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 The energy expended to cool the occupied areas by air conditioners 

represents a substantial share of the total energy exhausted in buildings. 

Therefore, developing strategies to reduce this energy is crucial. One of the 

preponderance strategies adopted to depreciate energy consumption in 

buildings is the occupancy-based strategy. In this research, an innovative 

model was established to achieve the goal of reducing cooling energy 

consumed in buildings based on occupancy-based combined with a constant 

temperature setpoint strategy in two phases, and each phase engrosses in 20 

days. Phase one is to identify the extent of cooling energy employed 

according to the use of room occupants and its costs in consumption was 

276.01 kWh after completion of this phase. Sequentially, constructing phase 

two intended to reduce cooling energy consumption by employing an 

automatic air-conditioner (AC) control strategy relying on an improved 

human detection algorithm with a 25℃ as temperature setpoint, resulting in 

112.45 kWh of consumption. To complement the motives for elaboration, the 

human detection measurement using you only look once (YOLO) improved 

by applying pre-processing algorithms to reach an average human detection 

enhancement of 21.2%. The proposed model results showed that potential 

savings associated with the embraced strategy decreases by more than 

anticipated as the amount of reduced energy reached 59% savings. 
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1. INTRODUCTION  

Energy consumption has increased speedily worldwide causing the depletion of energy resources 

and a negative environmental impact. At present, the buildings sector consumes an extensive proportion of 

aggregated energy and responsible for a significant part of CO2 emissions globally [1]. Until the total energy 

consumption of the buildings sector reached 40% of the total energy consumed [2]. To be more specific, the 

cooling and heating framework inside the buildings have the largest share of this consumption, in particular 

50% of the power consumption [3]. Thus, reducing energy consumption is a critical issue. Former researchers 

demonstrated that a massive proportion of energy is wasted in unoccupied areas [4].  

As a consequence, information about space occupied essentially to reduce energy consumption. In 

numerous countries including Egypt, the electricity demand has increased dramatically to overcome the peak 

that led to frequent power outages, especially in the summer season. In Egypt, one temperature increases 

https://creativecommons.org/licenses/by-sa/4.0/
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above 35℃ results in the consumption of 100 MW/h, meaning that the temperature rises to 42℃ increases 

consumption to 800 MW/h, which is comparable to a heat station estimated at 2 billion EG and need to be 

established for about four years [5]. The dependence on electronic equipment in Egyptian buildings has 

increased significantly over the past years as a consequence of the long summer season leading to a 

significant rising in energy consumption. For instance, between 2006 and 2010 sales of air conditioning units 

and fans increased significantly to reach 766 thousand units per year with an increase in this percentage every 

year.  

AC systems expend around 12% of the produced energy from the power stations, consuming 22% of 

overall Egypt’s energy production [6]. About 40% of the energy in Egypt consumed by the building sector 

[7]. The Egyptian government seeks to implement the integrated energy strategy, which seeks to reduce 

energy demand [8]. The idea of reducing energy consumption in buildings is not only affected by appliances 

consumption but probably also affected by human behaviors of energy use and the fast development of 

technology. Smart grid systems perform an energy audit that aids in determining energy efficiency 

opportunities that lead to better results and continuity of operations efficiently in buildings [9]-[11]. The 

interactivity between occupants in buildings and energy-consumption in their environment requires 

improvements, such as reinforce conventional public-use buildings with several technologies, like smart 

adaptors, energy analyzers, an occupant aware, and decision support interfaces introduced by the GreenSoul 

project. The GreenSoul structure strengthened by embracing GreenSoul-ed devices, which decrease energy 

consumption by interacting with other devices, smart metering equipment, and very importantly, with  

eco-aware users [12], [13]. 

Most modern strategies to reduce cooling power rely on temperature control or occupancy-based 

strategies. The Kingdom of Saudi Arabia (KSA) is one of the countries with a hot climate during the summer 

season, so reliance on air conditioners is essential. Moncef, investigates various temperature control 

strategies with temporary occupancy patterns associated with Saudi households. In particular; 1) Constant 

setpoint temperature for all rooms; 2) Raising the temperature setpoint in the limited occupied spaces; and 3) 

24 ℃ temperature setpoint merged with occupancy patterns schedules in the occupied spaces. They inferred 

outstanding energy savings evinced by higher set-point temperatures for the cooling system in hot climates 

areas (38.7% savings of total annual consumption) [14]. In this research, they perceived that energy 

efficiency increases when choosing temperature setpoint based on the external temperature and they can 

achieve savings from 10% to 37% of energy based on climate [15]. To scrutinize the advantage of 

augmenting indoor thermostat heating and cooling setpoints to save energy in the office building. Holy et, 

conducted a simulation hilled in six offices on seven climate zones concerning indoor satisfaction level 

temperature by expanding the cooling setpoint and decreasing the heating setpoint autonomously. By raising 

the cooling setpoint from 22.2 to 25°C temperature, they demonstrated 29% savings of cooling energy [16].  

Other researchers’ strategies depend on occupancy measurement. An adoption Hvac strategy 

depends on the indoor occupancy rate (R) shows a 15% reduction in energy consumption when preventing 

the air-conditioning system from contributing surplus cold air to the occupied space when the number of 

occupants is lacking [17]. Nikdel et al. in small office building models based on American society of heating, 

refrigerating and air-conditioning engineers (ASHRAE) standard, investigates constant temperature, 

programmable thermostat and setpoint temperature based on the existence of at least one occupant merged 

with occupancy scheduled in five different climates zones. Results elucidated that occupancy-based scenarios 

consume minimal energy than the remaining scenarios [18].  

Accordingly, most of the strategies followed to reduce the cooling energy consumed in buildings, 

considered to be fixed, do not interact with changes within the building environment, and often lack the 

combination of both temperature setpoint and occupancy information. Therefore, relying on the occupancy-

based strategy requires new strategies, especially to reach the changing patterns of occupancy continuously. 

And differ from occupancy-based schedule strategies or obtaining occupancy information using the 

traditional sensor methods to ensure the accuracy of the occupancy information that considerably helps in 

reducing the cooling energy consumed. 

The contribution of this paper innovated a model that embraces an effective strategy to reduce 

cooling energy consumption based on occupancy-based combined with a temperature setpoint strategy. The 

adopted model was established on an automatic AC control strategy dependent on real-time streaming data of 

the occupancy information using an improved YOLO human detection algorithm combined with a 25℃ 

temperature setpoint control. The proposed model aims to spare much cooling energy consumed as far as 

reasonably expected of buildings. 
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2. RESEARCH METHOD  

To show the effectiveness of occupancy-based increasing of setpoint temperature on the energy and 

the consumption of the building. A sample model of a room was taken and simulation results concluded. 

 

2.1.  Model architecture 

Building architecture: The applied model is carried out into a typical Egyptian single-family 

residence in a 6-floor building based on Egyptian code to improve energy efficiency in residential buildings 

which were presented by Housing and Building National Research Centre in Egypt in 2005 based on 

international standards (ASHRAE 90.1) [19], [20].  

Hardware architecture: To finish the objectives of introducing this model and get some significant 

data, some inexpensive cost hardware embraced: 

 Arduino Uno/1.0 board. 

 Sensors current transformer-13 (SCT-013) to measure consumed cooling energy. 

 Infrared (IR) emitter sensor to control AC. 

 Detection humidity temperature (DHT11) sensor to measure temperature degrees.  

 Camera with night vision capability. 

Temperature control: The climate of Egypt is considered warm in the summer season and 

susceptible to changes, with continuing to increase the proportions of temperature, the thermal conditions 

suitable for living and practicing various work activities in buildings will be imbalanced [21]. Many 

researchers have embraced comfortable temperature regulation of the human, the recommended cooling 

temperatures, taking into account the nature of the room activity, range from 20.5°C to 24.9°C [22]. 

Accordingly, the cooling temperature set-point was determined to be 25°C throughout the proposed model 

implementation phases. The proposed model was previewed in the summer season between July and August 

to note the amount of energy consumed in cooling that can be saved. 

Human detection based on deep learning algorithms: Researchers have adopted many devices such 

as passive infrared (PIR) sensor, ultrasonic sensor, sound sensor, smart device-based sensing, and camera 

sensor. For improving the performance of applications that require accurate occupancy information to 

improve energy consumption rates. Cameras are significant devices that answer their presence inside any 

building, conferring much important information such as presence, location, and tracking. Thereof, giving 

sufficient information about zone occupancy assistance in controlling heating and cooling devices [23], [24]. 

One of the key challenges in this work is to identify a suitable object detection algorithm for the indoor 

environment to detect the presence of humans.  

A significant improvement in methods of object detection appeared based on the use of convolution 

neural networks (CNNs) in recent years. Newfangled algorithms concerning object detection which depend 

on CNNs such as faster R-CNN [25], single shot multibox detector (SSD) [26], and you only look once 

(YOLO) [27]. With the aim of precisely adjudicate these algorithms, the working environment for all of them 

is standardized, is being as; graphics processing unit (GPU) is Nvidia Tesla K80, RAM of GPU is 12 GB, 

random access memory (RAM) is 13 GB, and operating system is Ubuntu 18.04.3 LTS. This work focus is 

on the test time performance and mean average precision (mAP) of these algorithms. Figure 1 describes the 

framework of SSD and faster regional convolutional neural network (RCNN) algorithms [28], [29].  
 

 

 

 
  

(a) (b) 
  

Figure 1. SSD and faster RCNN frameworks description, (a) SSD framework [28], (b) Faster RCNN 

framework [29] 
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SSD technique utilizes a single feed-forward convolutional network to directly predict classes an 

anchor offsets, dispensing with a second stage per-proposal classification operation. At variance with faster-

RCNN object detection occurs in two stages: 1) Region proposal network and 2) region of interest (ROI) 

pooling layer, as shown in Figure 1. YOLO proposes the essential endowment for real-time detection of full 

images and webcam. It is at odds with the region-based algorithms. Therefore, a single CNN determines the 

bounding boxes with their class probabilities [28], [30]. Table 1 illustrates the test time performance, mean 

average precision (mAP), and frame per second (FPS) of the object detection algorithms. 

According to the evaluation mentioned in Table 1, it is observed that YOLOv3 is very fast, 

possesses a standard precision with the best two-phase identifiers. The aforementioned makes it a remarkable 

object detection model for our proposed model. To achieve the best result in detecting the human factor using 

YOLO, a pre-processing step was combined to improve the detection results. 

 

 

Table 1. Comparison between faster-RCNN, SSD, and YOLOv3 algorithms 
Method Train Test mAP FPS Inference time (ms) 

Faster-RCNN COCO Trainval Test-dev 55.7 5 200 
SSD COCO Trainval Test-dev 50.4 8 125 

YOLO  COCO Trainval Test-dev 57.9 20 51 

 

 

When starting work with YOLO, it was noted that the rate of detection of the human factor in which 

video was captured in night vision at some angles is helpless and in some cases lacking. Therefore, some 

adjustments have to be made to get the best results. With experience, it was observed that the application of 

pre-processing techniques for the captured image in night vision mode considerably improved the ratio of 

detection of the human factor using YOLO. Especially in those pictures where the human is located in a 

light-poor area. To test the application of the pre-processing algorithms, the following set of steps were 

applied: 

 Step 1: The video split at a rate of 3 frames per second. 

 Step 2: Test and record the human detection rate using YOLO. 

 Step 3: Pre-processing algorithms will be used made up of two phases, 

a. Apply the dehazing algorithm on the image. 

b. Apply histogram equalization algorithm on dehazed image. 

To clarify the previous steps, the video in the night lighting split into a set of frames with a rate of 3 

frames per second to show the difference in movement during one second. Subsequently, the human 

detection rate on the tested image using YOLO without any advance adjustment to the image is recorded. As 

illustrated by pre-processing algorithms used, the first pre-processing step is to apply the dehazing algorithm 

on the image to restore illumination. In the second pre-processing step, the resulted image of applying the 

dehazing algorithm applied to histogram equalization to adjust image contrast.  

After completing the previous steps, the image is ready to reveal the human factor present in it using 

YOLO. The results are distinctly illustrated in the RESULT AND DISCUSSION section. Consequently, the 

proposed model constructed on the above-mentioned architecture model, and this model is composed of 

combination phases illustrated in the following sections.  

 

2.2.  Model phases 

Phase one: This phase target enumerating the actual electric energy utilized by the air conditioner of 

the cooling aforementioned area without any conditions according to the normal use of the room's occupants. 

The cooling energy used by AC was measured for 20 days, measuring every day’s cooling consumption. 

Throughout the day, six different hours manipulated energy measured, adjusting air conditioner temperature 

to 25 ℃. Employing an energy meter sensor to infer the expended energy from air conditioner excluding 

remain devices, as shown in Figure 2. 

 Step 1: Six separate hours were specified throughout the day. 

 Step 2: An energy meter installed.  

 Step 3: Record the maximum and minimum temperature for the day. 

 Step 4: A temperature sensor is used to measure hourly temperature in six specified hours. 

 Step 5: Adjust the air conditioning cooling temperature to 25° C.  

 Step 6: Record the amount of cooling energy consumed via:  

a. Consumed energy per specified hour. 

b. Energy consumption is measured throughout the day by adding up the consumption of the specified six 

hours. 
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 Step 7: Repeat Step 3 to step 6 for 20 days. 

 Step 8: Calculate cooling power consumption during the 20 days. 

To quantify energy utilized and due to temperature variation, all day long six separate hours were 

specified throughout the day, 3 hours in the morning, and 3 hours in the evening with a time difference 

between each hour. In which the measurement captures the difference in the energy spent in different 

temperatures throughout the day. An energy meter is established to measure the electricity consumption of 

the air conditioning if activated through the specified hours. Then, air conditioning operating cooling 

temperature is installed at 25°C due to proving that the efficiency of the air conditioner increases at this 

degree, and it is the ideal temperature reducing the energy consumption of refrigeration and appropriate for 

room occupants. Simultaneously, the amount of cooling energy expended per hour is recorded, from which 

the energy is calculated over six hours per day. Consequently, phase 2 was established to compare its results 

with phase 1, and to observe the variation in the amount of cooling energy consumed. 

Phase 2: This phase aims to reduce cooling energy in architecture identical to phase one and engross 

in 20 days. Established on an automatic air conditioner control compact with cooling temperature setpoint at 

25℃. Controlling is based on the human detection system of the room based on streaming data using a live 

broadcast camera, thus image analysis to infer the presence of human factors, see Figure 2. Accordingly, give 

a decision to operate the air conditioning. The proposed model reduced cooling energy by 59%, as illustrated 

in the result section. 

 Step 1: Six separate hours were specified throughout the day.  

 Step 2: An energy meter installed. 

 Step 3: Record the maximum and minimum temperature for the day. 

 Step 4: A temperature sensor is used to measure the hourly temperature in the specified hours. 

 Step 5: A camera installed, navigating the adopted space.  

 Step 6: The system starts to operate automatically at every specified hour. 

 Step 7: Human detection activated, if:  

a. Occupant detected, then go to step 8.  

b. Occupant not detected, and then sends turn-off signal to AC. 

 Step 8: Occupant presence state activated, then measure room temperature if:  
a. Temperature <25℃, then AC off. 

b. Temperature > 25℃, then send turn- on signal to AC. 

 Step 9: Record room occupant entry and exit times. 

 Step 10: Record the amount of cooling energy consumed via:  

a. Consumed energy per specified hour. 

b. Calculate energy consumption throughout the day of the specified six hours. 

 Step 11: Repeat step 3 to step 10 for 20 days. 

 Step 12: Calculate cooling power consumption during the 20 days. 

 

 

 
 

Figure 2. Proposed model, (a) Phase 1, (b) Phase 2 
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As previously mentioned, the hours selected as the hours specified in phase 1 with the same 

distribution. To perceive the variation in electricity consumption under applying the system. An energy meter 

is installed to measure the electricity consumption of the air conditioning if it turned on. Supplementary, a 

camera is installed to navigating the adopted space for observing the presence of the human factor. After 

setting all the devices, the system starts to operate automatically at every specified hour. Posteriorly, the 

camera is activated to observe any occupant in a room after starting the system operation interacting with AC 

automatic control.  

The occupant detection state determines the nature of the system operation. The occupant presence 

active state requires the system to measure room temperature to operate one of two decisions; if the measured 

temperature is greater than 25℃, the system sends a turn-on signal to the AC. Otherwise, if the measured 

temperature is less than 25℃, the AC remains off unless the occupant of the room operates it manually. 

Room occupant entry and exit times were recorded for every specified hour. The number of entry times has 

been calculated for room occupant, at that point estimating the all-out time spent in the room during each 

hour. To perceive the full duration of the air conditioner operation and remark its impact on the spent cooling 

energy. After adjusting all the necessary environment to implement the proposed model and record the 

required data of phase 2. Comparison of the results of phase 1 and phase 2 was addressed, the proposed 

model reduced cooling energy by 59%, which are detailed illustrated in the results and discussion section. 

 

 

3. RESULT AND DISCUSSION  

The effectiveness of the proposed model that employed occupancy-based combined with a 

temperature setpoint strategy presented in this section, illustrating each phase results and the results of 

applying human detection using improved YOLO. 

 

3.1.  Proposed model 
The proposed model results were provided over twenty days in Table 2. The results are separated 

into two stages, stage one introduced results for expended cooling energy with no conditions showing that 

total cooling energy consumed in six hours per day ranges from 8.9 to 17.03 kWh. In the wake of 

ascertaining the energy expended for twenty days, it is found that the aggregate sum of cooling energy 

276.01 kWh in phase one. The energy employed under model conditions is compared to estimate potential 

savings associated with occupancy-based control merged with the temperature setpoint. 

 

 

Table 2. Phase 1 and phase 2 daily cooling energy consumption illustrating energy savings 

Days 
Phase 1 

Cooling energy consumed Per Day (kWh) 

Phase 2 

Cooling energy consumed Per Day (kWh) 
Energy Savings(kWh) 

1 10.12 4.5 5.62 
2 11.09 7.45 3.64 

3 8.90 2.71 6.19 

4 11.88 7 4.88 
5 12 5.06 6.94 

6 15.38 5.88 9.5 

7 12.75 6.31 6.44 
8 12.74 5.25 7.49 

9 14.57 5.62 8.95 

10 15.27 6.95 8.32 

11 17.03 8.25 8.78 

12 16.83 4.88 11.95 

13 15.97 5.66 10.31 
14 16.04 4.68 11.36 

15 16.09 5.97 10.12 

16 13.19 5.32 7.87 
17 15.23 4.06 11.17 

18 12.54 5.11 7.43 

19 15.33 7.54 7.79 
20 13.06 4.25 8.81 

Total 276.01 112.45 163.56 

 

 

The results showed that cooling energy decreases by more than anticipated as the amount of reduced 

energy reached 59% savings as illustrated in Figure 3. Cooling energy consumed in each day of phase 2 

ranged from 4.06 kWh to 8.25 kWh and the aggregate sum of cooling energy 112.45 kWh. To better clarify 

the results, Table 3 and Table 4 illustrate cooling energy expended in each hour specified in the post 
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Meridiem and Ante Meridiem periods over twenty days. The listed results exhibit cooling energy in phase 1 

alongside phase 2 day by day, besides the amount of energy saving among the two phases. 

 

 

 
 

Figure 3. Variance among phase 1 and phase 2 results 

 

 

Table 3. Cooling energy consumed during post meridiem specified periods showing energy savings.  

*None means no process exists in that period 

Day 

Hour 1 Hour 2 Hour 3 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

Energy 

Savings 

(kWh) 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

Energy 

Savings 

(kWh) 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

Energy 

Savings 

(kWh) 

1 2.86 1.63 1.23 2.60 0.83 1.77 2.47 1.12 1.35 

2 2.54 0.88 1.66 2.40 2.11 0.29 2.27 1.13 1.14 
3 2.50 2.63 - 2.45 1.38 1.07 None 2.40 - 

4 2.60 0.89 1.71 2.51 1.26 1.25 None None - 

5 2.75 1.93 0.82 2.53 1.25 1.28 2.38 None 2.38 
6 2.89 None 2.89 2.74 None 2.74 2.55 2.25 0.3 

7 2.96 1.92 1.04 2.74 2.92 - 2.54 2.22 0.32 

8 2.93 2.36 0.57 2.72 2.85 - 2.51 0.39 2.12 
9 2.77 0.63 2.14 2.85 1.40 1.45 2.65 1.62 1.03 

10 2.77 1.82 0.95 2.67 1.84 0.83 2.52 0.67 1.85 

11 3.14 2.54 0.6 2.95 1.05 1.9 2.92 1.65 1.27 
12 3.27 0.69 2.58 3.10 1.28 1.82 2.85 None 2.85 

13 3.16 1.17 1.99 2.88 1.94 0.94 2.64 None 2.64 

14 3.02 1.78 1.24 2.87 1.34 1.53 2.63 1.08 1.55 
15 3.17 1.17 2 3.05 1.30 1.75 2.60 0.76 1.84 

16 3.03 1.25 1.78 2.88 2.45 0.43 None None - 

17 2.90 1.14 1.76 2.79 1.66 1.13 2.45 1.26 1.19 
18 None 1.78 - 2.70 1.67 1.03 2.50 1.74 0.76 

19 2.85 2.14 0.71 2.69 2.63 0.06 2.59 0.67 1.92 

20 3.01 2.08 0.93 2.90 1.70 1.2 None 2.11 - 
Total 52.62 26.02 26.6 49.56 27.09 22.47 41.07 16.56 24.51 

 

 

Subsequently, the total cooling energy for both phases one and two were calculated, and the total 

energy saved between the use of the two phases was calculated for each hour. For the post Meridiem period, 

total energy utilized for hours 1, 2, and 3 through phase 1 showing the results 52.62, 49.56, and 41.07 kWh in 

order. In contradiction to the results of phase 2, showing 26.02, 27.09, and 16.56 kWh. Consequently, 

remarkable results have emerged for saved wasted energy on about 26.6, 22.47, and 24.51 kWh. 

Meantime the same lines to clarify Ante Meridiem, total energy consumed for hours 4, 5, and 6 

through phase 1 showing the results 42.3, 47.17 and 43.29 kWh in order. Differencing with the results of 

phase 2, showing 21.99, 14.15, and 6.29 kWh. As remarked, the results for saved cooling energy about 20.31, 

32.67, and 37 kWh. Then Figure 4 illustrates the diversity in cooling energy consumption between phase 1 

and phase 2 in each specified hour. From this, the results show the extend of savings upon depending the 

proposed strategy.  
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Table 4. Cooling energy consumed during ante meridiem specified periods showing energy savings 

* NO indicates that a human detection occurs in that period but AC is not manually opened 

Day 

Hour 4 Hour 5 Hour 6 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

Energy 

Savings 

(kWh) 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

Energy 

Savings 

(kWh) 

Phase 1 
Cooling 

energy 

consumed 
(kWh) 

Phase2 
Cooling 

energy 

consumed 
(kWh) 

 

Energy 
Savings 

(kWh) 

1 2.26 2.32 - 2.19 0.92 1.27 2.04 2.38 - 

2 2.10 2.40 - 2.01 1.70 0.31 1.87 1.63 0.24 
3 2.18 1.14 1.04 2.15 None 2.15 2.12 0.19 1.93 

4 2.28 2.27 0.01 2.27 1.06 1.21 2.22 1.52 0.7 

5 2.34 2.39 - 2.17 1.44 0.73 2.17 0.44 1.73 
6 2.52 1.62 0.9 2.38 1.67 0.71 2.30 0.34 1.96 

7 2.53 None 2.53 2.36 2.17 0.19 2.36 None 2.36 

8 2.50 1.30 1.2 2.40 1.20 1.2 2.40 None 2.4 
9 2.50 1.97 0.53 2.40 None 2.4 1.40 NO 1.4 

10 2.50 1.58 0.92 2.41 1.04 1.37 2.40 NO 2.4 

11 2.76 1.28 1.48 2.66 0.54 2.12 2.60 1.19 1.41 
12 2.65 2.10 0.55 2.54 0.81 1.73 2.42 NO 2.42 

13 2.47 1.26 1.21 2.45 0.31 2.14 2.37 0.98 1.39 

14 2.56 0.48 2.08 2.43 None 2.43 2.53 NO 2.53 
15 2.53 1.57 0.96 2.31 1.17 1.14 2.43 NO 2.43 

16 2.53 1.62 0.91 2.36 NO 2.36 2.39 None 2.39 

17 2.40 None 2.4 2.39 NO 2.39 2.30 None 2.3 
18 2.52 1.70 0.82 2.47 NO 2.47 2.35 NO 2.35 

19 2.52 2.10 0.42 2.29 NO 2.29 2.39 NO 2.39 

20 2.35 None 2.35 2.53 0.47 2.06 2.27 None 2.27 
Total 42.3 21.99 20.31 47.17 14.5 32.67 43.29 6.29 37 

 

 

   
   

(a) (b) (c) 

 

   
   

(d) (e) (f) 

 

Figure 4. Phase 1 and phase 2 daily cooling energy consumption for each specified hour, (a) Hour 1,  

(b) Hour 2, (c) Hour 3, (d) Hour 4, (e) Hour 5, (f) Hour 6 

 

 

3.2.  Human detection based on improved YOLO 

To obtain the best results in detecting the presence of the human factor using YOLO, a pre-

processing step was added to improve the detection results. Experience has shown that the pre-processing 
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step before the direct use of YOLO enhances the required image information. The results showed that the 

average YOLO detection reaches 71.17%, with the reverse of improved YOLO reaches 92.37%. The average 

improvement of use these algorithms on the image before the detection stage of the human factor using 

YOLOV3 is 21.2%, as shown in Figure 5. 

 

 

 
 

Figure 5. Comparison between YOLOv3 and improved YOLOv3 detection 

 

 

4. CONCLUSION  

This research built an occupancy-based model combined with a constant temperature setpoint for 

reducing cooling energy in buildings. This strategy employing human detection for detecting humans using 

Improved YOLO consolidated with 25℃ as a temperature setpoint. It was implemented in two phases in a 

single room of an Egyptian single-family residence. The strategy is performed in two different phases to 

investigate the cooling energy consumed with and without the applied conditions for this strategy. The 

findings of the proposed model effectively reduce cooling energy under built model conditions showed that 

cooling energy decreases by more than anticipated as the amount of lessened energy reached 59% savings. 

To make this strategy deliver the most dependable results, its refined human detection, the detection 

measurement of YOLO was improved by applying pre-processing algorithms to reach an average 

improvement of 21.2%. 
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