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ABSTRACT

Non-orthogonal multiple access (NOMA) is deployed to improve spectral efficiency
for applications in fifth generation networks. NOMA system splits power domain to
many parts to further serve massive users by relaxing the orthogonal use of radio-
resources. In this paper, a relay is required to help the source communicate with des-
tinations with a fixed power allocation scheme. We derive expressions to highlight
ergodic performance of two users the deployment of NOMA is suitable to different
rate requirements from destinations (e.g., a cellular users have different requirements
compared with internet of things devices). By conducting Monte-Carlo simulations,
we find main system parameters which have crucial impacts on ergodic capacity. This
paper is different other recent studies since we emphasize on imperfect channel state
information (CSI) and Rician fading model for our analytical results.
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1. INTRODUCTION
In recent years, power-domain based non-orthogonal multiple access (NOMA) has recently studied

as a promising system to enhance system performance in terms of low latency, high efficiency, and massive
users [1]-[3]. Since only a fraction of total transmit power is assigned to NOMA user is allocated, the limited
coverage of NOMA-based system is raised compared with the traditional (OMA)-based system. As one of the
effective methods is to improve the coverage, once might integrate the cooperative approaches into NOMA sys-
tems. To assist the transmission between the transmitter and NOMA users, such system needs assistance from
a certain number of intermediate nodes. By owing to the spatial diversity gain, NOMA relaying systems have
benefits of the reception reliability [4]. The two kinds of cooperative NOMA networks are the dedicated-relay
cooperation and the user cooperation, which depends on the role of relay. In the dedicated-relay cooperation,
relays are required to forward signal from the source to destinations [5]-[12]. In the user cooperation, relays
are strong users which help foster communication from the source to weak users [13].

In the perspective of internet of things (IoT) for sixth-generation (6G), the system in [14] needs cover
spectrum access for huge number of users relying on allowed spectrum resources. In traditional systems, the
overuse of spectrum resources related to access of orthogonal multiple signal is challenging [14] proposed 6G-
enabled cognitive IoT (CIoT) by exploiting a NOMA-adied hybrid spectrum access approach. In this scenario,
both the busy and idle spectrum are accessed by the CIoT without considering the primary users’ state. The
work in [15] studied system to serve massive IoT devices in extremely differentiated IoT applications for
6G. Such system is able to provide communication in air-space-ground integrated system. To support IoT
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deployment in remote and disaster areas, by deploying unmanned aerial vehicle (UAV), such UAV can act as
aerial base station to communicate with users in cluster of UAV-supported clustered users. In addition, an aerial
base station along with wireless powered communication (WPC)-based UAV provides higher energy efficiency.

Different from aforementioned conventional NOMA systems, half-duplex and relay stations (RSs)
schemes benefit to NOMA approach since they exhibit further gains in term of spatial diversity [16]–[23]. Yue
et al. in [18], Kader et al. [20], and Liang et al. [21], the transmission from transmitters to receivers needs
assistance of a single relay. Main results in [18], [21] indicated that the orthogonal multiple access (OMA)
is likely worse than the system relying on NOMA when we mentioned system performance metrics including
throughput and outage probability. The popular models of channels namely Nakagami-m fading channels [18]
and Rayleigh fading channels [21] are considered as best fit to characterize advances of NOMA systems. Kader
et al. in [20], ergodic sum capacity with perfect and imperfect successive interference cancellation (SIC) are
analysed to highlight performance of the cooperative NOMA relaying system including two transmitters, a
single shared relay and two destinations. However, there is still open problem regarding how we can achieve
exact channel information at receivers. Motivated by recent work [20], this paper focuses on the impact of
imperfect channel state information (CSI) in downlink dual-hop NOMA system. Importantly, we characterize
channels as Rician fading model to provide analytical computations of outage probability for destinations.

2. SYSTEM MODEL
We consider a downlink dual-hop NOMA network which consists a base station (S) and two devices

Ui(i{1, 2}), shown in in Figure 1. To extend coverage, the destinations need the help of a relay (R) which
operates in a decode-and-forward (DF) mode. We denote the distances from S to R and R to Ui are dSR and
dRUi

, respectively. In addition, we denote hSR, hRUi
are the Rician fading channel form S to R and R to Ui

respectively [22].

Figure 1. The system model of downlink dual-hop NOMA

This paper emphasizes on the impact of CSI on system performance analysis. In particular, the channel
estimation error can be modeled as [23]:

hv = ĥv + h̃v, (1)

where v ∈ {SR,RU1, RU2}, ĥv is the estimated channel coefficient and h̃v is the error term with CN(0, σ̃2
v).

In this first phase, S send superimposed signal to R. The received signal at R is expressed as:

yR =
√
PSd

−τ
SR (δx1 + (1− δ)x2)

(
ĥSR + h̃SR

)
+ nSR

=
√
PSd

−τ
SRĥSR (δx1 + (1− δ)x2)

+
√
PSd

−τ
SRh̃SR (δx1 + (1− δ)x2) + nSR,

(2)

where PS is the transmit power at S, τ denotes the path-loss exponent, xi is the the intended message to Ui, δ
is the power allocation coefficient with δ > 0.5, and nSR is the additive white Gaussian noise (AWGN) with
CN(0, N0).

To compute the outage probability, we need to determine the signal-to interference-plus-noise ratio
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(SINR) which is used to detect signal x1 at R, and such SINR is formulated by:

Γx1

R =
PSd

τ
SRδ

∣∣∣ĥSR

∣∣∣2
PSdτSR (1− δ)

∣∣∣ĥSR

∣∣∣2 + PSdτSRσ̃
2
SR +N0

=
ηdτSRδ

∣∣∣ĥSR

∣∣∣2
ηdτSR (1− δ)

∣∣∣ĥSR

∣∣∣2 + ηdτSRσ̃
2
SR + 1

,

(3)

where η = PS

N0
is the transmit signal-to-noise ratio (SNR).

By doing SIC to delete interference, the SNR at R is used to detect signal x2 and it is expressed by:

Γx2

R =
ηdτSR (1− δ)

∣∣∣ĥSR

∣∣∣2
ηdτSRσ̃

2
SR + 1

. (4)

In the second phase, the received signal at Ui when R forwards signal from S to Ui is formulated by:

yRUi =
√
PRd

−τ
RUi

ĥRUi (δx1 + (1− δ)x2)

+
√
PRd

−τ
RUi

h̃RUi
(δx1 + (1− δ)x2) + nRUi

,
(5)

where PR is the transmit power at R and nRUi
is AWGN with CN(0, N0).

At user U1, two steps are conducted. Firstly, U1 detects the signal x1 with SINR is given by:

Γx1

RU1
=

ηd−τ
RU1

δ
∣∣∣ĥRU1

∣∣∣2
ηd−τ

RU1
(1− δ)

∣∣∣ĥRU1

∣∣∣2 + ηd−τ
RU1

σ̃2
1 + 1

, (6)

where η = PR

N0
. Secondly, U1 decodes the signal x1 after performing SIC and the SINR is expressed as:

Γx2

RU2
=

ηd−τ
RU2

(1− δ)
∣∣∣ĥRU2

∣∣∣2
ηd−τ

RU2
σ̃2
2 + 1

(7)

Similarly, U2 detects the own signal x1 and the SINR is given by:

Γx1

RU2
=

ηd−τ
RU2

δ
∣∣∣ĥRU2

∣∣∣2
ηd−τ

RU2
(1− δ)

∣∣∣ĥRU2

∣∣∣2 + ηd−τ
RU2

σ̃2
2 + 1

(8)

To further compute ergodic capacity, we will apply result reported in [24], i.e. the probability distri-
bution function (PDF) of ĥv is given by:

f|ĥv|2 (z) =
(Kv + 1) e−K

Ωv
e−

(1+K)
Ωv

zI0

2

√
Kv (1 +Kv) z

Ωv

 (9)

where Kv is the Rician factor, Ωv is the average fading power and I0 denotes the Bessel function of the first
kind [25].

3. THE ANALYSIS OF ERGODIC CAPACITY
In this section, we evaluate the closed-form expression of ergodic capacity for users Ui.
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3.1. Ergodic capacity of U2

The ergodic capacity of U1 can be expressed as [26]:

Cx1
=

1

2 ln 2

∞∫
0

1− FZ1 (x)

1 + x
dx, (10)

where Z1 = min
(
Γx1

R ,Γx1

RU1

)
.

The cumulative distribution function (CDF) of Z1 is given as:

FZ1
(x) = 1−

∞∑
nSR=0

nSR∑
aSR=0

∞∑
n1=0

n1∑
a1=0

Kn1
1 KnSR

SR e−KSR−K1

a1!n1!aSR!nSR!

×βaSRϑa1e−
β

δ−x(1−δ)
x− ϑ

δ−x(1−δ)
x

(
x

δ − x (1− δ)

)aSR
(

x

δ − x (1− δ)

)a1

(11)

Putting (11) into (10), Cx1
can be expressed by:

Cx1
=

1

2 ln 2

∞∑
nSR=0

∞∑
n1=0

nSR∑
aSR=0

n1∑
a1=0

Kn1
1 KnSR

SR e−KSR−K1βaSRϑa1

a1!n1!aSR!nSR!

×

δ
(1−δ)∫
0

e−
β+ϑ

δ−x(1−δ)
x

1 + x

(
x

δ − x (1− δ)

)aSR+a1

dx

(12)

Using the Gaussian-Chebyshev quadrature [27], the close-form of U1 is given as:

Cx1
=

δπ

2I ln 2

∞∑
nSR=0

∞∑
n1=0

nSR∑
aSR=0

n1∑
a1=0

Kn1
1 KnSR

SR e−KSR−K1βaSRϑa1

a1!n1!aSR!nSR!

×
I∑

c=1

√
1− φ2

c

e−
(1+φc)(β+ϑ)
(1−φc)(1−δ)

2 (1− δ) + (1 + φc) δ

(
(1 + φc)

(1− δ) (1− φc)

)aSR+a1

,

(13)

where φc = cos
(
2c−1
2I π

)
.

3.2. Ergodic capacity of U1

Similarly, the ergodic capacity of of U2 is calculated by:

Cx2
=

1

2 ln 2

∞∫
0

1− FZ2 (x)

1 + x
dx, (14)

where Z2 = min
(
Γx2

R ,Γx2

RU2

)
. Similarly, the CDf of Z2 is given as:

FZ2
(x) = 1−

∞∑
nSR=0

nSR∑
aSR=0

∞∑
n2=0

n1∑
a2=0

Kn2
2 KnSR

SR e−K2e−KSR

a2!n2!aSR!nSR!

×e−(
β+ϖ
(1−δ) )x

(
βx

(1− δ)

)aSR
(

ϖx

(1− δ)

)a1

(15)

Next, Cx2
is rewritten as:

Cx2
=

∞∑
nSR=0

nSR∑
aSR=0

∞∑
n2=0

n1∑
a2=0

Kn2
2 KnSR

SR e−K2e−KSR

a2!n2!aSR!nSR!

× βaSRϖa1

(1− δ)
aSR+a1

∞∫
0

xaSR+a1

1 + x
e−(

β+ϖ
(1−δ) )x.

(16)
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Then, we express Cx2 as:

Cx2
=

∞∑
nSR=0

nSR∑
aSR=0

∞∑
n2=0

n1∑
a2=0

Kn2
2 KnSR

SR e−K2e−KSR

a2!n2!aSR!nSR!

× βaSRϖa1

(1− δ)
aSR+a1

[
(−1)

aSR+a1−1
e

β+ϖ
(1−δ)Ei

(
−β +ϖ

1− δ

)
+

aSR+a1∑
k=0

(k − 1)!

(
1− δ

β +ϖ

)k
]
.

(17)

The CDF of Z1 is calculated as:

FZ1
(x) = Pr

(
min

(
Γx1

R ,Γx1

RU1

)
< x

)
= 1− Pr (Γx1

R > x)︸ ︷︷ ︸
A1

Pr
(
Γx1

RU1
> x

)︸ ︷︷ ︸
A2

(18)

With the help of (4), the term A1 is formulate by:

A1 = Pr

(∣∣∣ĥSR

∣∣∣2 >
x
(
ηdτSRσ̃

2
SR + 1

)
ηdτSRδ − xηdτSR (1− δ)

)

=

∞∫
x(ηdτ

SR
σ̃2
SR

+1)
ηdτ

SR
δ−xηdτ

SR
(1−δ)

f|ĥSR|2 (x) dx
(19)

Putting (9) into (19), (19) is rewrite as:

A1 =
(KSR + 1) e−KSR

ΩSR

∞∫
x(ηdτ

SR
σ̃2
SR

+1)
ηdτ

SR
δ−xηdτ

SR
(1−δ)

e
− (1+KSR)

ΩSR
x
I0

2

√
KSR (1 +KSR)x

ΩSR

dx
(20)

Based on [25], we can write A1 as:

A1 =

∞∑
nSR=0

KnSR

SR e−KSR

(nSR!)
2

(
1 +KSR

ΩSR

)nSR+1
∞∫

x(ηdτ
SR

σ̃2
SR

+1)
ηdτ

SR
δ−xηdτ

SR
(1−δ)

ynSRe
− (1+KSR)

KSR
y
dy

(21)

Moreover, with result in [25] A1 can be obtained as:

A1 =

∞∑
nSR=0

nSR∑
aSR=0

KnSR

SR e−KSR

aSR!nSR!

(
βx

δ − x (1− δ)

)aSR

e−
β

δ−x(1−δ)
x, (22)

where β =
(1+KSR)(ηdτ

SRσ̃2
SR+1)

ΩSRηdτ
SR

. Then, the second term A2 of (18) is rewritten as:

A2 = Pr

(∣∣∣ĥRU1

∣∣∣2 >
x
(
ηd−τ

RU1
σ̃2
1 + 1

)
ηd−τ

RU1
δ − xηd−τ

RU1
(1− δ)

)

=

∞∫
x(ηd

−τ
RU1

σ̃2
1+1)

ηd
−τ
RU1

δ−xηd
−τ
RU1

(1−δ)

f|ĥRU1 |2 (x) dx.
(23)

Similarly, we can obtain A2 as:

A2 =

∞∑
n1=0

n1∑
a1=0

Kn1

RU1
e−KRU1

a1!n1!

(
ϑx

δ − x (1− δ)

)a1

e−
ϑx

δ−x(1−δ) , (24)

where ϑ =
(1+KRU1)

(
ηd−τ

RU1
σ̃2
RU1

+1
)

ΩRU1
ηd−τ

RU1

.

Putting (22) and (24) into (18), we complete the proof.
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4. NUMERICAL RESULTS
In this section, we set δ = 0.85, σ̃2 = σ̃2

SR = σ̃2
RU1

= σ̃2
RU2

K = KSR = KRU1
= KRU1

= 2,
ΩSR = ΩRU1

= ΩRU2
= 1, τ = 2, dSR = 5m, dRD1

= 10m and dRD2
= 5m. We conduct 106 times for

Monte-Carlo simulation. As can be seen in Figure 2, ergodic capacity increases significantly when value of
SNR goes from 20 dB to 50 dB. Due to different power allocation factors and decoding procedure, two users
show performance gap of ergodic capacity, i.e. at range SNR from 0 to 35 dB, performance of two users is
similar, bigger gap among two users exist when SNR is greater than 35 dB. It is intuitively that Monte-Carlo
simulation and analytical results are same, which shows the exactness of derivations.

We can see the impact of CSI imperfect levels on the ergodic performance, shown in Figure 3. At
higher SNR region, SINR to detect signal at destination can be improved, then ergodic capacity is better as
well. In this figure, σ̃2 = 0.01 is reported as best case for both users.

In Figure 4, the performance gap among two users depends on power allocation factor δ. Therefore,
by adjusting such factor δ, the gap will be changed. Since NOMA benefits to the fairness, this modification
of factor δ will satisfy the users’ demand properly. In Figure 5, the quality of channel decide the height of
curves of ergodic capacity. In this circumstance, K = 5 is reported as the best etgodic performance for three
considered cases.
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Figure 2. Ergodic capacity vs signal to noise ratio
(SNR) in dB with different τ
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Figure 3. Ergodic capacity vs signal to noise ratio
(SNR) in dB with different σ̃2
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Figure 4. Ergodic capacity vs signal to noise ratio
(SNR) in dB with different δ
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Figure 5. Ergodic capacity vs signal to noise ratio
(SNR) with different K
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5. CONCLUSION
This paper has explored the impact of CSI imperfection on the ergodic capacity of a two-user coopera-

tive NOMA network. We conduct Rician fading model for wireless transmission from the source to destination
with the assistance of relay. The fixed power allocation factor scheme is adopted and SIC is useful to detect
signals at destinations. We derived the closed-form expression of ergodic capacity and verify all main system
parameters to how they make influence on the system performance. In future work, we deploy multiple des-
tinations to highlight how interference among many users in a group of destinations which get benefit from
NOMA.
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