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Article Info ABSTRACT
Article history: The morphological alterations of the retinal blood vessels are important indicators that
Received Apr 6, 2021 can be utilized to diagnose and track the progression of a number of disorders. Dia-

betic retinopathy (DR) is a condition that destroys the retina and is the major cause of
visual loss caused by high blood glucose levels. One of the retinal objects impacted by
DR is the blood vessel. By regularly monitoring changes in the retinal blood vessels,
severe DR or even vision loss can be avoided. The condition of the blood vessel can be
Keywords: examined by segmenting the blood vessel area from a digital fundus image. Segment-
ing retinal blood vessels manually, on the other hand, is time-consuming and tedious,
and especially when dealing with a high number of photographs. As a result, a system
) for segmenting retinal blood vessels automatically is crucial. Furthermore, methods
Retina for automatically segmenting retinal blood vessels are useful for person authentica-
tion systems based on the retina. Blood vessel segmentation can be accomplished in a
number of ways. Based on the prior line operator method, an improved version of the
line operator method is proposed in this paper. The proposed method demonstrates an
improvement in accuracy over the previous method, with an accuracy of 94.61%.
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1. INTRODUCTION

A number of metabolic diseases such as hypertension and diabetes mellitus alter several objects in
human retina, one of which is the blood vessels [1]]. If the conditions remain, the alteration will also keep
taking place over time. Thus, monitoring the patient’s condition is crucial so that examination and treatment
can be performed effectively to avoid the loss of vision. In fact, diabetic retinopathy is the primary cause of
vision disorder working-age people in the world [2]].

Monitoring retinal vessel blood vessel is done by analyzing the segmented fundus image in the form
of binary images which separate the blood vessel pixels from background pixels. On the other hand, per-
forming manual segmentation is exhausting and time-consuming, particularly when it involves large number
of patients. It also demands specific expertise and skill. Besides, manual segmentation can suffer from human
subjectivity where the segmentation results are different depending on the operator which can lead to ambi-
guity [2]]. Therefore, automatic retinal blood vessel segmentation is essential for the monitoring process so
that the time consumption can be significantly reduced while maintaining accurate segmentation results [3].
Automatic segmentation is advantegous for the diagnosis of numerous diseases, such as diabetic retinopathy
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(DR), hypertensive retinopathy (HR), malaria retinopathy (MR), and glaucoma [4]. In addition, retinal blood
vessel segmentation can be useful in a person identification system for various reasons: every eye has unique
blood vessel pattern, the retina is stable in someone’s lifetime, and it produces the best accuracy [3].

There exist different blood vessel segmentation methods in the literature which can be classified as
supervised and unsupervised. Supervised methods works as binary classifiers which aim to classify each pixel
to blood vessel or background [6]-[9]. Deep learning-based methods have also been proposed in numer-
ous studies [10]—[15]. On the other hand, unsupervised methods work without involving supervised methods
nor any training data. The techniques involve filters [2], [16]], operators [4]], [[17]-[19], and region grow-
ing [20]-[23].

False positives have been the focus problem in several studies. A multi-scale approach is suggested to
omit false positive pixels near large blood vessels [18]. A method for detecting false positive pixels around the
retinal optic disks is proposed [19]. The pixels can then be excluded from the segmentation result in order to
improve the segmentation accuracy. In this study, another technique to detect false positive pixels is proposed.
Besides, a number of supervised and unsupervised methods are employed. The proposed method can be utilized
as a post-processing step to improve the segmentation results of other blood vessel segmentation methods.

This paper is organized as follows. The methods used in this study is explained in section 2. The
results of the experiment is explained and discussed in section 3. Finally, the conclusion of this research is
given in section 4.

2. METHODS
2.1. Pre-processing

Due to several conditions in retinal fundus images, some pre-processing steps are necessary. It a
common practice in performing retinal blood vessel segmentation to split the red, green, and blue (RGB) color
channel and obtain only the green channel and then invert it [17]-[19]. As demonstrated in Figure 1(a), the
green channel has higher contrast and less noise compared to the red channel Figure 1(b) and blue channel
Figure 1(c). Besides, the green channel also has better contrast than the grayscale image obtained by averaging
all the channels Figure 1(d).
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Figure 1. Retinal fundus image in green channel, (b) red channel, (c) blue channel, and (d) the average of
RGB channels
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2.2. Line operator

The aim of the line operator method is to detect and enhance linear structures. It was first employed in
[24]) to detect linear structures in mammographic images then adopted in [17] to detect blood vessel in retinal
fundus images. In this study, the values obtained using this method is used as one of the features for pixel
classification.

The line operator’s objective is to find one line which best align with the blood vessel. For example,
consider an image containing one blood vessel in Figure[2] Two lines, a and b, which is of length W pixels, are
put on that image which are centered at the middle of the blood vessel. Between the two lines, line a is more
desired than line b since it perfectly aligns with the blood vessel. In order to choose that line, the average values
are evaluated from the pixels that each line passes through. No pixel interpolation mechanism is involved in
this process. Practically, the pixel coordinates can be collected using Bresenham algorithm. Then one line is
selected which yields the greatest average value. Since in that image the blood vessels have higher intensity
than the background, line a will result in higher average value than line b. It is because there are some parts of
line b which pass through the background area while all part of line a is contained in the blood vessel.
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Figure 2. Line operator

To deal with blood vessels with various orientations, a number of lines with different orientations are
used. The angular resolution is set to 15° so that at each pixel, 12 lines are operated, and as illustrated in Figure
Then the line with the highest average value 1)V, is chosen among those 12 lines. Moreover, the average
values of the pixels located inside the window which contains the 12 lines are evaluated as well, denoted as
W g+ Lastly, IW is subtracted from IV g resulting in the line strength value of the pixel, denoted as Lyy:

Lw =1, — Iy, )
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Figure 3. Line orientations

As suggested in [17], the highest segmentation performance is obtained when the length of the line is
set to 15 pixels. Similarly, the same length of the line is also suggested in [[18] since the blood vessel width
are generally 7 to 8 pixels in the digital retinal images for vessel extraction (DRIVE) dataset. Thus, the same
line length is used in this study. The window, along with the 12 rotating lines, are moved to the next pixel to
compute the next line strength values. In fact, the line operator method operates at every pixel in the field of
view. After processing all pixels, the pixels which belong to blood vessel will have high line strength values,
whereas those which belong to background will have low line strength values. That way, blood vessel pixels
can be differentiated from the background. Another advantage of this method is that the uneven background
intensity in the image will be more uniform.

2.3. Multi-scale line operator

The line operator explained in the previous section is able to detect and enhance linear structures of
blood vessels as well as making the background intensity more even. The line strength value allows us to
differentiate between blood vessels and other objects. However, it fails to perform well in some parts of retinal
images. Figure 4(a) illustrate the situation located near large blood vessels. Similar situation also happen
between two large blood vessels. Thresholding the image results in Figure 4(b) where a number of pixels in
those areas are incorrectly recognized as vessel pixels, appearing as small blobs of pixels.

Figure [5] explains why these conditions happen when two lines, a and b are positioned near strong
blood vessels. In condition a, the chosen line (i.e. the line with the highest average value) is the one which is
perpendicular with the blood vessels. It is because it is the line with the most overlapping part with the blood
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vessel. As a consequence, the pixels in the center of these lines result in high line strength values and thus
classified as blood vessel pixels. A similar condition occurs in b where a significant part of the line overlaps
with the blood vessel, resulting in strong line strength values. To overcome this misclassification problem,
multiple lines with different lengths L are used in a single window of size W [18]. The L value are varied
between 1 and the width of the window W (1 < L < W).

ME =18 1V )
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Figure 4. A drawback of the single-scale line operator (a) high response values near large blood vessels and
(b) the result of thresholding image
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Figure 5. Situations causing false positive pixels

With different L values, each pixel will have several number of line strength values. Those values are
then combined, resulting in the one single value M ,,p:

1
M eomp = ME +1
comb ng — 1 (; w + g) (3)

This mechanism is able to remove false positive pixels explained previously, as demonstrated in Figure[6] This
can be achieved because the combination of the line strength values is able to reduce the line strength values of
the pixels located near strong blood vessels.

Figure 6. The result of the multi-scale line operator which removes false positive pixels

2.4. Optic disk segmentation
Despite the success of the multi-scale line operator, yet another false positive problem occurs in some
parts of the retinal image, and specifically near the retinal optic disk. An optic disk is an object in the retina

Retinal blood vessel segmentation using multiple line operator-based methods (Randy Cahya Wihandika)



1700 ) ISSN: 2302-9285

where the nerves are located and connect to the brain, appearing as a bright circular blob in the fundus image.
It can be seen in the right-hand side of Figure[T} Applying the line operator method to images containing these
objects raises another false positive issue which can be seen in the red circle in Figure[7]

In order to deal with those false positive pixels, two points p and q are introduced which are placed
perpendicularly to the “winning” line of the line operator method [19]]. This is illustrated in Figure [§] The
absolute difference between pixel intensities in position p and ¢ is calculated, denoted as I th. Then it is
involved in the line strength value formula:

Ow =1V — Iggg — 1 4)

Figure 7. False positive pixels occurring around retinal optic disk
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Figure 8. The position of two additional points p and ¢ to detect optic disc pixels

The idea can be illustrated as shwon in. Consider the point located right at the edge of a retinal optic
disk depicted in Figure[9] Notice that the optic disk is in low intensity and other areas outside of it is in higher
intensity. Hence, the "winning” line for that point should be the one with vertical orientation since it should be
the only line which does not passes through the optic disk area (i.e. the low intensity area). For that vertical
line, p is positioned to the left of the line center, inside the optic disk (low intensity, and ¢ is positioned to
the right of the line center, outside the optic disk (high intensity). Therefore, the difference I th of intensity
between points p and g will be high. For other areas, p and ¢ do not have this significant difference and thus
) th) will be low. Hence, this mechanism can discriminate the pixels located at the edge of optic disks from
the pixels at other areas.

This improvement is capable of detecting false positive pixels around the retinal optic disks. This
image, which contains false positive pixels neighboring an optic disk, and is then subtracted from the resulting
segmentation image using other methods. This will discard the false positive pixels and improves the segmen-
tation performance. An example of this resulting image is given in Figure[T0]

Figure 9. I.llustration Of? sitgation ofa Figure 10. The result of eliminating false
point near an optic disk positive pixels surrounding an optic disk
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2.5. False positive detection

False positive pixels removal have been the focus of a number of studies, including this study. Specif-
ically, the proposed method in this study focuses on the pixels near blood vessels. The aim is to obtain a new
image which highlights the pixels around blood vessels. It can then be used to subtract from the resulting seg-
mentation image using other methods to improve the segmentation result. It is achieved by modifying the line
strength calculation by making it as low as possible. Recall (1) which indicates that one line with the highest
line average value is chosen. The proposed method modifies this formula by choosing the line which yields the
lowest line strength value I'V. | instead of the highest, thus giving:

min?®

Ky =1V —1W (5)

min avg

The underlying idea is explained as shown in. Consider Figure [IT which shows three situations from
three different points, a, b, and c. In a, the point under consideration is placed at the middle of a blood vessel.
Recall the blood vessels have high intensity and other areas have low intensity. Also recall that we look for the
line with the lowest line strength value IV, . Thus, lowest line strength value should be the one perpendicular
to the blood vessel. It is because it has the least part which overlaps with the blood vessel. But even the lowest
line strength value will still be quite high since the line has some overlapping part with the blood vessel. When
(5) is applied, the resulting Ky~ value will be near zero because the I, 4 Will also be high since it contains the
blood vessel.

The next point is b which is located close to the blood vessel. For that point, the line with the same
orientation as the blood vessel should yield the lowest line strength value. It is because it does not cross the
blood vessel at all. Hence, the lowest line strength value should be low. Since the window also include the
blood vessel (same as the window in a), the Ky value should be negative.

Now consider point ¢ which is situated in the background region with low intensity. Therefore, the
I}V in should be low for all lines in all orientations. And since the window does not contain any blood vessels,
the IV 4 should also be low. Hence, the Ky value should be roughly zero. This hypothesis is validated in the
next section.

a

—

b

|

Figure 11. Three distinct situations in a fundus image

2.6. Classification

The objective of the classification in segmentation is to assign each pixel into one of the two classes,
i.e. the blood vessel and the background. The features consist of i) the pre-processed green-channel intensity,
ii) the single-scale line strength, and iii) the multi-scale line strength. The values in each feature are normal-
ized prior to the classifier training process. The proposed method is applied to the resulting images from the
classification. Thus, the proposed method, that aims to remove false positive pixels, can be considered as the
post-processing method. Support vector machines (SVMs) with various kernels are utilized as the classification
methods. For the feature, 2,000 randomly-picked pixels from the foreground (blood vessel) and background in
each image are used.

3.  RESULTS AND DISCUSSION
3.1. Dataset

The publicly available DRIVE dataset [25] is used in this study to measure the performance of the
proposed method. The dataset contains 40 colored images which are divided into 20 train images and 20 test
images. All images are acquired at the field of view of 45° using Canon CRS5 non-mydriatic 3-charge-coupled
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device (3-CCD) camera and are in the resolution of 565x 584 pixels. All train and test images are in the color
depth of 8 bits for each channel stored in TIF format. The dataset includes one binary mask image in GIF
format for each train and test image which provide the field of view (FOV) of roughly 540 pixels in diameter.
The white area in the mask images represent the FOV. One binary ground truth image is provided for each of the
train images and two are provided for each of the test images. The ground truth images were created manually
by observers. The first ground truth images are used in the experiment. The white pixels in the ground truth
images denote the foreground (blood vessel).

3.2. Validation

To validate the idea of the proposed method described above, one point is taken from each condition a,
b, and c. Then the IV, . IV 4 and Ky values are investigated and shown in Table It can be observed that the
Ky value obtained from point b is negative while the value calculated from points a and c¢ are approximately
equal to zero. The values confirm the idea that it allows us to differentiate between areas near a blood vessel
and other areas. Figure [I2]depicts the resulting image after applying the proposed method. It can be inspected

that the pixels near the blood vessels have been detected and can be used to eliminate false positive pixels.

Table 1. The value taken from three different pixels
Point IV~ IV

min avg KW
a 110 112 =~ -1
b 131 131 =0
c 118 126 =~ -8

Figure 12. The result of false positive removal

3.3. Evaluation

The performance of the proposed method are evaluated in terms of accuracy, which is simply the
proportion of the number of correctly classified pixels and the total number of pixels. Table [2] presents the
comparison between the result of classification with and without the proposed method as the post-processing
phase. The result shown in Table 2] shows that the proposed method increases the accuracy, resulting in the
highest accuracy of 94.61% using the 9-degree polynomial SVM. It can also be seen that the accuracy values
do not vary significantly after the proposed method is applied. It demonstrates that the classification approach
is "stable” as it give similar results despite different classification methods. Figure [I3]shows the final result of
the segmentation. The image has been inverted for clarity.

However, there are several drawbacks of the proposed method where it fails to segment some parts
of the blood vessels. Figure [T4] demonstrates this situation which shows the original image, the ground truth
image, and the segmentation result. The pixels located in a fine blood vessel as well as those located in the
“tip” of some other vessels are ignored by the method. This occurs as a result of the thresholding step which
is applied after the line operator. Pixels situated in fine blood vessels will give low line strength values. As a
result, since the values are below the threshold value, they will be regarded as background pixels. Lowering the
threshold value, of course, cannot be the solution since it will produce a large number of false positive pixels
in other parts of the image.

Another failure is found around an optic disk, as depicted in Figure [T3] In this case, the optic disk
segmentation method is unsuccessful to detect the optic disk in some images. This is due to different brightness
of pixels around optic disks as well as their shapes and textures across different images. This happens only in
a few images which condition differs from the majority. A more careful preprocessing step and another optic
disk detection approach would probably improve this condition.
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Dataset quality can also lead to segmentation problems. Specifically, in some part of the dataset
used in this study, the color in the edge of the retinal images appears similar to blood vessels. Even though
the dataset provides mask images to mark the outer part of the retina, some mask images are not precisely
positioned. Therefore, in the preprocessing, the mask images have been contracted by 10 pixels to overcome
this. The line operator has also been designed not to process the outer part of the retina. However, the problem
still exists in several images, which is shown in Figure[T6] as false positives around the edged of the retina.

Table 2. Performance comparison

Method Without Proposed Method ~ With Proposed Method
Degree-3 Polynomial SVM 87.43% 94.34%
Degree-5 Polynomial SVM 88.39% 94.44%
Degree-7 Polynomial SVM 89.67% 94.59%
Degree-9 Polynomial SVM 90.05% 94.61%

Figure 13. The final segmentation result

| ‘d,fé \/Z

Figure 14. Segmentation failures in fine blood vessels

-

Figure 16. The edge of a retinal image which appearance is similar to a blood vessel
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4. CONCLUSION

In this study, a retinal blood vessel segmentation method which uses classification approach and rule-
based post-processing phase. Thus, it can be regarded as a combination of supervised and unsupervised tech-
niques. The features used for the classification are formed using line operator-based methods. The unsuper-
vised methods are used to remove false positive pixels which remain after the classification. The performance
is evaluated in terms of accuracy. The highest accuracy obtained is 94.61%. However, there are a number
of drawbacks found in the segmentation results, which is mainly caused by different condition of the images.
Therefore, as a future work, we plan to develop a mechanism to segment fine blood vessels and also putting
more work on the preprocessing to make the images more uniform in terms of brightness and color. This is
because a number of segmentation failures occur due to the unequal conditions of the images in the dataset.
In addition, a hemorrhage and exudate detection algorithm can also be beneficial in order to obtain better
segmentation results since hemorrhages and exudates exist in some images in the dataset.
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