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ABSTRACT

Non-orthogonal multiple access (NOMA) and full-duplex (FD) relaying communica-
tions are promising candidates for 5G cellular networks. In this paper, by exploit-
ing the impact of hardware impairment, we study FD NOMA communications with a
downlink scheme. In a group of two users, we find that the target rates and power allo-
cation strategies are main factors affecting the system performance metric. We derive
the closed-form formula of outage probability for two users. As main contribution,
numerical results are considered to illustrate the performance of the FD NOMA. We
also study the base station (BS) can adjust its transmit signal to noise ratio (SNR) to
achieve relevant outage probability in several scenarios.
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1. INTRODUCTION
As one of promising approach implemented in 5G systems, non-orthogonal multiple access (NOMA)

was introduced [1]. To provide massive connections, NOMA can rely on this first main benefit to further serve
services with high spectral efficiency and low latency. Those advances are urgent requirements to design new
generation of 5G and beyond wireless systems [2]. In NOMA, the multiple users can be shared same frequency
but different power levels are assigned to each user effectively. The signal detection technique is required at
receiver to extract information exactly with low error. How NOMA treats far users and near users to assign
power levels. Fortunately, by detecting the channel gains of different channels, suitable power coefficients
are assigned to users reasonably [3]–[5]. As interesting application of NOMA techniques, half-duplex relay
stations (RSs) have been studied in order to increase spatial diversity [6]–[13]. The benefit of relay can be
reported in [8], [10], and [11], since single relay is placed between transmitters and receivers. Nakagami-m
fading channels [8] and Rayleigh fading channels [11] are popular channel models deployed in the NOMA
system relying on a single amplify-and-forward (AF) relay, which outperform the orthogonal multiple access
(OMA) in terms of two system performance metrics (outage probability and throughput). Kader et al. in [10]
developed a network containing two sources, two destinations, and a relay to form the cooperative NOMA
with a half-duplex decode-and-forward (DF). They examined perfect and imperfect successive interference
cancellation (SIC) when they evaluated ergodic sum capacity.

As simpler approach, Liang et al. and Xu et al. in [14], [15] studied half-duplex (HD) relay-based
NOMA systems. Due to the requirement of additional time resources, HD NOMA just provides low spec-
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tral efficiency. Different from HD NOMA, full-duplex (FD) relay-based NOMA deploys the same frequency
channel to permit the relay to simultaneously receive and transmit signals and reduce such loss [16]–[19]. The
operation of FD benefits from advances of antenna isolation and cancellation of analog self-interference (SI)
at the FD relay. FD device-to-device assisted coop erative NOMA system was investigated [20] in which the
near user needs the FD relay to support transmission to the far user. Deng et al. [21] adopted Rician fading
channels for FD NOMA system by evaluating formulas of the outage probability and the ergodic rate under
imperfect conditions such as imperfect SIC and residual hardware impairments at transceivers [22] considered
the impact of imperfect SIC and residual inter-relay interference on a DF relaying based NOMA. The authors
developed for the considered framework over generalized Nakagami-m fading channels by evaluating outage
probability (OP), asymptotic OP, and ergodic rate. The work in [23] studied downlink NOMA short-packet
communication systems the average block error rate (BLER) by using stochastic geometry and Nakagami-m
fading channels. A few work consider FD at relay for NOMA, for example [24], which motives us to study
difference among two destinations under the impact of hardware impairments.

2. SYSTEM MODEL
A dual-hop NOMA transmission with the help of a FD relay (R) is studied, shown in Figure. 1. The

system model could be examined in the case of a base station (B) serves a dedicated group of two NOMA users.
In particular, we design a FD relay (R) which is intermediate device while two NOMA users including D1 and
D2. Those users are classified based on channel gains to determine the near and the far users. The FD relay is
equipped two antennas to transmit and receive signals simultaneously. To provide general channel model, all
the channels are assumed as Nakagami-m channels. We treat power coefficients ε1, ε2 to help the base station
B serving dedicated group of users and satisfying strict constraints ε1 + ε2 = 1 and ε1 > ε2.

D1

D2

Relay

Base Station

gf

g0
g1

g2

Figure 1. Considering hardware impairment aware FD NOMA system

The transmit signal processed at the base station B is
√
ε1PBx1 +

√
ε2PBx2, in which PB is the total

transmitted power of B; x1, x2 are denoted as signals of D1,D2.
The transmit signal from the base station is then processed at the FD relay. It is worth noting that FD

relay produces xgf as the loop self-interference which is expected to eliminate. In particular, we can compute
the received signal at the relay as:

yR = g0 (yB + ηS) + gfξ
(√

PRxgf + ηR

)
+ η0, (1)

where g0, gf are the channel coefficients of B → R and R → R links. ξ is denoted for HD/FD modes, i.e. ξ = 0

and ξ = 1 are known as HD and FD modes respectively. ηB ∼ Γ
(
0, κ2

BRPB|g0|2
)

, ηR ∼ Γ
(
0, κ2

gf
PR|gf |2

)
,

ηDi
∼ Γ

(
0, κ2

Di
PR|gi|2

)
, (i = 1, 2) represents noise distortion, η0 ∼ Γ (0,N0) denotes the additive white

Gaussian noise. κBR, κgf and κDi
, (i = 1, 2) are the levels of residual hardware impairments.
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The second hop signal processing is conducted based on channels gi which is refereed to links R →
Di. The NOMA power allocation need be adjusted for the second hop transmission, i.e. µ1, µ2 are allocated to
two signals of two users, those factors are satisfied µ1 + µ2 = 1 and µ1 > µ2.

The received signal at D1,D2 are given as:

yDi = gi

(√
µ1PRx1 +

√
µ2PRx2 + ηDi

)
+ η0, (2)

The two signals x1, x2 need be processed at the FD relay based on signal to interference plus noise
ratio (SINR) which can be computed by:

γx1,R =
ε1ρB|g0|2

(ε2 + κ2
BR) ρB|g0|

2
+ (1 + κ2

BR) ρRξ
2|gf |2 + 1

, (3)

and

γx2,R =
ε2ρB|g0|2

ρBκ2
BR|g0|

2
+ (1 + κ2

BR) ρRξ
2|gf |2 + ε1ρBhR + 1

, (4)

where ρB = PB

N0
, ρR = PR

N0
are the transmit SNR at B and R. hR ∼ Γ

(
0, ω|g0|2

)
caused by imperfect SIC

(ipSIC) and ω ∈ [0, 1).
After signals transmitted at the second hop transmission, the destination D2 need to know SINR as

below. In particular, D2 detects signal x1 as shown in:

γx1,D2
=

µ1ρR|g2|2

µ2ρR|g2|2 + ρRκ2
D2

|g2|2 + 1
. (5)

The first user D1 wants to detect signal x1, x2 respectively as shown in:

γx1,D1
=

µ1ρR|g1|2

µ2ρR|g1|2 + ρRκ2
D1

|g1|2 + 1
, (6)

and

γx2,D1 =
µ2ρR|g1|2

µ1ρRhRD1 + ρRκ2
D1

|g1|2 + 1
, (7)

where hRD1 ∼ Γ
(
0, ω|g1|2

)
.

The PDF of the Nakagami-m channel gain gk (k = 0, 1, 2, f) can be expressed as:

f|gk|2 (x) =
xmgk

−1

Γ (mgk)β
mgk
gk

e
− x

βgk , (8)

where βgk = λgk/mgk
is the mean value of gk denoted by |gk|2 ∼ Γ

(
mgk ,

λgk

mgk

)
. The CDF can be written by:

F|gk|2 (x) =1− 1

Γ (mgk)
Γ

(
mgi ,

x

βgk

)
= 1− e

− x
βgk

mgk
−1∑

n=0

xn

n!βn
gk

. (9)

3. PERFORMANCE ANALYSIS
3.1. Outage probability of D1

To evaluate system performance, the OP need be compute, the OP of D1 is defined as [19], [20].

OPD1
=Pr

(
min

(
γx1,R < γth

2 , γx2,R < γth
1

))
+ Pr

(
min

(
γx1,R ≥ γth

2 , γx2,R ≥ γth
1

)
,

min
(
γx1,D1 < γth

2 , γx2,D1 < γth
1

) )
= θ1 + θ2

(10)
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where the threshold SNRs are γth
1 = 2R1 − 1, γth

2 = 2R2 − 1.
Replacing the formulas (3), (4) into (10), we can calculate θ1 as shown in:

θ1
∆
=Pr

(
|g0|2 <

Φγth
2 |gf |2

φ1
+

γth
2

φ1
, |gf |2 < ∆1

)
+ Pr

(
|g0|2 <

Φγth
1 |gf |2

φ2
+

γth
1

φ2
, |gf |2 ≥ ∆1

)
= τ1 + τ2,

(11)

where φ1
∆
= ε1ρB −

(
ε2 + κ2

BR

)
ρBγ

th
2 , φ2

∆
= ε2ρB −

(
ε1ω + κ2

BR

)
ρBγ

th
1 , Φ ∆

=
(
1 + κ2

BR

)
ρRξ

2, ∆1
∆
=

γth
1 φ1−γth

2 φ2

Φγth
2 φ2−Φγth

1 φ1
and we can be calculated τ1, τ2 as:

τ1
∆
=Pr

(
|g0|2 <

Φγth
2 |gf |2

φ1
+

γth
2

φ1
, |gf |2 < ∆1

)

=

∆1∫
0

xmgf
−1

Γ
(
mgf

)
β
mgf
gf

e
− x

βgf dx−
mg0−1∑
n=0

∆1∫
0

(
Φγth

2 x

φ1
+

γth
2

φ1

)n

α1x
mgf

−1e−α2xdx

=
1

Γ
(
mgf

)γ (mgf ,
∆1

βgf

)
−

mg0−1∑
n=0

n∑
k=0

(
n
k

)(
γth
2

φ1

)n

α1α
−k−mgf

2 Φkγ
((
k +mgf

)
, α2∆1

)
.

(12)

In which, α1
∆
= e

−
γth
2

φ1βg0

n!βn
g0

Γ(mgf )β
mgf
gf

, α2
∆
=

Φγth
2

φ1βg0
+ 1

βgf
, α5

∆
= e

−
γth
1

φ2βg0

n!βn
g0

Γ(mgf )β
mgf
gf

, α6
∆
=

Φγth
1

φ2βg0
+ 1

βgf

and τ2 is computed by.

τ2
∆
=Pr

(
|g0|2 <

Φγth
1 |gf |2

φ2
+

γth
1

φ2
, |gf |2 ≥ ∆1

)

=

∞∫
∆1

xmgf
−1

Γ
(
mgf

)
β
mgf
gf

e
− x

βgf dx−
∞∫

∆1

mg0
−1∑

n=0

n∑
k=0

(
n
k

)(
γth
1

φ2

)n

α5Φ
kxk+mgf

−1e−α6xdx

= β
mgf
gf Γ

(
mgf ,

∆1

βgf

)
−

mg0−1∑
n=0

n∑
k=0

(
n
k

)(
γth
1

φ2

)n

α5α
−k−mgf

6 ΦkΓ
((
k +mgf

)
, α6∆1

)
.

(13)

Similarly θ1, θ2 can be calculated as shown in:

θ2
∆
=Pr

(
min

(
γx1,R ≥ γth

2 , γx2,R ≥ γth
1

))
Pr
(
min

(
γx1,D1 < γth

2 , γx2,D1 < γth
1

))
= τ3 × τ4.

(14)

We can calculate τ3 and τ4 as shown in:

τ3
∆
=1− Pr

(
|g0|2 < min

(
∆4γ

th
2

∆2
|gf |2 + γth

2

∆2
,
∆4γ

th
1

∆3
|gf |2 + γth

1

∆3

))
= 1−Ψ1 −Ψ2

(15)

where ∆2
∆
= ε1ρB −

(
ε2 + κ2

BR

)
ρBγ

th
2 , ∆3

∆
= ε2ρB − ρBκ

2
BRγ

th
1 − ε1ρBωγ

th
1 , ∆4

∆
=
(
1 + κ2

BR

)
ρRξ

2,
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α3
∆
=
(

γth
2

∆2

)n
e
−

γth
2

∆2βg0 ∆
k1
4

n!βn
g0

Γ(mgf )β
mgf
gf

, Θ ∆
=

∆2γ
th
1 −∆3γ

th
2

∆3∆4γth
2 −∆2∆4γth

1
, α4

∆
=

∆4γ
th
2

∆2βg0
+ 1

βgf
,

Ψ1
∆
=Pr

(
|g0|2 <

∆4γ
th
2

∆2
|gf |2 +

γth
2

∆2
, |gf |2 < Θ

)

=

Θ∫
0

xmgf
−1

Γ
(
mgf

)
β
mgf
gf

e
− x

βgf dx−
Θ∫
0

mg0
−1∑

n=0

n∑
k1

(
n
k1

)
α3x

k1+mgf
−1e−α4xdx

=
γ
(
mgf ,

Θ
βgf

)
Γ
(
mgf

) −
mg0

−1∑
n=0

n∑
k1

(
n
k1

)
α
−k1−mgf

4 α3γ
((
k1 +mgf

)
, α4Θ

)
,

(16)

Ψ2
∆
=Pr

(
|g0|2 <

∆4γ
th
1

∆3
|gff |2 +

γth
1

∆3
, |gf |2 ≥ Θ

)

=
Γ
(
mgf ,

Θ
βgf

)
Γ
(
mgf

) −
mg0−1∑
n=0

n∑
k1

(
n
k1

)(
γth
2

∆3

)n
∆k1

4 e
− γth

2
∆3βg0

n!βn
g0Γ

(
mgf

)
β
mgf
gf

× Γ

(
k1 +mgf ,

∆4γ
th
2 Θ

∆3βg0

+
Θ

βgf

)(
∆4γ

th
2

∆3βg0

+
1

βgf

)−k1−mgf

.

(17)

Then, τ4 can be expressed as:

τ4
∆
=Pr

(
min

(
µ1ρR|g1|2

µ2ρR|g1|2+ρRκ2
D1

|g1|2+1
< γth

2 , µ2ρR|g1|2

µ1ρRω|g1|2+ρRκ2
D1

|g1|2+1
< γth

1

))
= Pr

(
|g1|2 < min (∆5,∆6)

)
= 1− e

−min(∆5,∆6)
βg1

mg1
−1∑

n=0

(min (∆5,∆6))
n

n!βn
g1

.

(18)

with ∆5
∆
=

γth
2

µ1ρR−µ2ρRγth
2 −ρRκ2

D1
γth
2

, ∆6
∆
=

γth
1

µ2ρR−µ1ρRωγth
1 −ρRκ2

D1
γth
1

.

We have applied the formulas [25], (1.111), [25], (3.381.1), and [25], (3.381.3) in the calculation steps
above.

3.2. Outage probability of D2

The OP of D2 can be written as:

OPD2
=Pr

(
γx1,R < γth

2 , γx1,D2
< γth

2 , γx2,R < γth
1

)
= Pr

(
γx1,R < γth

2 , γx2,R < γth
1

)
× Pr

(
γx1,D2

< γth
2

)
= θ1 × θ3,

(19)

where θ1 was calculated in the previous section and afer substituting (3) into (19), θ3, we obtain:

θ3
∆
=Pr

(
|g2|2 <

γth
2

µ1ρR − µ2ρRγth
2 ρRκ2

D2
γth
2

)

= 1− e
− γth

2
µ1ρRβg1

−µ2ρRβg1
γth
2 −ρRκ2

D2
βg1

γth
2

mg1
−1∑

n=0

(
γth
2

µ1ρR−µ2ρRγth
2 −ρRκ2

D2
γth
2

)
n!βn

g1

n

.

(20)

Bulletin of Electr Eng & Inf, Vol. 11, No. 2, April 2022: 846-853



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 851

4. SIMULATION RESULTS

In this section, we assume that the levels of RHIs κ = κBR = κgf = κD1 = κD2 , the mean values
of channel power gains λg0 = λg2 , λg1 , λgf , the target rates of D1, D2 are respectively R1, R2, ω = 0.01
and power allocation coefficients ε1 = µ1, ε2 = µ2. The better quality of channels (higher m) leads to
improvement of OP performance for two users, shown in Figure 2. In addition, in Figure 3, higher requirement
of data rate R1, R2 results in worse OP performance. The reason is that in (10), OP depends on the target rates.

We then see the impact of level of self-interference channel at the relay on OP in Figure 4 performance.
λgf = 0.1 is reported as the best case for two users. The difference among two users is decided by different
power allocation factor assigned. The impact of hardware impairment can be observed in Figure 5. Less impact
of hardware impairment κ = 0.001 is the best OP performance.
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-2

10
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10
0

Figure 2. Outage probability versus transmit SNR (ρ)
with different m with R1 = 2 (bits/s/Hz), R2 = 1

(bits/s/Hz), ε1 = µ1 = 0.6, κ = 0.05, λg0 = λg2 = 8,
λg1 = 1, λgf = 0.5
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Figure 3. Outage probability versus transmit signal to
noise ratio (SNR) (ρ) with different target rates,

ε1 = µ1 = 0.7, κ = 0.05, λg0 = λg2 = 5, λg1 = 1,
λgf = 0.5,m = 2
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Figure 4. Outage probability versus transmit SNR (ρ)
with different of λgf , R1 = 0.5 (bits/s/Hz), R2 = 0.5

(bits/s/Hz), λg0 = λg2 = 5, λg1 = 1, m = 3,
ε1 = µ1 = 0.6, κ = 0.01
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Figure 5. Outage probability versus transmit SNR (ρ)
with different of κ, R1 = 2 (bits/s/Hz), R2 = 1

(bits/s/Hz), ε1 = µ1 = 0.66, λg0 = λg2 = 8, λg1 = 1,
λgf = 0.5,m = 2

Hardware impairments aware full-duplex non-orthogonal multiple access networks over ... (Dinh-Thuan Do)



852 ❒ ISSN: 2302-9285

5. CONCLUSION
In this article, a downlink FD NOMA system was studied under the impact of hardware impairment.

To illustrate advantage of NOMA scheme, the closed-form expressions of outage probability were provided.
Numerical results were presented to corroborate the theoretical analysis, demonstrating that the quality of
channel, level of hardware noise yield significant performance gains over Nakagami-m fading. Moreover, all
the results showed that the system performance is limited by the target rates. NOMA with more users can be
addressed in the future work.
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