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 The use of Bangla abusive texts has been accelerated with the progressive use 

of social media. Through this platform, one can spread the hatred or negativity 

in a viral form. Plenty of research has been done on detecting abusive text in 

the English language. Bangla abusive text detection has not been done to a 

great extent. In this experimental study, we have applied three distinct 

approaches to a comprehensive dataset to obtain a better outcome. In the first 

study, a large dataset collected from Facebook and YouTube has been utilized 

to detect abusive texts. After extensive pre-processing and feature extraction, 

a set of consciously selected supervised machine learning classifiers i.e. 

multinomial Naïve Bayes (MNB), multi layer perceptron (MLP), support 

vector machine (SVM), decision tree, random forrest, stochastic gradient 

descent (SGD), ridge, perceptron and k-nearest neighbors (k-NN) has been 

applied to determine the best result. The second experiment is conducted by 

constructing a balanced dataset by random under sampling the majority class 

and finally, a Bengali stemmer is employed on the dataset and then the final 

experiment is conducted. In all three experiments, SVM with the full dataset 

obtained the highest accuracy of 88%. 
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1. INTRODUCTION 

The 21st century has been blessed by social media such as Facebook, YouTube, and Twitter. Which 

has accelerated modern communication with a handful of services. It was reported that 4.021 billion people 

accessed the internet and 3.196 billion people used social media in 2018. The rate of internet and Facebook 

users increases by 7 percent and 13 percent each year, respectively [1]. Two hundred five million native 

Bangla speakers make it the 7th most spoken native language in the world by population [2]. Bangla is 

becoming very popular and it is being used by 42 million people on different social sites as per the digital 

report 2018 [1]. 

 This rapid growth in social networking sites has also raised online harassment, hate speech, cyber 

oppression, online nuisance, blackmailing, and many other cyberbullying. The perpetrators share negative 

images, abusive comments and messages for harassment. There is a rapid growth of cyberbullying and 

cybercrime in Bangladesh [3]. 49% of the Bangladeshi students are affected by bullying [4] and there are 

73% of women face cybercrime offline or online [5]. The negative impacts of cyberbullying on children have 

been stated in [6]. Research [7] showed that youth who experienced traditional bullying or cyberbullying had 

https://creativecommons.org/licenses/by-sa/4.0/
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more suicidal thoughts and were more likely to attempt suicide than others. That’s why a robust and effective 

automatic system is a must to detect threats and abusive languages to stop cyberbullying. 

The variation in the language and the changing nature of social sites have made it challenging to 

identify abusive text from a particular language. Comprehensive approaches have been developed to get a 

satisfactory result in detecting offensive or abusive text. In paper [8], they investigated several learning 

models, e.g., SVM, RF, radial basis function (RBF), multinomial Naïve Bayes, polynomial and sigmoid 

kernel. They used unigram, bigram and trigram string property for features extraction, and the evaluation 

shows that the SVM linear kernel with trigram term frequency-inverse document frequency (TF-IDF) 

features performs the best. NB classifier has been employed in paper [9], [10] to detect abusive and malicious 

Bangla text. They used a training dataset collected from Facebook and YouTube comments and employed the 

algorithm to classify the text. In paper [11], different classification algorithms have been approached to 

identify cyberbullying on Bangla text where SVM outperforms after cross-validations. [12] proposed a root 

level algorithm for detecting abusive text and used unigram string features for a better result. Lee et al. in 

[13], an abusive text detection system is introduced utilizing unsupervised learning of abusive words based 

on word2vec's skip-gram and the cosine similarity. The proposed method shows an f-score of 86.93% in 

malicious word detection, 85.00% for online community comments and 92.09% for Twitter tweets. 

In recent years, opinion mining or sentiment analysis has also become a point of focus in neuro-

linguistic programming (NLP). In paper [14], emotion from Bangla text is extracted using a comprehensive 

set of techniques. The authors classify sentences with a three-class (neutral, positive, and negative) and a 

five-class (neutral, positive, negative, strongly positive, and strongly negative) sentiment label using a deep 

learning-based model. In their literature [15], several supervised machine learning algorithm has been 

proposed to study automated Bangla article classification using a large dataset, which contains almost 

3,76,226 articles. A recent study [16] is conducted in classifying abusive text content written in the 

Indonesian language. The data are labeled into three, i.e., abusive, not abusive and abusive but not offensive. 

Islam et al. introduced a bangla blog article classification system in [17]. Abusive language detection of 

Twitter text content [18] is implemented utilizing the bidirectional recurrent neural network (BiRNN) 

method. Besides, results are compared with convolutional neural network (CNN) and RNN, which 

demonstrated that the proposed BiRNN outperformed CNN. 

Islam et al. in [19] also showed a comparison between NB, SGD, and SVM for Bangla text 

document classification. Paper [20] performs abusive content detection on Yahoo finance and news data, 

with a model combining various syntactic and linguistic features in the text, considered character unigram 

and bigram level, and tested on Amazon data. Several approaches have been introduced in abusive text 

detection and most of them are in English languages. Although researchers have rigorously analyzed 

sentiment from the Bangla language, very few works have been displayed to identify abuses and hate speech 

with a minimal size dataset. Hence, detecting abusive texts from the Bangla language needs a lot of attention. 

This experimental research has shown the in-depth exploration of machine learning (ML) algorithms to 

detect Bangla abusive texts with a comprehensive set of data and compare the performances. We stored about 

12,000 data in our corpus from the discussion threads of different controversial Facebook celebrities ’ pages 

and YouTube videos. After pre-processing and feature extraction, diverse techniques, i.e., MNB, MLP, SVM, 

decision tree, random forest, SGD, ridge, perceptron, and k-NN, have been used to classify the data. 

 

 

2. RESEARCH METHOD  

The block diagram of the entire approach implemented for solving Bangla abusive text detection is 

delineated in Figure 1. As shown in Figure 1, the process has been started by collecting data from social 

media. We have accumulated comments from popular pages and channels of Facebook and YouTube under 

the privacy policy of Facebook and YouTube. Moreover, the data are unstructured and contain plenty of 

noise. Consequently, several pre-processing techniques have been applied to the dataset. Then the dataset has 

split into a test set and train set in an 80:20 ratio. Finally, several machine learning techniques are used and 

performance is evaluated to find the best approaches. 

 

2.1.  Description of dataset 

Controversial Facebook pages and YouTube channels are the best sources of potential abusive text 

data. Those pages and channels have thousands of likes, comments, and interactions each day. We have 

selected some of the most controversial and viral Facebook pages and YouTube channels of Bangladesh’s 

current time like Naila Nayem, Hero Alom, Shefuda, Ripon Video, Model Arif Khan and a few more. Those 

pages and channels belong to controversial Facebook celebrities, actors, and vulgar content creators. Public 

comments are scrapped without commenter’s information to ensure privacy utilizing graph application 

program interface (API) and “Youtube Comment Scraper” for Facebook and YouTube, respectively. An 
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irrelevant comment like sticker/emoticon, other language comments except Bangla has been removed from 

the dataset. As training need tagged data, the dataset is tagged manually as abusive or non-abusive. The 

distribution of our dataset is given in Table 1. 

 

 

 
 

Figure 1. Block diagram of proposed model 

 

 

Table 1. Description of dataset 
Abusive Non Abusive Total 

4880 7148 12028 

 

 

Some of the classifiers e.g., Naive Bayes, random forest are sensitive to the proportion of different 

classes. Consequently, these classifiers tend to bias with the most significant class frequency, which may lead 

to ambiguous accuracy. Moreover, some models are shown to be less insensitive to class imbalances. Hanse, 

it has been decided to experiment with a balanced dataset besides our collected imbalanced dataset. There are 

several techniques for dealing with imbalanced dataset i.e., undersampling, oversampling, synthetic data 

generation and cost sensitive learning. Accordingly, random undersampling has been chosen in this study. 

After random undersampling, the distribution of the balanced dataset is following: 

 

 

Table 2. Balanced dataset 
Abusive Non Abusive Total 

4880 4880 9760 

 

 

2.2.  Data pre-processing  

2.2.1. Tokenization 

For better classification, it is necessary to go through tokenization and pre-process before applying any 

feature extraction technique. Tokenization is the system that intends to break the content report into tokens delimited 

by a newline or tab or white space etc. In this experiment, the token is split based on some delimiter like punctuation, 

space, newline, emoji, and special character. All the special characters, punctuation, English and Bangla numerals, 
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extra whitespace are eliminated in this stage. Word of other languages except Bangla and single-character words are 

also removed. Figure 2 portrays the pseudocode of the tokenization process. 

 

 
1. for i = 0 to i = length (dataset)  

2.  list_of_word = dataset [i] split into (r"\.\s|\?\s|\!\s|\n") 

3.  for j = 0 to j = length(list_of_word) 

4.   marged_document = marged_document+ list_of_word [j] + ” ” 

5.   dataset[i] = marged_document 

6.      end 

7.   marged_document = ”” 

8. end 

 

Figure 2. Bangla dataset tokenization 

 

 

2.2.2. Stemming  

It is essential to determine the root word of any word for an enhanced classification in a highly 

inflectional language like Bangla. The idea is to erase inflections from a word to obtain its stem word. 

Several stemmers exist for the Bangla language including, a rule based bengali stemmer [21], a corpus based 

unsupervised Bangla word stemming using N-gram language model [22], Designing a Bangla Stemmer using rule 

based approach [23], N-gram Statistical Stemmer for Bangla Corpus [24]. Papers [25] illustrate that 

stemming and stopword removal can improve the performance of automated text classification. We have 

employed [21] a lightweight rule-based stemmer in this research. The sample output of the stemmer used is 

given in Table 3. 

 

 

Table 3. Sample output of used stemmer 
Input Word Output Word 

মাসের মাে (Month) 

অফিসে অফিে (Office) 

থাকাটাই থাকা (Stay) 

এমনটা এমন (Thus) 

এসেই এে (Come) 

চাকফরটটর চাকফর (Service) 

 

 

2.3.  Feature extraction 

The feature extraction method aims to reduce the dimensionality of the corpus by eliminating 

inappropriate features for classification. Several statistical approaches can be used for feature extraction. TF-

IDF have been chosen in this experiment. TF-IDF considers two scores, TF, and IDF. TF counts the 

frequency of a term within the document, and IDF scales down the term that frequently occurs within 

multiple documents, as those are less important terms.  

 

2.4.  Training of classifiers 

A comprehensive study has been performed to find a proper model for Bangla text classification. 

MNB, MLP, SVM, decision tree, random forest, SGD, ridge classifier, perceptron, and k-NN has been 

considered among the available learning models from the literature review. Each of the datasets is split into 

an 80:20 ratio as a training set and a test set. All the mentioned classifiers are applied in each of the datasets. 

Anaconda software platform and python 3 programming language have been used for implementation. 

 

 

3. EXPERIMENTAL EVALUATION AND RESULTS 

Three different datasets have been used to investigate which approach performs better. The first 

experiment was conducted with the full dataset we have collected where the sample of abusive and non-abusive are 

not equalized. The performance of different learning models using that dataset is given in Table 4. 

SVM obtained the highest accuracy and highest f-score among other algorithms. SGD is also performing 

very close to SVM, with an accuracy and f-score of 0.87. Ridge classifier and MLP are also performing well, with the 

accuracy of 0.86 and 0.85, respectively. k-NN and random forest have the poorest performance. As some classifiers 

perform better with a balanced dataset, the second experiment has been conducted using the balanced dataset 
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generated by random under sampling of the most frequent class of the full dataset. The performance of 2nd 

experiment is given in Table 5. 

The performance of MNB and random forest were improved while experimenting with the balanced dataset. 

The performance of random forest has a massive change from 0.60 to 0.72. Decision tree and perceptron are 

performing the same as full dataset. The performance of MLP, SVM, SDG, ridge classifier, and k-NN is dropped. In 

this experiment, MNB and SVM obtained the highest accuracy. 

And lastly, another experiment was conducted by stemming the full dataset (as full dataset have 

better performance with most of the classifiers) to find if the stemming can improve the performance. A 

lightweight rule-based stemmer was employed to find the root word of each full dataset word. The 

performance after stemming is given in Table 6. 

 

 

Table 4. Performance of different algorithm on full dataset 

Algorithm 
1st Experiment (Full Dataset) 

Accuracy Precision Recall F1 Score 

MNB 0.83 0.85 0.79 0.80 

MLP 0.85 0.85 0.85 0.85 

SVM 0.88 0.88 0.88 0.88 
Decision Tree 0.73 0.76 0.72 0.72 

Random Forest 0.60 0.36 0.60 0.45 

SGD 0.87 0.87 0.87 0.87 
Ridge 0.86 0.86 0.86 0.86 

Perceptronon 0.80 0.79 0.80 0.79 

k-NN 0.55 0.71 0.55 0.51 

 

 

Table 5. Performance of different algorithm on balanced dataset 

Algorithm 
2st Experiment (Balanced Dataset) 

Accuracy Precision Recall F1 Score 

MNB 0.85 0.85 0.85 0.85 
MLP 0.68 0.78 0.68 0.64 

SVM 0.85 0.85 0.85 0.85 

Decision Tree 0.73 0.74 0.73 0.72 
Random Forest 0.72 0.74 0.72 0.71 

SGD 0.83 0.83 0.83 0.83 

Ridge 0.84 0.83 0.83 0.83 
Perceptronon 0.80 0.80 0.80 0.80 

k-NN 0.53 0.63 0.55 0.46 

 

 

Table 6. Performance of different algorithm after stemming 

Algorithm 
3st Experiment (Stemmed Dataset) 

Accuracy Precision Recall F1 Score 

MNB 0.81 0.82 0.80 0.79 

MLP 0.84 0.84 0.84 0.84 
SVM 0.85 0.85 0.85 0.85 

Decision Tree 0.72 0.75 0.72 0.72 

Random Forest 0.60 0.76 0.60 0.45 
SGD 0.84 0.84 0.84 0.84 

Ridge 0.84 0.83 0.83 0.83 

Perceptronon 0.80 0.79 0.79 0.79 
k-NN 0.62 0.71 0.62 0.61 

 

 

After stemming the dataset, the performance of most of the classifiers has slightly decreased except 

k-NN, random forest and perceptron. Only k-NN has improved performance. Again, SVM performed with 

the highest accuracy. MLP, SDG and ridge classifier also performed decent, very close to SVM. Still, now, 

no Bengali stemmer can perform accurately. The stemmer we have used has an accuracy of 83%. In the rest 

of the 17% case, stemmer is producing many meaningless, invalid word as like, তার (his/her)  ত, মেয়ে 

(daughter)  ো, ভাই (Brother)  ভা, আয়ে (have)  আ, মতারা (you)  মতা. Those are negatively 

impacting the performance of classifiers. The comparison of performance among all the classifiers of all the 

three experiment are illustrated in Figure 3 and Figure 4. 

With all the experiments, it is evident that SVM with the full dataset obtained the highest accuracy, 

while its performance has decreased with under sampling and stemming the dataset. Moreover, the majority 

of the classifiers are performing better with the full dataset. MNB and random forest show sensitivity with 
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class frequency; consequently, they perform better with the balanced dataset. Only k-NN has a better 

performance after stemming while the performance of other classifiers is diluted. 

 

 

 
 

Figure 3. Accuracy comparisn of different classifiers 

 

 

 
 

Figure 4. F1 score comparisn of different classifiers 

 

 

4. CONCLUSION AND FUTURE SCOPE 

Significant research has been done for abusive test detection on language like English, but 

insufficient work has been done on Bangla. In this research, a dataset of almost 12,000 instances has been 

collected from different social media. After extensive pre-processing, several learning models, including 

MNB, SVM, ridge classifier, perceptron, k-NN, random forest and decision tree, have been experimented on 

this dataset to find the best classifier. It was observed that SVM has the highest accuracy and f-score while 

MLP, SDG, and ridge classifier are also performing very close to it. On the other hand, k-NN, random forest, 

and decision tree have a poor performance in this classification task. Stemming is decreasing performance 

because the accuracy of Bengali stemmer is not satisfactory. As future work, neural network-based models 

like deep neural network, convolutional neural network, and long short-term memory may be considered. 

Still, there has scope to enhance our approach. A various machine learning algorithm is being used in NLP 

while minimal work on Bangla is done because of insufficient resources and monitoring. 
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