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1. INTRODUCTION

Time series data forecasting is often referred to as a periodical forecasting, which involves the study of
existing historical patterns and estimation of future values. This concept is classified into linear and nonlinear
methods, with the popular univariate types being exponential smoothing and autoregressive integrated moving
average (ARIMA) models. These methods have been reported to be successful in forecasting linear time-series
data, and very poor based on designing nonlinear and complex parameters [1]. Meanwhile, the nonlinear
forecasting generally provides irregular function specification requirements. Furthermore, an artificial neural
network (ANN) is being introduced as a universal approach for this method, as several studies have confirmed
its excellent performance in long-term forecasting, based on monthly, and quarterly time series of nonlinear
data [2]-[5].

Two ANN architectural models are reported to have been widely applied to several time series fore-
casts, including the time-lagged feed-forward and dynamically-driven recurrent network methods. Both are
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found to use a time-lagged and feed-forward network architecture, with the second model also using a feedback
approach [6], [7]. Based on several applications, obtaining ANN models with accurate time series forecasting
performance requires intervention to set up several optimal setting parameters, including the number of lag
inputs and those associated with neurons in the hidden layer. However, this situation is not practical for some
applications, such as obtaining (near) real-time forecast. Based on other cases, it is possible that no one under-
stands how to use the ANN model to forecast, as one possible solution to this issue is the automatic forecasting
[8]-[10]. This only requires the supply of input, as an automatic forecasting algorithm automatically sets up
the appropriate data, estimates the parameters in the model, and calculates forecasts without intervention.

Based on multilayer perceptron parallel architecture without feedback (NAR model), the automatic
ANN time series forecasting was first discussed in [8], and the result was further extended in [11]-[13], by
implementing ensemble/combination operators. The studies in [8], [11]-[13] used the NAR model with sigmoid
and linear activation functions at the hidden and output layers, with the backpropagation learning algorithm
applied to update the parameters. Specifically, the non-automatic version of the forecasting algorithm based on
the NAR model was observed in [1]. Forecasting time series with NAR is also found to be possible, by using
multiple univariate models. The univariate aspect applies the past data from those predicted as the input, as
external factors with possible effects are not allowed in the model. However, these are accommodated in the
multiple univariate models, in order to ensure improved accuracy. Furthermore, the nonlinear autoregressive
neural network model with exogenous input (NARX) is used as multiple univariate methods, as it is also
considered a variant of NAR that utilizes external/exogenous inputs in the learning process. It generally has
a more accurate forecasting capability compared to NAR, when the utilized external inputs have a strong
relationship with the predicted data [14]-[16].

According to this research, an extension of the previous results in [8], [11]-[13] is being proposed on
two folds. Firstly, an automatic forecasting algorithm is considered for a more general class of model, i.e.,
the NARX with parallel architecture without feedback. Secondly, the ensemble operators (mean, median, and
mode are usable) with both logistic and tangent hyperbolic functions are also considered to activate the hidden
layer of the NARX model. The descriptions and implementation details of each ensemble operator is clearly
observed in [11]-[13], [17]-[20]. Also, several learning algorithms are being considered to update the param-
eters, namely the backprop (backpropagation), rprop+ and rprop- (resilient backpropagation with and without
weight backtracking), as well as the grprop sag, and grprop slr (globally resilient backpropagation without
weight backtracking and smallest absolute gradient or learning rate). The descriptions and implementation
details for each learning algorithm are further shown in [21]-[25]. Based on the empirical study, the pro-
posed automatic method is applied to forecast two real data, i.e., the Indonesian inflation and exchange rates
between the Rupiah and US Dollar. Furthermore, the performance of this proposed model is compared with
several available automatic methods in the literature, namely exponential smoothing (see discussion in [26]-
[29]), ARIMA (see discussion in [30]-[33]), and NAR parallel architecture without feedback. The forecasting
accuracy is also being measured by mean squared error (MSE) and mean absolute percent error (MAPE). This
research is organized such that section 1 and 2 introduces the background of the study, as well as provide some
necessary concepts while introducing the automatic NARX modeling for time series forecasting, respectively.
Also, section 3 and 4 discusses the empirical results and conclusions of the study, respectively.

2.  RESEARCH METHOD
2.1. NARX Model

The NARX model with exogenous input was reported to be very essential to the discrete-time nonlin-
ear systems, and defined using the following mathematical relationship [34],

y(t+1) = fly@),yt —1),...,y(t —ny + 1);u(t),u(t —1),...,u(t — n, +1); w) (D

where u(t) € and y(t) € indicates the input and output of the model at time ¢, n,, > 1 and n, > 1 (n, >
n,) represents the input and output-memory orders, w is the weights matrix, and f is the nonlinear function
expected to be estimated through multilayer perceptron [35].

The NARX network was basically trained under one of two models [36]. The first model was the
series-parallel architecture (or parallel architecture without feedback), where formation of the regressors was
only obtained through the use of the output actual values.

gt +1) = fly(@),yt —1),...,y(t —ny + 1);u(t),u(t —1),...,u(t — n, +1); w) 2)
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The second model was the parallel architecture (or parallel architecture with feedback), where the
output was the feedback for the feed-forward neural input, which was part of the standard architecture,

Gt +1) = F(G), 9t = 1), ey Gt — ny + V)5 u(t), ult — 1), ooy u(t — ny + 1);w) (3)

Based on being previously stated, the NARX network include the regressors of the system (inputs and
outputs), with the time-series used as the output channels without measured input. Therefore, the forecasting
ability of the model is limited in its application for time-series data without input regressors, due to the elimi-
nation of the tapped-delay line over the signal. This further leads to the reduction of NARX to plain time-delay
neural network architecture [37]-[39], as shown in,

gt +1) = f(y@®),y(t —1),...,y(t —ny + 1);w) 4)

According to [20], a simple strategy was proposed in line with the embedding theorem of Takens.
This served as a solution to the problem, by providing the opportunity for the full exploitation of the actual
NARX network computational abilities, towards predicting nonlinear time-series. Furthermore, the input signal
regressors (u(t)) were initially defined through the delay-embedding coordinates, as shown in,

u(t> = (y(t)a y(t - T)? "'>y(t - (dE - 1)7-)) @)

where dg = n,, and 7 are the embedding dimension and delay, respectively.
Secondly, the output signal regressors (y(t)) are presented as shown in the following relationships,
due to the possibility of training the NARX network in two different architectures,

ysp(t) = (y(t)’y(t_ 1)""’y(t_ny+1)) (6)

yp(t) = (g(t),@(f— 1)7"'ay(t_ny + 1)) (7N
where the output regressor (y(t)) for the parallel architecture without and with feedback in (6) have previous
n, actual and estimated time values, respectively.
These outputs were values of y(t + 1), which were previously estimated for a network that had been
effectively trained. They were also required to follow the prognostic relationships applied, by using the NARX
network. This is represented is being as [15], [16],

gt +1) = fysp(t); u(t); w) (8)

gt +1) = fyp(t); u(t); w) ©)

Therefore, the NARX networks trained in line with (8) and (9) were represented as NARX-SP and NARX-P,
respectively. However, this research focused on the model that had parallel architecture and without feedback
(NARX-SP).

2.2. Automatic NARX modeling
Based on the NARX model, this section describes the automatic forecasting procedure, with the as-
sumptions that y(¢) and u(t) are the main series and external/exogenous variables to be predicted, respectively.
Furthermore, several key steps contained in the algorithm were explained is being as,
— Step 1: Preprocessing of the series (y(t)) started with trend, seasonality check, and seasonal differ-
ence application. The Cox-Stuart test was used to determine the trend in a time series data, based on
a 12-period centred moving average. This test was carried out in order to smoothen effects, due to ir-
regularities. Furthermore, the de-trended time series data were used to calculate and identify seasonal
indices, which were analyzed to determine their significant deviations, through the use of a Friedman
test. These data were also linearly scaled between —1 and +1, in order to facilitate the NARX training.
— Step 2: The following strategy was used to obtain the autoregressive lags for the y(¢) and u(t) series.
When the frequency of y(t) is equal to m, all products from 1 to m were considered possible lag numbers.
For example, 1-4 and 1-12 were considered as quarterly and monthly data, respectively. Furthermore,
the order for u(t) was assumed equal to y(t), as the significant lags were selected using the stepwise
algorithm. The model also included seasonal dummy variables, due to the identification of periodical
patterns. Creating additional features in form of dummy variables was also one of the methods used to
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capture deterministic seasonal components. The conventional approach used to model these periodical
patterns were s — 1 binary dummy variables with ¢, which denoted the seasonal length. Meanwhile,
long input vectors used additional s — 1 for high frequency data (s > 12). Two inputs including z ;
and x4 o were also used to encode seasonality with variables created, by using Sin(t) and Cos(¢) for an
explicit representation of the point within an identified seasonal length (s). Furthermore, x, ;1 and x; o
were used to determine the sine-cosine-pairs for each s, as well as the input vector for long and multiple
seasonalities.

— Step 3: There was also procedural division into training and testing parts, where 80% and 20% of the
data processes were used respectively. The mean squared error (MSE) of training data was checked,
when the value of neurons was set at 1 towards the maximum lag observed (as the total input in step
2 plus 2). Furthermore, the optimal number of neurons in the hidden layer was defined to be the value
providing the minimum MSE. The number of neurons in this layer was also experimentally identified for
each time series. Also, the maximum lag (as the total input in step 2 plus 2) neurons in the hidden layer
were evaluated for each time series, as the values that minimized the MSE validation were selected.

— Step 4: The NARX model obtained in step 3 were fitted 20 times using different random starting weights,
and the forecasts obtained were combined using the ensemble operator approach (mean, median, and
mode are usable), in order to produce the final product. Based on avoiding local minima and providing
an adequate error distribution using sufficient results, each NARX candidate was initialized 20 times
with random starting weights in the interval of [—1, +1].

— Step 5: The recursive or iterative strategy was used for multi-step ahead forecasts.

Further details that also showed the applicability of the above algorithm for the automatic NAR model,
were provided in [8], [11]-[13]. Meanwhile, the non-automatic version of the forecasting algorithm based on
the model was observed in [1].

3. RESULT AND DISCUSSION

This research was conducted using two real cases, with the first being the inflation rate data in Indone-
sia, with the external/exogenous variable being the interest of the Indonesian Central Bank. The second case
was the exchange rate data for the Indonesian rupiah against the US dollar, with the external variable being the
composite stock price index.

3.1. Inflation rate data

The Indonesian monthly inflation rate data from January 2007 to February 2018 that contained 134
observations, were used, with the initial 129 and final 5 applied for training, and testing, respectively. Based
on simple terms, inflation is understood as a persistent, and continuous rise across a broad spectrum of prices.
The investigation on forecasting inflation in a specific country had received significant attention from several
macroeconomics experts. Based on most central banks, one of the monetary policy objectives was inflation.
Monetary policy also needs to consider future inflation, due to the occurrence of typical time lags. Furthermore,
the current inflation levels that were the result of past policies, should provide only incomplete information.
Therefore, the forecasts that linked future inflation to current developments were found to bridge this gap.
This study attempts to develop an inflation forecasting model for Indonesia, which serves as an input for
policy setting in Bank Indonesia (BI). Based on evaluating the accuracy of the models, two forecast error
measurements were used, namely the mean squared error (MSE) and mean absolute percent error (MAPE).
The MSE and MAPE are further defined is being as,

Ft e% 1 N
MSE = Z :ZN,M E:Nz;
t=

t=1

At_Ft

where A; and F} are actual and forecast values at data time ¢, e; is the error at data time ¢, and N is the number
of data.

Thirty models were considered based on the combination of ensemble operators, activation func-
tions, and algorithm types, in order to calculate weight networks applied in the automatic algorithms. The
ensemble operators were mean, median, and mode, while the two activation functions compared were logistic
and hyperbolic-tangent. Furthermore, the five utilized algorithm types included backpropagation (backprop),
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resilient backpropagation with weight backtracking (rprop+), resilient backpropagation without weight back-
tracking (rprop-), globally resilient backpropagation without weight backtracking and smallest absolute gradi-
ent (grprop sag), and globally resilient backpropagation without weight backtracking and smallest learning rate
and (grprop slr). The summary of the forecasting performance was shown in Table 1, and the automatic NARX
model that combined the median ensemble operator, hyperbolic-tangent activation function, and rprop+ was
observed to have produced the smallest MSE and MAPE values.

Table 1. Summary of the forecasting performance of the automatic NARX model for the inflation rate data
and the exchange rate data

2*Prediction method Inflation rate data Exchange rate data
MSE MAPE MSE MAPE
10*mean 5*logistic  backprop 0.757364  0.086202  73345.44  0.016121
rprop+ 0364176  0.069689  72433.13  0.016063
rprop- 0.319551  0.066502  72056.55  0.016041

grprop sag  0.358235  0.069661  73387.39  0.016169

grprop slr ~ 0.349365  0.069136  71971.57  0.015998

S*tanh backprop 0.539312  0.075055  71649.17  0.016045
rprop+ 0.285420  0.064619  67087.11  0.015678

rprop- 0.288407  0.063821  68718.11  0.015846

grpropsag  0.283124  0.066306  67233.85  0.015736

grprop slr ~ 0.283034  0.065415  69153.00  0.015828

10*median ~ 5*logistic ~ backprop 0.738433  0.085848  72653.74  0.016012
rprop+ 0296109  0.065271  72430.28  0.016063

rprop- 0.316643  0.066174  72630.40  0.016087

grprop sag  0.321834  0.065195 69711.36  0.016011

grpropslr ~ 0.312252  0.067723 7246498  0.016035

5*tanh backprop 0.442624  0.074001  72220.73  0.016102
rprop+ 0.271799  0.062696  70385.47  0.015981

rprop- 0.282693  0.064414  70839.00  0.016042

grprop sag  0.283691  0.066704  67937.07  0.015895

grprop slr -~ 0.286132  0.063374  70899.88  0.015952

10*mode 5*logistic  backprop 0.723456  0.083285  72507.50  0.015999
rprop+ 0.332833  0.066525 7217229  0.016060

rprop- 0.312909  0.067373  73040.55  0.016088

grprop sag ~ 0.333010  0.071677  71941.49  0.015779

grprop slr ~ 0.352009  0.069826  72408.98  0.016186

S*tanh backprop 0.445159  0.072309  72403.39  0.016105
rprop+ 0.312847  0.065484  71571.02  0.016033

rprop- 0.310376  0.067916  71763.39  0.015974

grprop sag  0.324551  0.074489  70864.37  0.016323

grprop slr ~ 0.484687  0.076009  71721.46  0.016033

There was also a performance comparison of the proposed methods with the other forecasting models,
including automatic exponential smoothing (see discussion in [26]-[29]), automatic ARIMA (see discussion
in [30]-[33]), and automatic NAR parallel architecture without feedback (see discussion in [8], [11]-[13]),
respectively. Furthermore, the plot of in-sample fitting and out-sample forecasts for inflation rate data were
shown in Figure 1, by using considered automatic algorithms. It was also observed that all the considered
methods relatively performed accurately for modeling the data, as differences were hardly detected. However,
the numerical summary presented in Table 2 showed that the proposed automatic NARX method outperformed
other available methods, both in the training and testing data.

Table 2. The performance of four automatic methods for the inflation rate data

2* Automatic prediction method Training Testing

MSE MAPE MSE MAPE
Exponential Smoothing 1.738208  0.105420  1.409523  0.363102
ARIMA 1.579745 0.088359  1.469312  0.370713
NAR 0.860586  0.084574  0.341019  0.150416
NARX 0.271799  0.062696  0.287479  0.134564
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ARIMA ETS
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Figure 1. Plot of real data, in-sample fitting, and out-sample forecast using several automatic algorithms

3.2. Exchange rate data

There were 198 monthly observations for the exchange rate data from January 2003 to June 2019,
with the initial 188 and final 10 applied for training and testing, respectively. Based on finance, an exchange
rate is the value at which one currency is transformed for another. It is also regarded as the value of one
country’s currency with another. Also, the exchange rate describes the price of one currency in terms of
another. This price is found to be essential for the government or company, especially when the business
extends over different countries or firms. Furthermore, the exchange rate forecasting is an essential input for
the decision-making management of exposure or hedging strategies.

This structure was similar as observed in the first cases. The summary of the forecasting performance
was shown in Table 1, as the automatic NARX model with mean ensemble operator, hyperbolic-tangent acti-
vation function, and rprop+ produced the smallest MSE and MAPE values. This method was further compared
with other automatic models, and the numerical performance was summarized in Table 3. Furthermore, the
plots of in-sample fitting and out-sample forecasts that used all considered automatic algorithms were omit-
ted. However, they showed that all methods were reasonably performed. Based on the results in Table 3, the
automatic NARX method was superior to other models considered in the study.

Table 3. The performance of four automatic methods for the exchange rate data

2*Prediction method Training Testing

MSE MAPE MSE MAPE
Exponential Smoothing ~ 88053.32  0.017740  57775.10  0.021914
ARIMA 88051.71  0.017739 5777390  0.021914
NAR 83522.71  0.017040  48219.30  0.021845
NARX 67087.11  0.015678  28558.70  0.016348

4. CONCLUSION

This study already proposed an automatic forecasting method of univariate time series, by using the
nonlinear autoregressive neural network model with exogenous input (NARX). The automatic algorithm only
allowed the supply of input data, as a forecasting algorithm automatically sets up the appropriate data, estimated
the parameters in the model, and calculated forecasts without intervention. Furthermore, the empirical studies
conducted showed that the automatic NARX models outperformed the other available methods in the literature,
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by using two monthly series data. However, further research needs to be conducted based on checking and
improving the effectiveness of the method, in order to forecast different types of time series data.
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