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 This paper presents an optimal bandwidth allocation method for a networked 

control system (NCS) which includes time-driven sensor, event-driven 

controller and random channels. A hidden markov model (HMM) with a 

discretized state space is formulated for the random traffic to predict the 

network states using a suitable data window. Network bandwidth is allocated 

based on the predicted traffic state subject to bounds on the deterministic 

traffic that guarantee acceptable NCS performance and do not exceed 

hardware limitations. Bandwidth allocation uses 𝑙1 minimization of unmet 

bandwidth demand. A stability condition is derived for a variable but 

bounded sampling period interval. Computer simulation results show the 

effect of varying the number of discrete states for the HMM and the window 

width on bandwidth allocation. The results compare favorably with a 

published approach based on fuzzy logic. 
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1. INTRODUCTION  

Maximizing data flow is critical in networked control systems (NCS) with minimal resource 

capacity where several control loops share a common network [1]-[3]. Limited network capacity can result in 

packet drop or delay. To eliminate delay or packet drop, which may destabilize or adversely affect the 

response of the NCS, network resources must be used efficiently [4], [5]. Consequently, optimization of 

resource allocation is a major issue in NCS [6], [7]. 

Effective optimization and resource allocation require a good mathematical model of the NCS. In a 

recent paper [8], Ge et al. investigated a Markov model and stochastic control strategy for NCS dynamics. 

Hidden markov model (HMM) of NCS was first proposed in [9]. The authors proposed a stochastic optimal 

controller design for an NCS with network-induced delay governed by an underlying Markov chain of 

unknown probability distribution. Using the Baum-Welch algorithm, they obtained the initial distribution and 

state-transition probability matrix. They assumed three states for the NCS network load: low, medium, and 

high. Using a sequence of observations, they identified the Markov model and used it to design a stochastic 

optimal state feedback controller for the NCS. Nilsson also modeled network states as low, medium and high 

based on network load with transition between states governed by a Markov Chain [10]. The states were not 

directly observable and an HMM model was used for the network with the NCS treated as a jump linear 

system. Based on the HMM, he designed an LQG optimal controller to assure system stability. W. Lim, et al. 

[11], the authors proposed a dynamic bandwidth allocation strategy for orthogonal frequency division 

https://creativecommons.org/licenses/by-sa/4.0/
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multiple access passive optical networks (OFDMA-PONs). Given the dynamic and stochastic nature of 

network, they used an HMM to predict traffic states. They defined the traffic states with two variables, the 

mean and the contrast of the bandwidth request observations. The latter characterizes the degree of traffic 

variation. Dainotti et al. [12] also classified packet-level traffic based on HMM. They used several types of 

traffic data and estimates of packet size and inter-packet time to evaluate their approach. 

Li et al. [13] used fuzzy logic to construct a bandwidth manager. They determined the lower and 

upper bounds for the assignable bandwidth using linear matrix inequalities and the resource constraints. 

Fuzzy logic provides a flexible feedback mechanism to manage NCS that accounts for an upper bound and a 

lower bound on the sampling period. The proposed approach saves bandwidth and improves overall control 

performance as compared to fixed bandwidth allocation. 

Although a rich literature on bandwidth allocation exist, to our knowledge the problem of bandwidth 

allocation for a network shared by NCS and random network traffic was only addressed in an earlier paper by 

[14]. G. Cetin, et al. [14], prediction of future traffic used a conditional poisson model. Although this 

provided a basis for bandwidth allocation, the results can be significantly improved by improving the quality 

of traffic prediction. 

This paper builds on our earlier work to provide better bandwidth allocation for a network with 

random channels. Multiple links including random traffic, time-driven traffic, and event-driven traffic 

sharing a bandwidth is assumed. Network simulation data is used to formulate an HMM model for the 

network. Unlike earlier work, the model has a large number of discrete states that provide a more accurate 

network representation. Using the current traffic of the random network, the traffic at the next sampling point 

is predicted utilizing the HMM. Bandwidth of the network is allocated depending on the resource demands of 

each individual channel by solving a convex 𝑙1 optimization problem based on the predicted traffic for the 

random channel and the known deterministic traffic. Although it is assumed that network capacity is time-

invariant over the planning horizon of the control system, if the capacity is known a priori, the proposed 

method is valid if the capacity changes with time.  

With limited network capacity, resource demand can exceed capacity. This may cause packet 

dropout and/or delay. As in [14], 𝑙1 minimization with time-varying sampling period for the time-driven 

channel is used to allocate bandwidth for the random and event-driven channels optimally. If insufficient 

bandwidth is allocated for the time driven sensor channel. The sampling period for the time-driven channel is 

increased to reduce traffic. However, the upper bound on the sampling period should be determined to 

achieve sufficient stability and performance in the closed-loop NCS system [15], [16]. We derive a condition 

for the stability of a linear time-invariant plant with a bounded sampling period using the results of [17]. The 

main contributions of the paper are; 

a. The paper proposes bandwidth allocation method for a network that serves random and deterministic 

traffic. 

b. The paper provides a new adaptive HMM network model with multiple states that can be used for traffic 

prediction. 

c. The HMM model is based on a sliding data window to allow for time-varying traffic conditions. 

d. The paper presents a new stability condition for a linear time-invariant system with time-varying 

sampling period. 

The remainder of the paper is organized as follows: section 2 describes the HMM model for random 

data traffic to predict states using Viterbi algorithm. In section 3, the convex 𝑙1optimization problem and the 

dynamic sampling problem are described. Section 4 provides simulation results and discussion. Section 5 is 

the conclusion. 

 

 

2. HMM OF NETWORK TRAFFIC 

HMM is a statistical Markov models whose states are not directly observable. Instead, an output that 

is stochastically dependent on the hidden states is directly observable. The observed outputs are related to the 

HMM states by observation emission probabilities. Transition between states is random and is governed by 

state transition probabilities which indicate the probability of going one state to another. A states sequence 

from an initial state to end state can be generated by switching from one state to another based on the 

transition probabilities. The observable sequence of outputs is related to the state sequence by the emission 

probability distribution [18]. 

To obtain a HMM of a network, random network traffic level is allocated to five possible classes, 

which are “very low(VL)”, “low(L)”, “medium(M)”, “high(H)”, “very high(VH)”. These classes can be 

determined based on total network capacity and network characteristics. With no loss of generality, the 

classes are identified with integers and are expressed as 𝑐 = {𝑉𝐿, 𝐿, 𝑀, 𝐻, 𝑉𝐻} = {1, 2, 3, 4, 5}. 
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Assuming that a NCS shares a common network with 𝑁 nodes that generate random traffic, let 𝑡𝑖
𝑟(k) 

pac/sec be the traffic of the 𝑖𝑡ℎ random channel at time k, 𝑖 = 1,2, … , 𝑁. 

The traffic conditions are defined as follows; 

Channel conditions for ith random nodes: 

  

𝛼𝑙𝑖

𝑐 ≤ 𝑡𝑖
𝑟(𝑘) < 𝛼𝑢

𝑐
𝑖
, 𝑖 = 1,2, … , 𝑁  (1) 

  

 where 𝛼𝑙𝑖

𝑐  is the lower bound for class c and 𝛼𝑢𝑖
𝑐  is the upper bound for class 𝑐 for the 𝑖𝑡ℎ random channel.  

For five different classes and 𝑁 random channels, we need 5𝑁 HMM states. For example, consider the case 

of 3 random channels, i.e. 𝑁 = 3, we use the notation 

state 1 = {1 1 1} represents {𝑉𝐿 𝑉𝐿 𝑉𝐿},  

state 125 = {5 5 5} represents {𝑉𝐻 𝑉𝐻 𝑉𝐻} and so on.  

The state-transition matrix, whose entries are transition probabilities from one state to the next, can be 

determined by using relative frequency if enough data is collected. 

The emission matrix determines the probability of network congestion based on HMM states given measured 

outputs. The emission matrix is classified based on total random traffic as 

“𝑛𝑜 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (𝑁𝐶𝑉𝐿𝑇)”,  
“ 𝑛𝑜 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑙𝑜𝑤 𝑡𝑟𝑎𝑓𝑓𝑖𝑐(𝑁𝐶𝐿𝑇)”,  
“𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑(𝐶𝐶)”, “ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝐻𝐶)” , 
 “ 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑉𝐻𝐶)”  

𝑟 = {𝑁𝐶𝑉𝐿𝑇, 𝑁𝐶𝐿𝑇, 𝐶𝐶, 𝐻𝐶, 𝑉𝐻𝐶}. = {1, 2, 3, 4, 5} 

Let the random traffic be given by 

 

𝐵𝑡𝑟(𝑘) = ∑ 𝑡𝑖
𝑟(𝑘)

𝑁

𝑖=1

 

𝐵1 = ∑ 𝛼𝑙𝑖

𝑉𝐿

𝑁

𝑖=1

, 𝐵2 = ∑ 𝛼𝑙𝑖

𝐿

𝑁

𝑖=1

, 𝐵3 = ∑ 𝛼𝑙𝑖

𝑀

𝑁

𝑖=1

, 

𝐵4 = ∑ 𝛼𝑢𝑖
𝑀

𝑁

𝑖=1

, 𝐵5 = ∑ 𝛼𝑢𝑖
𝐻

𝑁

𝑖=1

, 𝐵6 = ∑ 𝛼𝑢𝑖
𝑉𝐻

𝑁

𝑖

 

(2) 

 

where 𝐵𝑡𝑟 is the total random traffic, and 𝐵𝑖 , 𝑖 = 1, … , 6, are traffic bounds for the five network classes. 
 

If 𝐵1 ≤ 𝐵𝑡𝑟 < 𝐵2 congestion status 𝑟 = 1 

If 𝐵2 ≤ 𝐵𝑡𝑟 < 𝐵3 congestion status 𝑟 = 2 

If 𝐵3 ≤ 𝐵𝑡𝑟 < 𝐵4 congestion status 𝑟 = 3 

If 𝐵4 ≤ 𝐵𝑡𝑟 < 𝐵5 congestion status 𝑟 = 4 

If 𝐵5 ≤ 𝐵𝑡𝑟 < 𝐵6 congestion status 𝑟 = 5 

(3) 

 

Based on this classification, we can define the emission matrix to include the probability of congestion states 

according to the HMM states. Since we have 125 states and 5 observation states, the size of the E will 

be 5 × 125. 

The HMM can be defined as 𝜆𝑛 = (𝑁, 𝑀, 𝑇, 𝐸, 𝜋) where 𝑇 is the state-transition matrix, E is the 

emission matrix, 𝑁 is the number of the states of HMM (traffic conditions), 𝑀 is the number of observation 

states(congestion conditions) and n is the window size [9]. The HMM model is shown in Figure 1. In the 

figure, we have; 
 

𝑞𝑘 ∈ 𝜃 = [𝜃𝑖] is the hidden state of the Markov chain at time k = 1, . . , n, θ is 

the hidden state, 𝜃𝑖 = 𝑖, 𝑖 = 1,2, … , 𝑁 

𝑂𝑘 ∈ 𝑂 = [𝑜𝑖] is the observation at time k, 𝑜𝑖 = 𝑖, 𝑖 = 1,2, … , 𝑀 

𝜋 = [ 𝜋1,  𝜋2 … .  𝜋𝑁] are the initial probabilities of the states 

where  πi = P(qk = θi) where 𝑖 = 1, . . . , 𝑁 and 𝑘 = 1, . . , 𝑛. 

𝑇(𝑞𝑘 , 𝑞𝑘+1) = [𝑎𝑖𝑗] is the state-transition matrix with  

𝑎𝑖𝑗 = 𝑃(𝑞𝑘+1 = 𝜃𝑗|𝑞𝑘 = 𝜃𝑖  ), 1 ≤ 𝑖, 𝑗 ≤ 𝑁  

𝐸 = [𝑒𝑖𝑗] is the emission matrix with  

𝑒𝑖𝑗 = 𝑃(𝑂𝑘 = 𝑜𝑗|𝑞𝑘 = 𝜃𝑖  ), 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀 
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Figure 1. HMM model [10] 

 

 

To find 𝑇 for window size n, we first determine the traffic classes from the available data using (1). 

Then we find the transitions probabilities using the relative frequency of state transitions. To find the 

emission matrix 𝐸 for window size 𝑛, we use the ranges of (3). 

Since network dynamics change over time, we determine the adaptive transition matrix and the 

emission probability matrix based on random network traffic data over a specified time window. Using 𝑛 

observation 𝑜1, 𝑜2 … . 𝑜𝑛 , of network traffic conditions data ending at the current time 𝑘, we find the adaptive 

transition matrix and the emission probability matrix for window size n. The Viterbi algorithm [18-22] is 

used to predict the most likely states at time 𝑘 = 1, . . , 𝑛 + 1, we save the predicted state at 𝑘 = 𝑛 + 1. Then 

we shift the window by one step, and update the adaptive transition and the emission probability matrices. 

The Viterbi algorithm predicts the most likely state at time 𝑘 =  𝑛 + 1, . . . , 2𝑛 + 1. We save the predicted 

state at 𝑘 = 2𝑛 + 1 and the process is repeated to predict future states. 

The Viterbi algorithm works as follows. Given the HMM model and a sequence of observations, we 

to estimate the most likely sequence of states [18]. The most likely sequence ending with 𝑞𝑘 = 𝜽 is obtained 

using the utility function 

  

𝑣𝜃
𝑘 = 𝑚𝑎𝑥

𝑞𝑘=𝜽
𝑙𝑜𝑔 𝑃(𝑂𝑘 , 𝑞𝑘) (4) 

 

The paths that lead to each state from the possible prior states are explored to find the path that has the 

highest probability. For each possible new state, only the highest probability path is saved using 𝑉𝜃′
𝑘+1. 

 

𝑉𝜃′
𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝜽
𝑣𝜽

𝑘 + log (𝑃𝑞𝑘+1|𝑞𝑘  (𝜽′|𝜽)) + log (𝑃𝑂𝑘+1|𝑞𝑘+1
(𝑂𝑘+1|𝜽′))  (5) 

 

where 𝜽′ is posterior state at time 𝑘 + 1, and 𝑉𝜃
𝑘+1 is the maximum cumulative log-probability achieved for 

(𝑘 + 1)𝑡ℎ time step from 𝑘𝑡ℎ time step. 

Using (5) recursively, we determine the most likely paths from 𝑘 = 1 to 𝑘 = 𝑛 + 1 for window size 

𝑛 and save the most likely transitions for backtracking iteration. The final posterior probability of the all 

sequence of states can be maximized by recursively maximizing the joint probability for each possible new 

state. The best final state at time 𝑘 = 𝑛 + 1 for window size n can is calculated as 

 

𝜽̂𝑛+1 = 𝑎𝑟𝑔max
𝜽

𝑉𝜃
𝑛+1 (6) 

 

Later backtracking iteration is used to find all hidden states in the window (traffic conditions) 

 

𝜽̂𝑘+1 = 𝑉
𝜃̂𝑘+1
𝑘+1 ,   𝑘 = 𝑛, 𝑛 − 1, … ,1  (7) 

 

 

3. BANDWIDTH ALLOCATION 

Figure 2 shows general structure of NCS. Random nodes occupy bandwith of the network based on 

its network traffic, sensor, controller and actuator nodes are interconnected via network for data transmission 

as in shown in Figure 2. Assume n observations are known initially. Traffic conditions c for each random 

channel at time 𝑘 + 1 are predicted utilizing the HMM model and the Viterbi algorithm. With knowledge 
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of 𝑐, we can assign random traffic for each random channel at time 𝑘 + 1 by assigning the upper bound 𝛼𝑢
𝑐

𝑖
 

related to the traffic condition to guarantee the required bandwidth allocation for the time-driven sensor node. 

Since the total network bandwidth capacity is constrained, bandwidth is allocated optimally 

depending on the traffic of each channels. The Viterbi algorithm predicts the random traffic at time 𝑘 + 1 

given the traffic of the event-driven channels. Bandwidth is allocated for the random and event-driven 

channel based on the following optimization as in [14]. 

 

 

 
 

Figure 2. NCS structure [14] 

 

 

The sampling period of the NCS is varied to optimize bandwidth allocation. Even for a linear time-

invariant plant, the closed-loop NCS is not time-invariant and the placement of its eigenvalues inside the unit 

circle is no longer sufficient for stability. Zhou and Zhao provided the following result regarding the stability 

of the perturbed discrete linear time-varying system with state matrix 𝐴(𝑘) and perturbation matrix Δ𝐴(𝑘) 

[17]. 

 

𝑥(𝑘 + 1) = (𝐴(𝑘) + Δ𝐴(𝑘))𝑥(𝑘), 𝑘 = 0, 1, 2, … (8) 

 

where 𝐴(𝑘), 𝛥𝐴(𝑘) ∈ ℛ𝑛×𝑛  
Theorem 1 [17]:   

Assume that the nominal discrete linear time-varying system with state matrix 𝐴(𝑘) is uniformly 

exponentially stable. If there exist a positive constant 𝛽 and a sufficiently small constant 𝜖 such that Δ𝐴(𝑘) 

satisfies 

 

∑ ‖Δ𝐴(𝑗)‖𝑘−1
𝑗=0 ≤ 𝜖𝑘 + 𝛽, 𝑘 = 1, 2, … , (9) 

 

then, the perturbed discrete linear time-varying system system (8) is uniformly exponentially stable.  

Based on the above theorem, we obtain a condition for the stability of a linear time-invariant NCS 

with time-varying sampling period. We assume that the state matrix has geometric multiplicity equal to its 

algebraic multiplicity. 

Theorem 2 : If the linear time-invariant system with digital control is closed-loop stable with state feedback 

control gain 𝐾 and sampling period for the time driven channel of the related control loop ℎ𝑡, then the system 

is uniformly exponentially stable with time-varying sampling period in a bounded interval 

[ℎ𝑁𝐶𝑆𝑚𝑖𝑛
𝑡 , ℎ𝑁𝐶𝑆𝑚𝑎𝑥

𝑡 ] including ℎ𝑡. 

 

Proof: 

The discrete-time state space model is given by 
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𝑥(𝑘 + 1) = [𝑒𝐴ℎ𝑡(𝑘) − 𝐵(ℎ𝑡(𝑘))]𝑥(𝑘) (10) 

 

The state-transition matrix and the input matrix can be written as 

  

𝑒𝐴ℎ𝑡(𝑘) = ∑ 𝑍𝑖

𝑛

𝑖=1

𝑒𝜆𝑖ℎ𝑡(𝑘) 

𝐵(ℎ𝑡(𝑘)) =
∑ 𝑍𝑖𝐵𝑛

𝑖=1 [𝑒𝜆𝑖ℎ𝑡(𝑘)−1]

𝜆𝑖
  

(11) 

 

For a zero eigenvalue, we have the term 𝑍𝑖𝐵ℎ𝑡(𝑘), which can be handled similarly to what we show below. 

Perturbation in the sampling period will result in the perturbation matrix 

 

𝛥𝐴(𝑘) = ∑ (𝑍𝑖 −
𝐵𝐾

𝜆𝑖

)

𝑛

𝑖=1

 [𝑒𝜆𝑖ℎ𝑡
− 𝑒𝜆𝑖ℎ𝑡(𝑘)] (12) 

 

For a sampling period varying in a bounded interval [𝑇𝑚𝑖𝑛 , 𝑇𝑚𝑎𝑥], we have 

 

|𝑒𝜆𝑖ℎ𝑡
− 𝑒𝜆𝑖ℎ𝑡(𝑘)| ≤ |𝑒𝜆𝑖ℎ𝑁𝐶𝑆𝑚𝑎𝑥

𝑡
− 𝑒𝜆𝑖ℎ𝑁𝐶𝑆𝑚𝑖𝑛

𝑡
| ≤ 𝑘1, 𝑖 = 1, … , 𝑛 (13) 

 

Because the nominal dynamics are stable  

 

‖𝑍𝑖 −
𝐵𝐾

𝜆𝑖

‖ ≤ 𝑘2, 𝑖 = 1, … , 𝑛  

  

The condition of Theorem-1 [17] becomes 

 

∑‖𝛥𝐴(𝑗)‖

𝑘−1

𝑗=0

≤ 𝜖𝑘, 𝜖 = 𝑛𝑘1𝑘2  (14) 

 

 

4. RESULTS AND DISCUSSIONS 

A DC motor position control example adapted from [23, 24] is simulated to compare our results 

with fixed bandwidth allocation. The DC motor transfer function is; 

 

𝐺(𝑠) =
1000

𝑠(𝑠+1)
  

 

A feedback controller is designed to achieve desired transient response. An upper bound for the 

sampling period of the time-driven channels ℎ𝑖 𝑁𝐶𝑆𝑚𝑎𝑥
 , is necessary for obtaining satisfactory NCS 

performance and is calculated based on the system dynamics. The desired response of the system must have 

percentage overshoot less than 20% and settling time less than 0.2 s. For 20% overshoot, required damping 

ratio is approximately 0.46. The natural frequency of the closed loop system is calculated based on the 

specifications as 𝜔𝑛 =  48.73rad/s. The undamped natural frequency should be slower than the packet arrival 

to the controller, to obtain the required sampling frequency for the NCS, 𝜔𝑟 is selected as 𝜔𝑟 = 𝛼𝜔, where 

𝛼 a scale factor selected to reduce aliasing. Assuming 𝜏 = 1s, we selected 𝛼 = 15 to obtain ℎ𝑖𝑁𝐶𝑆𝑚𝑎𝑥
=

2 𝜋

𝛼𝜔𝑑
≅ 11 ms. since 𝜏 for the network is 0.1 s, ℎ𝑖 𝑁𝐶𝑆𝑚𝑎𝑥

= 1.1 ms. Based on hardware limitation on sampling 

rate, we select ℎ𝑖𝑁𝐶𝑆𝑚𝑖𝑛
   = 0.6 ms. 

For the simulation, frequency-division multiple access (FDMA) network channel is used in NCS as 

in [25]. The FDMA network channel has a capacity of 495 Mbps and packet size is 100 bytes. Thus, the total 

network capacity is 495 pac/0.1s. The traffic in the three random channels is predicted and the sensor and the 

controller channels generate 100pac/0.1s to satisfy required transients response. 
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Random networks occupy 80% of the bandwidth of the network while time-driven sensor and event-

driven controller nodes occupy the remaining 20%. Fixed sampling period of the time-driven sensor channel 

is choosen as 1𝑚s. If the allocated bandwidth for random channels is high, the allocated bandwidth for the 

controller and the sensor channels may become insufficient and this may cause delay or package drop which 

deteriorates the performance of the NCS as shown in Figure 3. 

 

 

 
 

Figure 3. NCS output without bandwidth allocation 

 

 

Assume that, three random nodes which generate random traffic and two deterministic nodes which 

are the time-driven sensor node and event-driven controller node are sharing the network in Figure 2. The 

HMM model proposed in Section 2 with 125 states for three random channels with the channel conditions 

{𝑉𝐿, 𝐿, 𝑀, 𝐻, 𝑉𝐻}. An adaptive (HMM-1) is constructed by selecting an appropriate window size 𝑛 = 10 and 

the Viterbi algorithm predicts future traffic volume for random channels. Since rest of the channels are 

deterministic and they have fixed network parameters, their traffic can be calculated from the parameters. 

The controller contains an event-driven task and every instances, a sample arrives over the network from the 

sensor node. The network traffic model used in the paper is offline, however since HMM model of the 

network traffics are modelled, if priory network traffic in the channels are known in the selected window size 

this model will work for online network traffic model also. 

To evaluate the effect of the number of traffic classes of the HMM model, we construct an HMM 

model with 27 states for three random channels with three conditions{𝐿, 𝑀, 𝐻}, dubbed (HMM-2). The latter 

is used to predict the next random traffic volume for comparison to HMM-1. 

The traffic in the controller to actuator channel is 100 pac/0.1sec. The controller computes a control 

signal after receiving the packet, then the packet that includes control signal is sent to the event-driven 

actuator node. After predicting the traffic of the random channel at time 𝑘 + 1, we have values for all 

network traffic that is used for bandwidth allocation. The bandwidth allocation is 𝑡(𝑘 + 1) = [𝑡 𝑟̃(𝑘 +
1), 𝑡𝑡 , 100], where 𝑡𝑡 is to be calculated using the convex optimization of (8). 

After allocating bandwidth optimally, the sampling period for the time-driven channel is obtained by 

employing (9). The sampling period of the sensor to controller channel ℎ𝑖
𝑡(𝑘 + 1) is calculated using (10). 

For a satisfactory output response, the sampling period of the time-driven channel is adjusted to eleminate 

channel congestion. 

At first, fixed network parameters without bandwidth allocation and sampling rate adjustment is 

used. Network congestion occurs as the traffic of some channels exceeds their capacity. Figure 3 shows that 

the closed-loop system response is oscillatory because network congestion causes packet loss and time delay. 

The available bandwidth is allocated depending on the demand of each channel. Bandwidth 

allocation for the random and the event-driven controller channel is achieved using 𝑙1 optimization. Because 

the total capacity of Network is limited, insufficient bandwith can be allocated for the time-driven sensor 

channel and network congestion may occur for the time-driven sensor channel. Its sampling rate is adjusted 

to satisfy its allocated bandwidth capacity subject to stability and performance constraints.  

Figure 4 indicates that the sampling period of the sensor channel stays in the interval [0,0.25] for 

both HMM-1 and HMM-2. The sampling period is assigned according to the allocated bandwidth for the 

time-driven sensor channel. The sampling period never exceeds the prescribed upper and lower bounds 

[0.6, 1.1] ms. Figure 5 and Figure 6 show that the bandwidth allocation using both HMM-1 and HMM-2 

provides satisfactory responses. However, Figure 6 shows that the response of HMM-2 includes sharp 

perturbations because of the large prediction error and limited sampling period interval. Figure 7 shows the 
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global network scheduling for the channels in NCS in the Truetime network simulator [24]. The network 

scheduling varies based on the dynamic sampling period assignment and bandwidth allocation. 
 

 

 
 

Figure 4. Sampling period of the sensor channel 
 

 

  
  

Figure 5. Plant output in NCS with bandwidth 

allocation (HMM-1) 

Figure 6. Plant output in NCS with bandwidth 

allocation (HMM-2) 
 

 

 
 

Figure 7. Channels scheduling for HMM-1 (high=running data, low=idle) 
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Figure 8 indicates bandwidth allocation percentage for each channel according to the network 

trafficin the three random channels in the time interval [0, 0.05] for both HMM-1 and HMM-2. Based on the 

predicted states, Figure 9 verifies that HMM-1 provides satisfactory bandwidth allocation and meets traffic 

demand better than HMM-2. 

 

 

 
 

Figure 8. Percentage bandwidth allocation 

 

 

 
 

Figure 9. Traffic prediction in random channel  

 

 

Figures 10, 11, 12 and Table 1 show the predicted random traffic for HMM-1 and HMM-2, 

respectively. The random traffic in the network is predicted by employing HMM and the Viterbi algorithm 

and used for bandwidth allocation. The figures show that, prediction errors for the states are lower for HMM-

1. This provides more efficient bandwidth allocation and sampling period scheduling based on the allocation 

of bandwidth for the sensor channel.  

Figure 13 and Table 1 reveal that an adequate but small window size provides better state 

prediction. An excessive window size results in larger state prediction errors because of changes in network 

dynamics over time that make older data inapplicable. Increasing the number of network states that define the 

traffic condition reduces the prediction error. 
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Figure 10. Traffic state prediction in random channel (HMM-1) 

 

 

 
 

Figure 11. Traffic state prediction in random channel (HMM-2) 

 

 

  
  

Figure 12. Comparison of prediction error for 

HMM-1 and HMM-2 with window size n=10 

Figure 13. Comparison of prediction for window size 

n=10 and window size n=15 for HMM-1 
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Table 1. Comparison of prediction error for HMM-1 and HMM-2 for different window sizes 
Window size(n) 5 traffic conditions HMM-1 3 traffic conditions HMM-2 

10 12.3232% 45.1066% 
15 21.5228% 59.6954% 

20 30.0000% 68.3673% 

25 38.2564% 73.7436% 
30 45.9794% 76.1856% 

60 76.4894% 83.5106% 

70 81.2603% 83.9785% 
80 82.3021% 83.2609% 

 

 

5. CONCLUSION  

This paper provides a new approach for bandwidth allocation for NCS. An adaptive HMM with 5 

traffic classes is constructed for random traffic and the traffic is estimated utilizing the Viterbi algorithm. The 

HMM parameters are updated based on the traffic data for a window of specified width to account for 

changes in traffic conditions. l1 Optimization method is employed to allocate bandwidth for the time-driven 

sensor channel in NCS. The sampling period of the time-driven sensor channels is adjucted to mitigate 

network traffic and avoid packet loss and delay but kept within bounds dictated by performance requirements 

and bandwidth limitations. We present conditions for the stability of the resulting time-varying system. A 

second HMM network with only 3 traffic classes, as is common in the literature, is also designed for 

comparison to the 5-class HMM. Simulation results where the 5-class HMM outperforms the 3-class HMM 

demonstrate the importance of having a sufficient number of traffic classes for the HMM. Results for 

different data window widths demonstrate the importance of selecting an appropriate window width to 

capture the current traffic dynamics of the network. Future work will apply the methodology to more 

complex NCS and exploit knowledge of random traffic statistics for bandwidth allocation.  
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