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 The main goal of a battery management system (BMS) is to estimate 

parameters descriptive of the battery pack operating conditions in real-time. 

One of the most critical aspects of BMS systems is estimating the battery's 

state of charge (SOC). However, in the case of a lithium-ion battery, it is not 

easy to provide an accurate estimate of the state of charge. In the present 

paper we propose a mechanism based on an extended kalman filter (EKF) to 

improve the state-of-charge estimation accuracy on lithium-ion cells. The 

paper covers the cell modeling and the system parameters identification 

requirements, the experimental tests, and results analysis. We first established 

a mathematical model representing the dynamics of a cell. We adopted a 

model that comprehends terms that describe the dynamic parameters like 

SOC, open-circuit voltage, transfer resistance, ohmic loss, diffusion 

capacitance, and resistance. Then, we performed the appropriate battery 

discharge tests to identify the parameters of the model. Finally, the EKF filter 

applied to the cell test data has shown high precision in SOC estimation, even 

in a noisy system. 
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1. INTRODUCTION 

Batteries have become the essential limiting factor for several applications, including portable 

electronic devices and electric/hybrid vehicles, to mention but a few. Furthermore, Batteries have shown 

many drawbacks in various aspects. They have smaller energy and power densities compared to fossil fuels, 

their lifetime is uncertain, and their behavior and characteristics are changing over time [1], [2]. In recent 

years, lithium-ion batteries (Li-ion) have risen as the preferred technology for portable devices and 

transportation applications because of their excellent chemical composition, good lifetime, and better 

efficiency compared to other battery types. However, a Li-ion battery requires a battery management system 

(BMS) assuring power control and general enhanced stability. A battery management system is mandatory to 

maintain optimal battery performance. The key part of a BMS is that it permits the battery state of charge 

(SOC) estimation in real-time; hence, the available capacity can be determined. With the estimated SOC, 

BMS can optimize battery energy efficiency, predict the state variables, and protect batteries from over-

charging and over-discharging. We define the SOC as the amount of energy left in a battery compared to the 

initial energy when it was fully charged. “Obviously, from a practical point of view, we cannot measure SOC 

directly according to its definition without varying it dramatically” [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Multiple studies have proposed many different SOC estimation methods. The simplest and most 

used method is coulomb counting (counting amp-hours) [4], [5]. Nevertheless, this strategy is based on an 

open-loop algorithm that has the disadvantage of a significant measurement error accumulation due, 

especially to uncertain disturbances and the difficulty of accurately determining the SOC initial value [3]. 

The open-circuit battery voltage (OCV) measurement method is also used. However, it requires a sufficient 

rest period to ensure a stable battery voltage.  

A couple of new methods based on neural networks and fuzzy logic [6]-[9] were discussed in the 

literature. They depend on intelligence-based and computational algorithms, involve many training sample 

data, and are rarely realized in real-time applications. Hybrid simplified kalman filter [10], linear kalman 

filter (KF), extended kalman filter (EKF) [11]-[18], and the unscented kalman filter [19]-[21] were also 

proposed. The state of charge (SOC) model-free tuning method is mainly used in the hybrid electric vehicle 

system. “The methodology focuses on the variable SOC target governed by a linear equation of the actual 

vehicle speed” [22]. The KF is a recursive algorithm for SOC estimation. It has the advantage of assuring an 

optimal estimate of the state of charge even in the presence of noisy disturbances. Besides, KF based 

methods do not require accurate knowledge of the SOC initial value [23]. EKF algorithm is used not only for 

the battery model parameters identification but also for SOC estimation in real-time operation [17], [24]. It is 

primarily suitable for dynamic systems. Moreover, good precision in battery SOC estimate depends heavily 

on the battery model precision, parameters initial values, and predetermined variables, even in case of system 

noise such as covariance matrix relevance and average value. 

In this paper, a lithium-ion battery (nominal capacity of 1.8 Ah) is selected as the object of our 

research investigation. EKF is applied to our Thevenin model to estimate SOC. It allows the SOC value to be 

continuously corrected and adjusted in real-time. Based on the analysis of many experiments on SOC (as 

detailed in the following sections), one could conclude that EKF produces a good and accurate estimate of 

SOC, even for a noisy system. 

 

 

2. BATTERY MODELING AND PARAMETERS IDENTIFICATION 

Different modeling methods are mentioned in several papers. Recently, equivalent circuits and 

electrochemical models are the most cited and most widely used in battery modeling. So far, many models 

based on various assumptions have been proposed for the dynamic modelling of lead-acid batteries. The 

following works can be referred to:- Battery modeling using the Thevenin model [12], where the temperature 

is assumed to be constant; - “Dynamic modeling of afuel cell by Bruno Francois [25]. In the later model, all 

parameters are supposed to be constant; - Nonlinear time series models using neural network systems have 

also been used to enhance the existing nonlinear dynamic models” [26]. 

A SOC estimation process is based on a model that replicates internal battery state variables such as 

open-circuit voltage (OCV) and SOC, among other parameters. The lithium-ion battery system's SOC 

prediction model is developed using support vector machine modeling (SVM) [27]. The cell is considered as 

a nonlinear dynamic system that can be represented by a state-space as: 

  

{
𝑋̇ =  𝐹(𝑋, 𝑈) + 𝑊

𝑌 = 𝐺(𝑋, 𝑈) + 𝑉 
 (1) 

 

“Where X is the state vector defining the system states. U represents the current I, and Y is the output of the 

measuring system. W is the unmeasured "process noise" that affects the state of the system. V is the 

measurement noise not affecting the state of the system but results in the output. Moreover, W and V are 

assumed to be Gaussian white noise with zero mean and zero covariance. F(X,U) and G(X,U) are functions 

specified by the model” [28]. 

The equivalent circuit model for a lithium battery [18] is shown in Figure 1. Vocv is the open-circuit 

voltage; the surface capacitance C1 represents battery diffusion effects. The resistors Rin and R1 are 

(respectively) the internal resistance and transfer resistance. V1 is the voltage across the surface capacitor; VT 

and I are, respectively, the battery terminal voltage and current. From Figure 1, the battery terminal voltage 

can be written as : 

 

𝑉𝑇 = 𝑉𝑜𝑐𝑣(𝑆𝑂𝐶) − 𝑉1 − 𝑅𝑖𝑛𝐼 (2) 

 

Experimental discharge results on the Li-ion battery see Figure 2 helped define a relationship 

between the open-circuit voltage and battery charge (OCV-SOC). In fact, this function plays a central role in 

terms of accuracy in estimating the load state. As a result, we can say that this relationship is the added value 
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of the method developed in our current work. The SOC (Vocv) curve is built from the experimental discharge 

results carried out on the Li-ion battery see Figure 2. The SOC is related to Vocv as: 

 

𝑉𝑜𝑐𝑣 = 𝑘1 + 𝑘2 × 𝑆𝑂𝐶 + 𝑘3 × 𝑆𝑂𝐶3  (3) 

 

With 𝑘1 = 3.56, 𝑘2 = 0.356 𝑎𝑛𝑑 𝑘3 = 0.2827  
In this regard, it should be noted that the values of the above parameters depend on the chosen cell. 

 

 

 
 

Figure 1. Thevenin model of the Li-ion battery 

 

 

 
 

Figure 2. SOC-Vocv curve 

 

 

After a rest period, Vocv can be easily measured while the battery is in an open-circuit state. 

Therefore, SOC can be estimated using (3). However, this case is not always feasible, especially in real-time 

operation. In effect, while the battery is connected to the system, it will be very difficult to obtain information 

on SOC since the battery's internal impedance can’t be measured during the discharge process (presence of 

the current I). Therefore, To make the SOC estimate easier, the open-circuit voltage must also be measured in 

real-time conditions. (as illustrated in (3)). In (4) represents the voltage V1 across the capacitor C1: 

 

𝑉1 = 𝑅1 × (𝐼 − 𝐶1𝑉̇1 (4) 

 

One of the most critical pieces of information in a BMS is the state of charge, a cell’s internal state [14] that 

we cannot explicitly measure during battery operation. As a result, estimating the SOC value is the only 

option. 

 

𝑆𝑂𝐶𝑏𝑎𝑡𝑡 = 𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −
1

3600 × 𝐴ℎ
∫ 𝐼 𝑑𝑡 (5) 

 

where: I: the battery terminal current 

Ah:the battery capacity in A.h 

SOCinitial: the initial state of charge 

SOCbatt: the battery SOC 

The model parameters are extracted from the Lithium-ion battery voltage response, resulting from 

the constant current pulse discharge test. Figure 3 and Figure 4 illustrate cell voltage response and current 

pulse, respectively. 
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Figure 3. 1C constant current discharge (Lithium-ion battery) 

 

 

 
 

Figure 4. 1C constant current discharge test (Li-ion battery): The voltage response 

 

 

When the discharge pulse is applied, the voltage response during the battery discharge test, as 

shown in Figure 4, shows that there is an instantaneous voltage drop (∆𝑉). On the other hand, there is an 

instantaneous increase in voltage once the discharge stops. The tension response proves the existence of 

internal resistance Rin that can be computed in (6). 

 

𝑅𝑖𝑛 =
∆𝑉

𝐼
=

3.95 − 3.587

1.799
= 0.201 𝛺 (6) 

 

The cell diffusion resistance R1 is determined on the voltage curve from the initial instant of the 

immediate rise in voltage and the moment it reaches a pseudo-stable value during the established regime. We 

divide ∆U voltage by discharge test constant current (I=1.799A). Accordingly, R1 is determined as: 

 

𝑅1 =
∆𝑈

𝐼
=

3.875 − 3.767

1.799
= 0.06 𝛺 (7) 

 

The ratio of the battery model time constant to the diffusion resistance is used to determine the 

diffusion capacity C1. From the Figure 4, the C1 discharge time constant 𝜏is determined as: 

 

𝜏 = 𝑅1𝐶1 = 25436 − 25380 = 56 𝑠 (8) 

 

𝜏 is the time required to reach (1 − 1 / e) ≈ 63.2% of ∆𝑈 see Figure 4. Therefore, the diffusion capacity is: 

 

𝐶1 =
𝜏

𝑅1

=
56

0.06
= 933 𝐹 (9) 

 

The Table 1 shows the battery model parameters: 
 

 

Table 1. Battery model parameters 
Model parameter Rin R1 C1 

Value 0.201Ω 0.06Ω 933 F 
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R1 and C1 are dynamic parameters, but for the sake of simplicity, they have been kept constant in the 

following, as their variation is not significant during battery charging and discharging. To validate the 

calculated parameters, we compared the voltage measured value and the estimated one, as illustrated in 

Figure 5. The discharge tests performed on the cell included a series of constant current discharge pulses 

followed by rest intervals. The current profile of the experiment is shown in Figure 5 (a). We can see, 

according to Figure 5 (b-c), that the estimated voltage curve perfectly follows the measured voltage one with 

a small maximum error of 0.04V. These results confirm that the estimated SOC curve converges towards the 

real one. This validates the accurateness of the adopted model. 

 

 

 
 

(a) (b) 

  

 
(c) 

 

Figure 5. These figures are, (a) test current, (b) step charge curve, (c) the battery voltage estimation error 

 

 

3. USING EXTENDED KALMAN FILTER FOR SOC ESTIMATION 

The kalman filter is the most widely used method in tracking technologies. It is also applied as an 

estimation algorithm in linear systems. Under the designation of EKF, it has been adapted for nonlinear 

systems [29]. The EKF is especially used for prediction in dynamic systems, like tracking, navigation, and 

global positioning. The EKF has recently entered the battery field. The kalman filter concept is based on 

recursive mathematical equations that allow the repetition of calculations at every step. The system's output 

relies on the prior input so that the state vector depends on the current output as a function of its input. 

Moreover, the battery is intrinsically a nonlinear system because of its dynamic behavior, on the one 

hand, and the current and voltage sensors, on the other. In the battery model, the voltage is the output and the 

current is the input. Each sampling period's state is calculated and assessed by an observer. Furthermore, the 

observer is tuned to track all system parameters. In this regard, a specific state variable represents a 

parameter. Battery systems are inherently nonlinear. Therefore, in this chapter, the EKF, with a linearization 

process, is investigated. The equations system represents our nonlinear system: 

 

𝑦𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑣 (10) 

  

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤 (11) 

 

𝑓(𝑥𝑘 , 𝑢𝑘) and 𝑔(𝑥𝑘 , 𝑢𝑘) functions are linearized using a first-order Taylor series expansion around 

the point 𝑥𝑘 = 𝑥̂𝑘−1 for the process model, and 𝑥𝑘 = 𝑥̂𝑘
− for the measurement model. We assume that both 

functions are differentiable at all operating points, as shown in (12)-(13). 

 

𝑔(𝑥𝑘 , 𝑢𝑘) ≈ 𝑔(𝑥̂𝑘
−, 𝑢𝑘) +

𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘

−

(𝑥𝑘 − 𝑥̂𝑘
−) (12) 
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𝑓(𝑥𝑘 , 𝑢𝑘) ≈ 𝑓(𝑥̂𝑘−1, 𝑢𝑘) +
𝜕𝑓(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘−1

(𝑥𝑘 − 𝑥̂𝑘−1) (13) 

 

By substituting (12) and (13), in (10) and (11), the linearized process and measurement models become: 

 

𝑔(𝑥𝑘 , 𝑢𝑘) ≈ 𝐺̂𝑘𝑥𝑘 + 𝑔(𝑥̂𝑘
−, 𝑢𝑘) − 𝐺̂𝑘𝑥̂𝑘

− + 𝑣  (14) 

 

𝑥𝑘+1 ≈ 𝐴̂𝑘𝑥𝑘 + 𝑓(𝑥̂𝑘−1, 𝑢𝑘) − 𝐴̂𝑘𝑥̂𝑘−1 + 𝑤 (15) 

 

We define 𝐴̂𝑘 and 𝐺̂𝑘 as: 

 

𝐴̂𝑘 =
𝜕𝑓(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘−1

 (16) 

 

𝐺̂𝑘 =
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘

−

 (17) 

 

Recursive steps of the extended kalman filter algorithm can be summarized as: 

a. Initialize the original parameters. 

 

𝑥̂𝑘−1 = 𝐸(𝑥0) (18) 

 

𝑃𝑘−1 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇] (19) 

 

b. Estimate the predicted state 

 

𝑥̂𝑘
− = 𝑓(𝑥̂𝑘−1, 𝑢𝑘) (20) 

 

c. Update estimate covariance 

 

𝑃𝑘
− = 𝐴̂𝑘𝑃𝑘−1𝐴̂𝑘

𝑇 + 𝑄 (21) 

 

d. Determine near-optimal kalman gain 

 

𝐾𝑘 = 𝑃𝑘
−𝐺̂𝑘

𝑇(𝐺̂𝑘𝑃𝑘
−𝐺̂𝑘

𝑇 + 𝑅)−1 (22) 

 

e. Update state estimate 

 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝑔(𝑥̂𝑘

−, 𝑢𝑘)) (23) 

 

f. Predict estimate covariance 

 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐺̂𝑘)𝑃𝑘
− (24) 

 

g. Repeat the recursive filter calculation from step 2 to step 6 

The discrete extended kalman estimator for the lithium-ion cell is derived from the previously 

constructed model. The states used to model the behavior of the battery are: 

 

𝑥1 = 𝑆𝑂𝐶 ;  𝑥2 = 𝑉1  

𝑥 = [𝑥 1 𝑥2]𝑇  

= [𝑆𝑂𝐶     𝑉1]𝑇 
(25) 

 

The battery current is the process control variable 𝑢=𝐼. 

Both the current integration process expression and the Thevenin model mathematical relations are 

discretized and linearized to define the state transition as: 
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𝑓(𝑥, 𝑢) = [𝑓1 𝑓2]𝑇 (26) 

 

𝑓1 = 𝑆𝑂𝐶𝑘−1 − 𝐼𝑘−1

∆𝑡

3600. 𝐴𝐻
= 𝑥1 − 𝑢 

∆𝑡

3600. 𝐴𝐻
 (27) 

 

𝑓2 = 𝑉1|𝑘−1. 𝑒−
∆𝑡
𝜏 − 𝐼𝑘−1𝑅1 (1 − 𝑒−

∆𝑡
𝜏 ) 

(28) 

= 𝑥2. 𝑒−
∆𝑡
𝜏 − 𝑢. 𝑅1 (1 − 𝑒−

∆𝑡
𝜏 ) 

 

With 𝜏 = 𝑅1𝐶1 and ∆𝑡: sampling period. 

The measured (observable) parameters are limited to the cell terminals voltage. Thus, the 

measurement vector is 𝑦 = 𝑉𝑇 . The observation is given: 

 

𝑔(𝑥, 𝑢)  = 𝑘1 + 𝑘2 × 𝑆𝑂𝐶 + 𝑘3 × 𝑆𝑂𝐶3 − 𝑉1 − 𝑅1 × 𝐼 

= 𝑘1 + 𝑘2 × 𝑥1 + 𝑘3 × 𝑥1
3 − 𝑥2 − 𝑅1 × 𝑢 

(29) 

 

We must determine the two Jacobians in order to use this model in the EKF. As a result, the state transition 

equations' derivative with respect to state variables is: 

 

𝐴̂𝑘 =
𝜕𝑓(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘−1

= (
𝐹11 𝐹12

𝐹21 𝐹22
) (30) 

 

After calculating, we get: 

 

𝐹11 = 1, 𝐹12 = 0,  𝐹21 = 0 and 𝐹22 = e−
∆t

τ  

 

According to the state variables, the observation derivative is: 

 

𝐺̂𝑘 =
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘

|
𝑥𝑘=𝑥𝑘

−

= [𝐺1 𝐺2] (31) 

After computing, we obtain: 

 

𝐺1 = 𝑘2 + 3𝑘3𝑥1
2 (32) 

 

𝐺2 = −1 (33) 

 

 

4. EXPERIMENTAL RESULTS 

Figure 6 illustrates the test bench used for discharge tests. It includes a 1.8Ah Li-ion cell and a 

programmable DC electronic loads. Discharge tests are carried out on a fully charged battery cell. The aim is 

to compare the experimental results of SOC estimate with the reference values. Figure 7 (a-b) shows results 

for the case in which the SOC estimate and its reference have the same initial value, while Figure 8 (a-b) 

represents the results for different initial values. 

 

 

 
 

Figure 6. The schematic of the test bench 
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Results detailed below show that the SOC estimate has a maximum error of 1%. This error is 

inherent to modeling errors. The results show that the calculated cell model parameters produce high 

accuracy in open-circuit voltage estimation. While the function between VOCV and SOC leads to good 

accuracy in SOC estimation. We notice, as well, that the extended kalman filter observer algorithm quickly 

converges to the SOC reference with high accuracy, despite the fact that the reference initial value differs 

from SOC's initial value. 

 

 

  
(a) (b) 

  

Figure 7. These figures are; (a) SOC estimate results, (b) SOC error when the initial SOC is known 

 

 

  
(a) (b) 

  

Figure 8. These figures are; (a) SOC estimate results, (b) SOC error when the initial SOC is unknown 

 

 

5. CONCLUSION 

In the present paper, we determined the main three parameters of the battery Thevenin model 

(ohmic resistance, polarization resistance, polarization capacitance) through experimental discharge tests. 

Moreover, tests were conducted to establish a connection between the cell open-circuit voltage and the state-

of-charge. This relationship plays a key role in accurately estimating the state of charge of the battery. This 

relationship varies from cell to cell, depending on the cell's constituent materials. Then, an EKF algorithm 

based on the Thevenin model was established. EKF performances were assessed by carrying out constant 

current discharge experimental tests. According to the comparison analysis between experimental results and 

reference values, EKF based on the Thevenin model has shown a good accuracy performance in SOC 

estimate. Furthermore, the results met the precision and rapid convergence requirements in SOC estimate, 

with an error of less than 1%, independently of the initial value. SOC estimation combined with a real-time 

parameters identification approach for the dynamic battery model will be the subject of future research. 
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