 Fall is one of the leading causes of accidental or unintentional injury deaths 

worldwide due to serious injuries such as head traumas and hip fractures. As 

life expectancy improved, the rapid increase in aging population implied the 

need for the development of vital sign detector such as fall detector to help 

elderly in seeking for medical attention. Immediate rescue could prevent 

victims from the risk of suspension trauma and reduce the mortality rate 

among elderly population due to fall accident effectively. This paper presents 

the development of FPGA-based fall detection algorithm using a threshold-

based analytical method. The proposed algorithm is to minimize the rate of 

false positive fall detection proposed from other researchers by including the 

non-fall events in the data analysis. Based on the performance evaluation, the 

proposed algorithm successfully achieved a sensitivity of 97.45% and 

specificity of 97.38%. The proposed algorithm was able to differentiate fall 

events and non-fall events effectively, except for fast lying and fall that 

ending with sitting position. The proposed algorithm shows a good result and 

the performance of the proposed algorithm can be further improved by using 

an additional gyroscope to detect the posture of the lower body part. 
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1. INTRODUCTION 

The average life expectancy in most of the countries has increased dramatically over the past few 

decades due to the vast improvements in healthcare services. In recent years, the aging population of 

Malaysia is estimated to be 2.2 million and tends to increase to 3.3 million in the year 2020 [1]. According to 

the world health organization (WHO), the aging population is expected to reach up to 22% of the world 

population in 2050 [2]. The rapid increase in aging population implied the need for vital sign detector 

application and assistive technology to enhance the functional needs of the elderly population who require 

special care. The invention of vital sign detector applications and assistive technology could ease the 

independent lifestyle of elderly people while keeping them safe and protected. 

According to WHO, fall is one of the leading causes of accidental or unintentional injury deaths 

worldwide due to serious injuries such as head traumas and hip fractures. There are over 37.3 million severe 

injuries and 646,000 deaths due to fall being reported per annum [3]. Elderly and physically disabled people 

experience a higher risk of fall hazards when they are staying alone at home. Elderly falls are even exposed 

to the risk of fragile bones due to osteoporosis. The immediate rescue could prevent victims from the risk of 

suspension trauma and reduce the mortality rate effectively. Hence, a fall detector is required to aid the 

https://creativecommons.org/licenses/by-sa/4.0/
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elderly to seek for immediate rescue once falling accident has happened. The main challenge in developing a 

fall detection system is the effectiveness and accuracy of the algorithm in detecting a true positive falling 

accident from normal daily activities (NDA). Based on the current research, there are various type of fall 

detection approaches for elderly and people with disabilities, which includes wearable based, vision-based 

and ambient based approach [4]. These approaches analyse fall events using a simple threshold and machine 

learning methods. The miss rate due to fall-like activities is the common limitation found in the current 

researches of a sensor-based fall detection approach. The experimental results have proved that the rate of 

false-positive or false-negative fall detection is higher if only acceleration data was being considered. 

Although a vision-based approach could provide better performance in fall detection but the sensor-based 

approach is more preferable due to privacy invasion. 

In this paper, a FPGA-based fall detection algorithm using a threshold-based analytical method is 

proposed. The proposed algorithm recognizes a fall event from NDA with the combination of accelerometer 

and gyroscope threshold data to avoid high rate of false-positive fall detection in acceleration mean. An 

FPGA is used as the core controller in fall detection to ensure effective parallel processing and fast response 

to data outputs from the sensor. Although the machine learning approach has higher performance, the 

threshold-based method is chosen to guarantee low implementation cost [5]. 

 

 

2. RELATED WORK 

Fall detection approaches can be classified into sensor-based and vision-based approach. Sensor-

based approach involves the use of ambient sensor and kinematic sensor. Ambient sensor-based approach is 

limited to indoor environment or a confined area. The system relies on the data from sensors that are installed 

in a specific area to detect falls. Meanwhile, kinematic sensor-based approach is applied to wearable device 

to measure human motion data. Thus, it is flexible to be used in any environment. The use of smartphone in 

fall detection is also considered as sensor-based approach. The analytical method of fall detection can be 

categorized into two fields: thresholding and machine learning method. Threshold-based fall detection uses a 

predefined value to detect falls. The system that works on the threshold-based method detects fall events by 

comparing the collected sensors data with the pre-set value. A fall accident is detected if the sensor reading 

exceeds the critical value defined in the system. The performance of the system is highly dependent on the 

predefined threshold value [6]. This method is commonly used in a sensor-based fall detection approach. In 

machine learning-based fall detection, the predictive model is expected to detect falls from a new dataset 

after training with the historic data [7]. It is commonly used in vision-based and ambient sensor-based 

approaches. Wearable sensor-based approach is the most commonly used method for fall detection system. It 

makes use of wearable devices and kinematic sensors to provide the relevant information for fall detection. It 

relies on the use of embedded sensors such as accelerometer and gyroscope to detect linear motion and 

posture of human body. Accelerometer and gyroscope data will be collected and transmitted to the 

microcontroller for data processing. The system will differentiate fall accident from NDA based on the 

change in acceleration of human body together with the change in angular velocity [8]. It is applicable for 

either indoor or outdoor environment and easy to wear. 

Irene et al. [9] and Abdelhedi et al. [10] proposed a 3-axial accelerometer-based fall detection 

system which utilizes multiple predefined threshold values to detect falls. Tri et al. [11] employed the 

smartphone acceleration sensor for automatic fall detection. An additional long lie detection algorithm is 

used to improve the accuracy of the system. However, the system experienced a high risk of false-positive 

fall detection due to fall-like activities. Huynh et al. [12] found that this efficacy can be improved by adding 

a 3-axis gyroscope to the accelerometer-based wearable fall detector. The additional information from the 

gyroscope (change in angular velocity) enhances the sensitivity of the device by providing further delineation 

of a fall incident. However, further enhancement is required for this system to detect the direction where a 

fall accident has happened, and this could aid medical diagnosis effectively. Vetsandonphong [13] developed 

an Arduino based fall detection wearable device by coupling accelerometer with gyroscope. The wearable 

device is attached to human body using body strap. A fall event is determined based on the acceleration and 

row reading from the gyroscope. The wearable device is mounted on the upper trunk of user’s body to 

minimized false positive fall detection with 95% sensitivity and 90% respectively.  

An IoT-based fall detection system for elderly people is presented by Yacchirema et al. [14] using 

sensor network and big data. The proposed system involves a wearable device, low-power wireless sensor 

networks, cloud computing and big data. A 3D-axis accelerometer is embedded into a 6LowPAN wearable 

device and placed at elderlies’ waist to collect real time motion data. If a fall event occurs, the system 

remotely alerts the emergency center via QoS mechanisms. Data processing and analysis are done by using 

machine learning processing techniques based on decision trees-based big data model that running on a smart 

IoT gateway. The limitation of the proposed system is that it only applicable for indoor environment. 
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Torres et al. [15] introduced a chest mounted EnOcean fall detection wearable sensor for ultra-low 

power networks that capable to interact with a smart home system. The wearable sensor detects fall incident 

by using data fusion of accelerometer and gyroscope. A simple threshold algorithm is developed and fall 

detection will be based on the linear acceleration, aggregate rotational rate, angles inclination on X and Z 

planes. The algorithm is capable to detect forward, backward and lateral falls effectively. The system 

achieved a sensitivity of 96% in detecting a fall and specificity of 100% while performing NDA movements. 

However, fall accidents such as stair fall that does not end up with lying stage is undetectable in this 

algorithm.  

Miguel et al. [16] had proposed a home camera-based fall detection system for the elderly based 

based on artificial vison algorithm. Debard et al. [17] had developed a fall detection algorithm based on a 

simple background subtraction method. However, the algorithm only works properly when tested with 

publicly available datasets. Real-life data poses significant challenges and resulting in high false-positive fall 

detection. This issue is caused by the occlusions and changes in illumination conditions that interfere with the 

background segmentation. The robustness of the proposed algorithm is improved by using a particle filter and 

a person detector on foreground segmentation. The new approach obtained promising results on the newly 

created publicly available simulation dataset and real-time dataset with a sensitivity of 76.1% [18]. Ambient 

sensor-based fall detection is also known as environmental fall detection approach [19]. Yazar et al. [20] 

proposed a multi-sensor ambient assisted living system for fall detection by using Uno32 microprocessor. 

The proposed system is installed to an intelligent home to improve the safety of elderly and handicapped 

people. Litvak et al. [21] developed a fall detection system through acoustic sensing and floor vibration. The 

proposed algorithm shows a sensitivity and specificity of 95% but the system is not sensitive towards low 

impact falls.  

 

 

3. RESEARCH METHOD 

This section introduces the overall methodology implemented for the development of fall detection 

algorithm. The details are described briefly in the following subsections. 

 

3.1.  System block diagram 

Figure 1 shows the block diagram of the proposed fall detection system. Acceleration and gyroscope 

data from MPU6050 are retrieved by using Arduino Uno through I2C communication protocol. These data 

will be converted to floating-point and transmitted to another Arduino Uno which is connected directly to the 

FPGA DE1-SoC board through wireless communication. FPGA will process the receive data and compare 

with the predetermined threshold value to identify a falling incident. If true positive falling accident is 

confirmed, FPGA will output a fall alert signal to indicate that immediate medical attention is required. 
 

 

 
 

Figure 1. System block diagram of a fall detection system 
 

 

The system will start by collecting the accelerometer and gyroscope data from MPU6050. If the 

reading of acceleration is less than the lower threshold value, the system will move to monitor state. The 

system expects to receive an acceleration reading which breaks the higher threshold value within 2s. If higher 

threshold is broken within 2s, fall accident is suspected. The system will proceed to check the orientation of 

human body based on the current gyroscope data. The type of falling accident will be determined by 

comparing the gyroscope data with the threshold value for different kinds of fall detection. The LEDs will 

light up to indicate that the alert system is activated and the timer will start to count down for nine seconds 

once the system suspects that a fall accident has happened. If the orientation of human body remains as 

falling when timer reached 0, the system will display a fall alert signal to indicate that true positive falling 

accident is confirmed. At this stage, the alert system can only be deactivated by caregivers or family 

members of user with the cancel switch. 
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3.2.  Data acquisition 

Accelerometer and gyroscope data are measured using MPU6050, an inertial measurement unit 

(IMU) sensor where both accelerometer and gyroscope are embedded into a single chip. MPU6050 consists 

of digital motion processor (DMP) to process complex 6-axis MotionFusion algorithms. It offloads the 

computation of motion-sensing algorithms from the host processor and improves the accuracy of output data 

by fusing the accelerometer and gyroscope data altogether. The full-scale range selected for accelerometer 

and gyroscope is ± 2 g and ± 250 degree/s respectively. The output acceleration, ag from -1 g to +1 g is given 

in (1) [22]. 

 

𝑎𝑔 = 𝑎𝑟𝑎𝑤/16384 (1) 

 

The total three-dimensional acceleration (ax, ay, az) measured from the accelerometer is the combination of 

human body acceleration and the earth gravity field, g in the unit of m/s2. The formula is given in (2) [22]. 

 

𝑎𝑖 = 𝑏 + 𝑛 + 𝐾[𝑣(𝑎𝑏𝑜𝑑𝑦 + 𝑔)] (2) 

 

Where b denotes the bias vector, n denotes noise in measurement, K represents the scale factor matrix and v 

represents the direction cosine matrix of navigation frame orientation with respect to the body frame. The 

acceleration result is then compared to the sum vector magnitude, am given in (3). The average value obtained 

from (2) and (3) is taken as the final acceleration reading. 

 

𝑎𝑚 = √(𝑎𝑥)2 + (𝑎𝑦)
2

+ (𝑎𝑧)2  (3) 

 

DMP acquires the gyroscope data and computes the results in terms of quaternions. The computed results are 

stored in data register. On the other hand, a complementary filter is applied to fuse accelerometer and 

gyroscope data to further eliminate drift error in gyroscope. The gyro data in degree/s from (4) [22] is 

multiplied with the elapsed time value captured before each reading iteration to get the angle in degree as 

shown in (5) [23],  

 

𝑔𝑦𝑟𝑜 =
𝑔𝑦𝑟𝑜𝑟𝑎𝑤

131
 (4) 

 
𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑛𝑔𝑙𝑒 + 𝑔𝑦𝑟𝑜(𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒) (5) 
 

The attitude reading is computed with 96% of gyroscope data and 4% of accelerometer data as shown in (6) [23]. 

 
𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 0.96(𝑎𝑛𝑔𝑙𝑒𝑖) + 0.04(𝑎𝑔𝑖) (6) 
 

3.3.  Threshold selection 
The parametric method is used to determine the threshold value for the parameter lower and higher 

threshold in acceleration, time interval between lower and higher threshold, attitude reading (yaw, roll, pitch) 

for different type of fall events as shown in Table 1. The statistical population has an average weight of 45-80 

kg and height of 150-180 cm. There are 20 persons (n samples) selected from the statistical population to 

estimate the optimum threshold value for the system.  

 

 

Table 1. Set of features extracted for fall detection 
Parameter Equation 

Lower threshold 
Mean, 𝑎𝑚𝑖𝑛̅̅ ̅̅ ̅̅ =

∑ 𝑎𝑖(𝑚𝑖𝑛)
𝑛
𝑖=1

𝑛
 

Higher threshold 
Mean, 𝑎𝑚𝑖𝑛̅̅ ̅̅ ̅̅ =

∑ 𝑎𝑖(𝑚𝑖𝑛)
𝑛
𝑖=1

𝑛
 

Time interval between lower and higher threshold Average time interval, 

𝑡𝑖 =   𝑡𝑖(𝑚𝑎𝑥) − 𝑡𝑖(𝑚𝑖𝑛) Mean, 𝑡̅ =
∑ 𝑡𝑖

𝑛
𝑖=1

𝑛
 

Attitude 
reading 

yaw Mean, 𝑦𝑎𝑤̅̅ ̅̅ ̅̅ =
∑ 𝑦𝑎𝑤𝑖

𝑛
𝑖=1

𝑛
 

roll Mean, 𝑟𝑜𝑙𝑙̅̅ ̅̅ ̅ =
∑ 𝑟𝑜𝑙𝑙𝑖

𝑛
𝑖=1

𝑛
 

pitch Mean, 𝑝𝑖𝑡𝑐ℎ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑝𝑖𝑡𝑐ℎ𝑖

𝑛
𝑖=1

𝑛
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Each activity or movement will be repeated for three times and the average reading will be taken. 

The experimental data are analysed using Minitab software to determine the mean and standard deviation of 

the dataset for each of the required parameters. Tolerance intervals are used to define the upper and lower 

boundary of the threshold value for fall detection within a given confidence interval. The significance level 

chosen for this system is 0.05 and its corresponding confidence level is 95%. The threshold value for yaw, 

roll and pitch are determined in the same way as acceleration threshold. The range of gyroscope data for a 

particular fall event is taken from the time 500 ms after higher threshold acceleration is broken until a steady 

state is achieved. The gyroscope value at the time when higher threshold acceleration breaks is identified as 

the critical value at the stage where a person is prone to fall. This value is also defined as the lower boundary 

for non-fall event and upper boundary for fall event. Whereas the gyroscope value at the time where 

acceleration has achieved a steady state is defined as the critical value to identify the orientation of human 

body at lying state. The threshold value of these parameters is tabulated in Table 2. 

The sensor was chosen to be placed on the arm of users to improve the accuracy of the threshold 

acceleration and gyroscope data. This may reduce the risk of false positive fall detection due to rapid body 

movement as arm is the human body part that experienced the least motion during body movement. Based on 

the result as shown in Table 2, the lower threshold and upper threshold of acceleration in fall accidents are 5 

m/s2 and 15 m/s2 respectively. The average time interval between the lower and upper threshold is less than 

300 ms. The change in gyroscope data was used to identify the type of fall accidents and differentiate fall 

accidents from NDA. In fall accidents, the threshold value of roll at steady state was less than 20° as human 

body is at lying state. The experimental results have proved that the combination of accelerometer and 

gyroscope data could provide better reflection on human body movement and posture. This could reduce the 

rate of false positive fall detection due to fall-like activities that resulted the same trend as fall accident in 

acceleration data. 

 

 

Table 2. Threshold value of parameters in fall detection 
Parameter 

 
Fall events 

Acceleration (m/s2) 
Average time interval between 

lower and upper threshold (ms) 

Attitude reading (deg) 

Lower 
threshold 

Upper 
threshold 

Roll Pitch Yaw 

Forward < 5.00 > 15.00 < 300 < 20 > 60 < -60 

Backward < 5.00 > 15.00 < 300 < 20 < -60 > 60 
Right Side < 5.00 > 15.00 < 300 < 20 > 0 > 0 

Left Side < 5.00 > 15.00 < 300 < 20 < 0 < 0 

 

 

4. RESULT AND DISCUSSION 
4.1.  Fall detection analysis 

Figure 2 shows the change in acceleration of a fall accident from a static posture. Fall detection 

analysis can be separated into three phases: start, fall and impact. Phase 1 was the early stage in a fall 

detection, where a person begins or tends to fall to the ground. The acceleration of the human body started to 

decline and reached its minimum value which was lower than the lower threshold (less than 5 m/s2) at phase 

2. Human body will experience a fall impact when it reached the ground. The acceleration started to increase 

at the mid of phase 2 and reached its maximum value which was higher than the upper threshold (higher than 

15 m/s2) at phase 3. There was a great change in acceleration within a short period (less than 300 ms) in 

phase 2 and phase 3. The acceleration started to decrease after it reached its maximum magnitude. At phase 

3, the acceleration fluctuated within the upper and lower boundary due to the decrease in fall impact after the 

first hit on the ground and remained within ± 2% of its final value when the body reached its steady state. 

Based on the experimental result as shown in Figure 3 (a), fall-like activities such as fast walking, 

running and jumping may also result in rapid change in the magnitude of acceleration like fall accidents. This 

may lead to false positive fall detection if only acceleration data was being considered. In order to 

differentiate fall accidents and fall-like activities, gyroscope data was taken into consideration at the same 

time to determine human posture. The combination of accelerometer and gyroscope data could minimize the 

rate of false positive fall detection on fall-like activities in acceleration mean effectively. A person who 

experienced an accidental fall normally will end up at lying state with gyroscope data, roll (x-axis) less than 

20°. For non-fall events, the roll will always above 50° as shown in Figure 3 (b). Based on the results 

obtained, all the falling accidents were showing the same trend in the change of acceleration magnitude. 

Although the time interval between the minimum acceleration at ‘Fall phase’ and the maximum acceleration 

at ‘Impact phase’ was slightly different from each other, it was remained within the threshold value (less than 

300 ms). Besides, fall-like activities may also result in a great change in the magnitude of acceleration, which 

met the threshold of a fall accident. In this case, the reading of roll that define the position of human body in 

x-axis was used to distinguish fall accidents and fall-like activities.  
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Although fall accidents were having the same trend in the change of acceleration magnitude, the 

type of falling accidents can be differentiated based on the change in pitch and yaw data. During the fall 

accident, the reading of roll started to decline as the human position started to change from standing to lying 

as shown in Figure 4 (a). In forward falling, pitch started to increase to its maximum value, while yaw started 

to decrease to its minimum value before reached its steady state. The reading of roll for a fall accident will be 

less than 20° after steady state was achieved as a person who experienced fall usually will ended with the 

lying position. All the attitude reading achieved its steady state value (remained within ± 2% of its final 

value) during the ‘Impact phase’.  

In backward falling, it was observed that the reading of yaw started to increase while the reading of 

pitch started to decrease during the ‘Fall phase’ as shown in Figure 4 (b). The attitude reading is slightly 

fluctuated before it came to steady state. For side falling, both pitch and yaw started to decrease during the 

Fall phase as shown in Figure 4 (c) and Figure 4 (d). Leftward or rightward falling can be distinguished 

through the final value of pitch and yaw. Leftward falling shows negative final value, while rightward falling 

shows positive final value. The result for fall detection analysis was tabulated in Table 3 to compare with its 

threshold value. 

 

 

 
 

Figure 2. Fall detection analysis 

 

 

  
(a) (b) 

  

Figure 3. Change in, (a) acceleration for NDA, (b) roll for NDA 
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(a) (b) (c) (d) 

    

Figure 4. Change in gyroscope data, (a) forward falling, (b) backward falling, (c) right side falling, (d) left 

side falling 

 

 

Table 3. Result of fall detection analysis 
                      

Fall events 

Acceleration (m/s2) Average time interval between 

lower and upper threshold (ms) 

Attitude reading (deg) 

Minimum Maximum Roll Pitch Yaw 

Forward  3.18 33.61 90 -6.73 81.94 -95.88 
Backward  3.54 33.78 110 -6.65 -83.13 97.09 

Right Side  2.11 28.59 70 -22.5 3.52 0.05 

Left Side  1.98 23.58 80 -16.34 -3.9 -28.17 

 

 

4.2.  FPGA implementation 

The proposed algorithm was implemented on FPGA DE1-SoC board using Altera Quartus II design 

software to evaluate its performance in fall detection. There were four interfaces module in this design. Since 

the frequency used in FPGA DE1-SoC board is 50 kHz, a clock module was required to slow down the clock 

and generate clock pulse with period of 1 s for the design. The ‘mpu6050_data’ module was responsible to 

receive and process the input sensor data. It will generate the relevant internal signal for state transition in 

‘FSM_ctrl’ module. The timer module acted as a countdown timer to control the state transition in 

‘FSM_ctrl’ module. The type of falling events includes forward falling, backward falling and side falling. 

The LEDs and 7-segments on the FPGA board that were used to represent the outputs. The change in sensor 

data for forward, backward and side falling is shown in Table 4.  

 

 

Table 4. Change in sensor data for forward falling 

Falling 
Time 

(ms) 
Acceleration (m/s2) 

Attitude reading (degree) 
Description 

Roll Pitch Yaw 

Forward 1190 4.02 39.19 50.09 -51.00 Lower threshold is violated 
1320 33.61 -7.7 72.68 -96.04 Higher threshold is violated 

1510 10.36 -7.7 80.27 -98.23 Steady state 

Backward 900 3.94 52.13 -37.16 37.92 Lower threshold is violated  
1150 32.15 11.81 -78.80 90.97 Higher threshold is violated  

1290 10.43 1.22 -81.47 96.93 Steady state 

Side Left 1080 4.07 42.11 20.92 -32.72 Lower threshold is violated 
1230 23.11 -10.93 -1.40 -27.69 Higher threshold is violated 

1410 10.38 -17.55 -3.89 -29.05 Steady state 

Side Right 1050 3.65 24.77 12.09 -0.61 Lower threshold is violated 
1170 28.79 -12.67 11.67 2.49 Higher threshold is violated 

1390 10.49 -21.46 4.83 3.24 Steady state 

 

 

The acceleration of human body reached its minimum value and violated the lower threshold at time 

1190 ms. ‘timer1’ started to count down and the LED that represented ‘alert1’ was turned on. The number 

displayed on the second 7-segment (from right) changed to ‘1’ to indicate that lower threshold was violated. 

At 1320 ms, the acceleration reached its maximum value and violated the higher threshold. The reading of 

roll, pitch and yaw met the criteria of forward falling. The right most 7-segment displayed a number ‘1’ to 

show that forward falling was detected. ‘timer10’ started to count down and the LED that represented ‘alert2’ 

was turned on. The number displayed on the second 7-segment (from right) changed to ‘2’ to indicate that 

upper threshold was violated and forward falling was suspected. The alert system was activated, and user was 

given 10 s to change their posture. If human posture was detected at lying state (roll < 20°) when ‘timer10’ 

reached 0, forward fall accident is confirmed. The LED that represented “fall” turned on and the number 

-150

-50

50

150
0

2
6
0

5
2
0

7
8
0

1
0
4
0

1
3
0
0

1
5
6
0

1
8
2
0

2
0
8
0

2
3
4
0

2
6
0
0

2
8
6
0

3
1
2
0

(d
eg

)

Time (ms)

Attitude Reading vs Time 

(Forward Falling)

roll

-100

-50

0

50

100

150

0
3
8
0

7
6
0

1
1
4
0

1
5
2
0

1
9
0
0

2
2
8
0

2
6
6
0

3
0
4
0

3
4
2
0

3
8
0
0

4
1
8
0

4
5
6
0

(d
eg

)

Time (ms)

Attitude Reading vs Time 

(Backward Falling)

roll

-80

-40

0

40

80

120

0
2
9
0

5
8
0

8
7
0

1
1
6
0

1
4
5
0

1
7
4
0

2
0
3
0

2
3
2
0

2
6
1
0

2
9
0
0

3
1
9
0

3
4
8
0(d

eg
)

Time (ms)

Attitude Reading vs Time 

(Right Side Falling)

roll

-60

-20

20

60

100

0
2
9
0

5
8
0

8
7
0

1
1
6
0

1
4
5
0

1
7
4
0

2
0
3
0

2
3
2
0

2
6
1
0

2
9
0
0

3
1
9
0

3
4
8
0(d

eg
)

Time (ms)

Attitude Reading vs Time 

(Left Side Falling)

roll



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 :  2477 – 2487 

2484 

displayed on the second 7-segment (from right) changed to ‘3’ to indicate forward falling had happened. On 

the other hand, the system will back to normal state if human posture was detected at standing or sitting 

position before ‘timer10’ was time out. The number displayed on the second 7-segment (from right) changed 

to ‘4’ to indicate that no fall accident was detected. 

For backward falling, at time 900 ms, the acceleration of human body reached its minimum value 

and violated the lower threshold. The ‘timer1’ started to count down and the LED that represented ‘alert1’ 

was turned on. The number displayed on the second 7-segment (from right) changed to ‘1’ to indicate that 

lower threshold was violated. The acceleration reached its maximum value and violated the higher threshold 

at time 1150 ms and current reading of roll, yaw and pitch were met the criteria of backward falling. The 

right most 7-segment displayed a number ‘2’ to show that backward falling was detected. ‘timer10’ was 

started to count down and the LED that represents ‘alert2’ was turned on. The number displayed on the 

second 7-segment (from right) changed to ‘2’ to indicate that upper threshold was violated and backward 

falling was suspected. Backward fall accident was confirmed if human posture was detected at lying state 

when ‘timer10’ was timeout. The LED that represented ‘fall’ turned on and the number displayed on the 

second 7-segment (from right) changed to ‘3’ to indicate backward falling has happened.In left side falling, 

the acceleration of human body reached its minimum value and breaks the lower threshold at time 1080 ms. 

‘timer1’ started to count down. The LED that represents ‘alert1’ is turned on and the number displayed on the 

second 7-segment (from right) was changed to ‘1’ to indicate that lower threshold was violated. The 

acceleration had reached its maximum value and broke the higher threshold at time 1230 ms. The change in 

attitude reading met the criteria of left side falling. ‘timer10’ started to count down and the number displayed 

on the second 7-segment (from right) changed to ‘2’ to indicate that upper threshold is violated. The LED 

that represented ‘alert2’ was turned and side falling was suspected. When ‘timer10’ reached 0, the LED that 

represented ‘fall’ turned on if human posture was detected at lying state. The number displayed on the second 

7-segment (from right) changed to ‘3’ to indicate that side falling had happened. The same concept was 

applied to right side falling. 

 

4.3.  Performance evaluationuation 

The performance of the fall detection algorithm was evaluated in terms of specificity and sensitivity 

through FPGA implementation. Since fall detection is a case of binary classification, each motion can be 

classified as either a fall event (true positive) or non-fall event (true negative). There were four possible 

outcomes in fall detection, true positive (TP), fall event is detected correctly, false positive (FP), non-fall 

event is detected as fall, true negative (TN), non-fall event is detected correctly, false negative (FN), fall 

event is not detected. 

Sensitivity is the rate of true positive fall detection, while specificity represents the rate of true 

negative fall detection. The sensitivity and specificity of the algorithm were calculated by using (7) and (8) 

[24]. The rate of false alarm due to non-fall events mistakenly detected as falls can be computed using (9) 

[24]. The miss rate of detection in non-fall event is also known as false positive rate. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
 (7) 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 (8) 

 

𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒𝑛𝑜𝑛 𝑓𝑎𝑙𝑙 𝑒𝑣𝑒𝑛𝑡 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)
 (9) 

 

Sensitivity is the rate of true positive fall detection that represent the proportion of fall event, which 

are correctly detected by the algorithm. It was measured from its capability in detecting fall events such as 

forward falling, backward falling and side falling. By referring to the performance analysis in Figure 5 (a), 

the proposed algorithm managed to detect all types of fall accidents accurately, except for falls that ended 

with sitting position. When a person falls and end up with a sitting position, the algorithm will assume that it 

was a non-fall event as the criteria of fall accident was not met in gyroscope mean. In this case, false negative 

fall detection can only be avoided if the change in magnitude of acceleration does not met the criteria of fall 

accident. Specificity is denoted as the rate of true negative fall detection. A set of daily movement or 

activities which includes sitting, standing, walking, running, lying and fall-like activities such as fast 

walking, fast running, jumping, fast sitting, fast standing and fast lying was carried out with 20 samples to 

determine the specificity of the system in detecting non-fall events. On the other hand, the proposed 

algorithm achieved an average accuracy of 100% in true negative fall detection except for fast lying, 75%. 

This is because fast lying involved a rapid change in the magnitude of acceleration and end up with lying 
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state. Thus, it may lead to false-negative fall detection when the change in the magnitude of acceleration and 

gyroscope data met the criteria of a fall event. The overall performance in detecting non-fall events was 

summarized in Figure 5 (b). 

 

 

  
(a) (b) 

  

Figure 5. Performance in; (a) fall events detection, (b) non-fall events detection 

 

 

The sensitivity and specificity of the algorithm were calculated by using confusion matrix as shown 

in Table 5. From Table 5, there was a total of 200 actual fall events and 340 actual non-fall events being 

recorded. The predicted event is referring to the number of fall events or non-fall events that were 

successfully detected by the proposed algorithm. From the 340 recorded actual non-fall events, 335 cases 

were detected correctly as non-fall events with 5 miss cases. The miss rate in true negative fall detection was 

contributed by the failure of the proposed algorithm in recognizing fast lying as non-fall event due to its end 

position that was similar to fall accident. On the other hand, there were 9 miss cases in true positive fall 

detection. By using the formula shown in (7) and (8), the sensitivity and specificity of the algorithm in fall 

detection were 97.45% and 97.38% respectively. This means that 191 of the fall accidents were detected 

correctly out of the 200 recorded actual fall events. The proportion of false negative fall detection was 

contributed by the miss rate in detecting fall that ended with sitting. Thus, it can be concluded that the 

proposed algorithm had achieved the desired sensitivity with an accuracy of 100% in detecting forward, 

backward and side falling. Fall that ended with sitting position is an additional test to evaluate the sensitivity 

of the proposed algorithm as compared to Li et al. [25]. 

 

 

Table 5. Confusion matrix for performance evaluation 
Actual 

Predicted 
Fall event Non-fall event Actual Number 

Fall event 191 (TP) 9 (FP) 200 
Non-fall event 5 (FN) 335 (TN) 340 

 

 

The previous research only considered the sum vector of aggregate rotational angle instead of axis-

based gyroscope data analysis in fall detection. In this work, proposed offered better analytical results in 

terms of human inclination by including non-fall like activities in the analysis. Based on the threshold 

performance, it shows a good result with the sensitivity and specificity of the algorithm were 97.45% and 

97.38% respectively. The miss rate in sensitivity was mainly contributed from falls that ended with sitting. 

This test was only conducted by Li et al. [25] and the sensitivity achieved from 72 records was 92%, while 

the specificity achieved was 91% from 70 records. From the performance evaluation in detecting fall events, 

the proposed algorithm has achieved 100% in true positive fall detection for all type of fall events, including 

forward, backward, leftward and rightward falling. The specificity of the proposed algorithm was slightly 

lower compared to Torres et al. [15] due to no number of test coverage on non-fall like activities. 

Vetsandonphong [13], shows the sensitivity is 95% and specificity 90% based on 20 activities of ADL and 

falling down motion. In conclusion, the proposed algorithm shows good threshold values by included both 

fall event and non-fall like activities in the threshold performance.  

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 :  2477 – 2487 

2486 

5. CONCLUSION 

A threshold-based fall detection algorithm was successfully developed in FPGA to evaluate the 

performance of sensitivity and specificity. Based on the result obtained, the proposed algorithm has achieved 

a sensitivity of 97.45% and specificity of 97.38%. The proposed algorithm managed to detect fall events and 

non-fall events correctly, except for fast lying and falling event ending with sitting. This proved that the 

combination of accelerometer and gyroscope data has provided a better reflection on human posture in 

determining different type of fall accidents, while minimizing the rate of false positive fall detection due to 

fall-like activities such as jumping, running and fast walking. The combination of accelerometer and 

gyroscope data had reduced the rate of false positive fall detection. The previous research only considered the 

sum vector of aggregate rotational angle instead of axis-based gyroscope data analysis in fall detection. Thus, 

proposed algorithm offered better analytical results in terms of human inclination. The accuracy of the 

proposed algorithm can be further improved by combining the thresholding analytical method with a machine 

learning method in determining the threshold value. Besides, an additional gyroscope can be used to detect 

the posture of the lower body part. This could eliminate the limitation of the proposed algorithm in detecting 

falls that ended with sitting. 
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