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 Zinc batteries are a more sustainable alternative to lithium-ion batteries due 

to its components being highly recyclable. With the improvements in the 

screen printing technology, high quality devices can be printed with at high 

throughput and precision at a lower cost compared to those manufactured 

using lithographic techniques. In this paper we describe the fabrication and 

characterization of printed zinc batteries. Different binder materials such as 

polyvinyl pyrrolidone (PVP) and polyvinyl butyral (PVB), were used to 

fabricate the electrodes. The electrodes were first evaluated using three-

electrode cyclic voltammetry, x-ray diffraction (XRD), and scanning electron 

microscopy before being fully assembled and tested using charge-discharge 

test and two-electrode cyclic voltammetry. The results show that the printed 

ZnO electrode with PVB as binder performed better than PVP-based ZnO. 

The XRD data prove that the electro-active materials were successfully 

transferred to the sample. However, based on the evaluation, the results show 

that the cathode electrode was dominated by the silver instead of Ni(OH)2, 

which leads the sample to behave like a silver-zinc battery instead of a 

nickel-zinc battery. Nevertheless, the printed zinc battery electrodes were 

successfully evaluated, and more current collector materials for cathode 

should be explored for printed nickel-zinc batteries. 
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1. INTRODUCTION 

In today’s world of the internet for everything, personalized wearable devices have a large market 

share of the overall demand in electronic devices. This market is expected to grow over USD 80 million by 

the year 2024, driving researchers and industries to pursue the development thin, flexible energy storage 

devices that can meet the requirements of portable wearable devices [1], [2]. These devices have to be small 

and portable, while still embedding a multitude of features. Most of the small and portable electronics are 

still powered by coin cell batteries, or conventional bulky and heavy AAA batteries, which limit the 

miniaturization of the devices [3]. In addition to this, conventional batteries are not flexible, thick and cannot 

fit into thin and smaller devices such as smartcards. Currently, the most popular battery is lithium ion [4]-[7], 

however, this type of battery is not environmentally friendly due to few factors. Firstly, lithium ion batteries 

are highly flammable and may cause explosions in high pressure environments. Their materials are highly 

https://creativecommons.org/licenses/by-sa/4.0/
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reactive and toxic [8]. Zinc batteries, on the other hand, are safer, its material is abundant, cheap, and 

environmentally friendly despite lower their lower energy density, cycle life, and nominal voltage. However, 

there are still issues such as zinc corrosion, zinc dissolution, and zinc passivation [9]. Recent development 

shows that zinc battery lifecycles can be prolonged through the introduction of additives such as Bismuth 

(III) Oxide, Bi2O3 to the electrode and electrolyte [10]. This additive basically enhances the electrochemical 

performance and also improves the electrical conductivity of the zinc electrode.  

Printing is an older manufacturing method compared to modern lithographic fabrication, but is 

advantageous due to its lower fabrication costs, high throughput while maintaining precision and accuracy 

[11]. Printed battery is a battery with at least one of its components fabricated using printing technologies. 

There are several examples of printed batteries being developed such as a stretchable silver-zinc battery 

based on a nano-wire current collector [12] and a stretchable Zn-Ag2O rechargeable battery printed on a 

thermoplastic polyurethane (TPU) substrate [13]. Typically, a printed battery consists of 5 major elements 

namely substrate, current collector, anode, cathode, and electrolyte. Each element plays a significant role in 

forming a good battery and must be selected carefully. The current collector layer acts as the terminal for the 

battery since it allows electron flow. It is commonly printed using silver [13] or carbon inks [14]. Silver inks 

have significantly higher conductivity compared to carbon inks, but carbon inks can provide better 

electrochemical stability for electrolytes. Another key component of the battery is the substrate which acts as 

the platform where all the printed battery’s elements are placed upon. Selection of the substrate is dependent 

on the battery’s application, whether it should be integrated with other components or should be separated as 

an independent device. Common substrates used for printed batteries are polyethylene terephthalate (PET) 

for flexibility [15], [16], thermoplastic polyurethane (TPU) for stretchability and fabrics for clothing. The 

selected substrate must also be able to withstand high temperatures in most of the cases due to the curing 

condition of the current collectors and electrodes can reach up to around 135°C. 

Electrodes are the core elements of the battery that determine the capacity of the battery, operating 

voltage, recharge-ability, life cycle, etc. There are two electrodes: anode and cathode, which act as negative 

and positive terminal, respectively. Depending on which electrochemical system chosen for the battery, the 

selection of the electrodes will be done accordingly. For example, Ni-Zn battery uses nickel hydroxide as the 

cathode, while zinc oxide as the anode [17]. Meanwhile, for silver-Zn battery, the anode is ZnO, whereas the 

cathode is silver [12]. The current collector allows the electron to flow across load or power source, the 

electrolyte, on the other hand, allows ionic flow between anode and cathode to complete the electrochemical 

system. The electrolyte used for Ni-Zn and other zinc battery systems such as the Ag-Zn system is potassium 

hydroxide (KOH) [18], with molarities between 3M to 8M [17]. The electrolyte may be applied to the battery 

in many forms, such as aqueous [19], gel electrolyte [20], solid-state [21], etc. 

For this work, we describe the fabrication and characterization of a nickel-zinc battery with nickel 

hydroxide and zinc oxide electrodes. Nickel-zinc battery has potential to be developed as a printed battery, 

due to its higher nominal voltage of 1.7 V compared to 1.2 V for NiMH. It is also suitable for high current 

devices due to its fast recharge capability and good specific energy [22]. This paper will be study the effect of 

using two different binders, which are polyvinyl butyral (PVB) and polyvinyl pyrrolidone (PVP), on the 

performance of printed nickel-zinc battery via cyclic voltammetry and charge-discharge analysis. Other 

characterization methods such as SEM and XRD were also done in order to evaluate the surface morphology 

and to validate the presence of the active material within the printed electrode. Section 2 of this paper will 

explain the materials selection and the experimental setup for this research. Section 3 displays all the results 

based on the experiment done. Then, the result will be thoroughly discussed in section 4. Finally, the insight 

for further development of printed Ni-Zn battery is suggested in section 5. 

 

 

2. RESEARCH METHOD  

The three dimensional view of the battery is shown in Figure 1(a). The lateral design was chosen 

implementation of this battery as it has less risk of the short circuit and it relatively easier to be assembled as 

compared to the sandwich approach [14]. The electrode’s top view and dimensions are shown in Figure 1(b). 

The cross-section of the device is shown in Figure 1(c) where PET substrate, silver current collector, zinc 

oxide anode, nickel hydroxide cathode and potassium hydroxide (KOH) electrolyte. The snapshot of the 

electrodes and current collector printed on the PET substrate is shown in Figure 1(d). 

The raw materials for the printed battery electrodes were mixed and printed on printed silver current 

collector using screen printing technique [23]. A few sets of samples were fabricated and dried accordingly to 

be used for both half-cell and full-cell electrode evaluation. 3-electrode-cyclic voltammetry was used to study 

each of both half-cell electrodes electrochemical performance using graphite as the counter electrode, 

Hg/HgO (1M NaOH) as the reference electrode, whereas the working electrode was changed depends on 

which electrode to be studied. In this project, two different printed ZnO anode were studied by using 
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different types of polymeric binder, which are PVB and PVP. Both printed ZnO anode were printed on 

printed silver current collector (CI-1036) to be evaluated and compared to select the best out of the two 

electrodes. Meanwhile at cathode, the PVB-based printed Ni(OH)2 electrode was printed on printed silver 

current collector (CI-1036) and the CV data was evaluated and recorded. The finalized version of the printed 

battery electrodes was then sent for SEM and XRD to observe the morphology of the electrodes and to 

validate the presence of the active materials on the printed electrode. Once the electrochemical performance 

of each electrode were studied, a new fresh printed battery sample was assembled and sealed to evaluate its 

actual performance using charge-discharge analysis and the redox peak of the complete printed battery 

sample was measured using the two-electrode cyclic voltammetry. All the data collected was analysed and 

discussed in the next section. 

 

 

 

 

 
 

 

  

(a) (b) 

  

   

(d) (e) (c) 

 

Figure 1. Clockwise from left, (a) 3D view of lateral design of the printed battery, (b) Top view of the 

electrode and its dimensions, (c) Printed Ni-Zn battery cross-section, (d) Fabricated electrodes and current 

collector on PET, (e) Fully-sealed printed battery 

 

 

2.1.  Materials 

The PET substrate was recycled from conductive ITO film substrate (ITO400, 150µm), purchased 

from NejiLock, Singapore. Silver ink (CI-1036) purchased from engineered conductive materials, USA was 

printed on PET to form the current collector for both electrodes. The anode electrode was evaluated by 

varying its binder materials using either PVP or PVB. All other elements were fixed for both electrodes. Two 

sets of anode ink were mixed separately using two different binders, which are PVB (P110010) and PVP 

(average molecular weight 360000 g/mol, PVP360) purchased from Sigma-Aldrich, UK. The other 

components of the anode are Zn (particle size 1-5µm, GF09783018, Aldrich), ZnO (particle size<5µm, 

205532, Sigma Aldrich), Bi2O3 nano-powder (particle size: 90-210nm, 637017 Aldrich) all purchased from 

Sigma-Aldrich, UK, Super P conductive carbon black (TIMCAL) purchased from KGC Resources, Malaysia 

and 1-ethoxy-2-propanol (25905, ACROS) purchased from Fischer Scientific, Malaysia. The composition of 

of the formulation is detailed in Table 1.  

The cathode nickel (II) hydroxide electrode used PVB (P110010) purchased from Sigma-Aldrich, 

UK as its binder. The cathode ink comprised of Ni(OH)2 (average particle size: 5.2µm, 283622 Aldrich), Zn 

(GF09783018) both purchased from Sigma-Aldrich, UK, conductive carbon black (Cabot Black Pearl 2000), 

purchased from Cabot China, and 1-ethoxy-2-propanol purchased from ACROS, Malaysia as the solvent. 

These items were mixed with PVB binder. Details of the cathode formulation is shown in Table 1. 
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Table 1. Electrode ink material composition 

Electrode Materials 
Weight (g) 

PVB-based PVP-based 

Anode 

ZnO 2.922 2.922 

Zn 1.402 1.402 

TIMCAL SP 0.292 0.292 

Bi2O3 0.5845 0.5845 

PVB 0.3507 0 

PVP 0 0.3507 

1-ethoxy-2-propanol 3 5 

Cathode 

Ni(OH)2 4.910 4.910 

Zn 0.292 0.292 

Cabot BP2000 0.292 0.292 

PVB 0.3507 0 

1-ethoxy-2-propanol 5 9 

 

 

2.2.  Fabrication methods 

The solid powders (zinc, zinc oxide, carbon black and Bi2O3) were dry-mixed for 1 minute using 

ARE 310 planetary centrifugal mixer at 2000 rpm. All the electrode inks were mixed using. In a separate 

container, the solvent and binder were mixed at intervals of 20 minutes with 20 minutes rest in between. 

Next, this mixture is combined with the powder mixture and further mixed for 20 minutes. Then, the ink is 

ready to be printed. The same mixing procedure is used for both binder sets of anode and cathode. 

The silver ink was manually screen-printed on PET and dried in Contherm Thermotec 2000 batch 

oven at 120°C for 30 minutes. The screen mesh used is a polyester mesh with a mesh count of 70 th/inch. 

Similar mesh size was used for both anode and cathode printing. Next, the PVB-based ZnO anode ink was 

screen-printed on one of the current collectors and dried in the oven at 100°C for 1 hour. Once the printed 

anode was dried, the PVB-based Ni(OH)2 cathode ink was printed on the other side of the current collector 

and dried with similar temperature and time settings. The printing and drying steps were repeated for  

PVP-based anode and PVB-based cathode ink. The overall electrode printing and drying process are 

illustrated in Figure 2. 

The printed anode and cathode are next cut using scissors and separated. A Whatman filter paper 

with a pore size of 11 µm and a thickness of 180 µm is used as a separator to avoid the anode and cathode 

shorting each other. Next, the three layers, anode, separator and cathode are assembled together and placed in 

a battery-grade aluminum pouch case. The aluminium pouch is then partially seaded and injected with the 

aqueous 4M potassium hydroxide (KOH) that was mixed with ZnO until saturation. Next, the pouch is fully 

sealed and is now ready for further evaluation. The pre-assembled electrode and fully sealed printed zinc 

battery is shown in Figure 1(d) and Figure 1(e). Several samples were produced for testing. 

 

 

  
  

(a) 

 

 
 

(b) 

 

Figure 2. These figures are, (a) Top view of anode and cathode, (b) The electrode printing process. First, the 

silver current collector was first screen printed and dried in the oven, Next, the ZnO anode was printed on 

one of the silver current collectors. The second current collector is covered with nickel (II) hydroxide 
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2.3.  Experimental setup for electrochemical characterization and battery testing 

Prior to assembly and packaging, each pair of the electrode was tested using half-cell cyclic 

voltammetry (CV) [24] in order to validate its redox reactions. Half-cell CV measurements were made using 

the three-electrode setup using an Autolab potentiostat (PGSTAT 302N) as shown in Figure 3(a). The 

reference electrode (RE) is Hg/HgO (1M NaOH) and counter electrode (CE) is a graphite rod. Three different 

working electrodes (WE) were tested, printed PVB-based ZnO, PVP-based ZnO, and PVB-based Ni(OH)2. 

The electrodes are immersed in 4M KOH+ZnO electrolyte and the CV was run at a scan rate of 10mV/s. 

Different potential windows were used for different working electrodes namely i) -2V to -0.5V for ZnO [25], 

ii) -0.2V to 0.6V for Ni(OH)2 [26]. Next, scanning electron microscope (SEM) and x-ray diffraction (XRD) 

analysis were performed in order to validate the presence of ZnO and Ni(OH)2 on the electrodes as well as to 

observe the morphology of the printed electrode. The electrode’s surface morphology was captured at 

10000x for ZnO and 1000x for Ni(OH)2.. 

Once the individual electrodes are proven to be satisfactory, the electrodes are packaged in a pouch 

to form a battery as shown in Figure 1(e). Next, to test the functionality of the battery, two-electrode CV was 

performed by using the anode as the WE, while RE/CE is connected to the cathode using the potentiostat. 

The same electrolyte and scan rate were used for this test with the scanning window set to 0V to 2V. This 

scanning potential window was fine-tuned until the best redox peak is obtained. Next, charge-discharge 

analysis was conducted in order to evaluate the performance of the printed zinc battery using a battery tester 

(Neware BTS4000-5V20mA-8CH). The negative terminal was connected to the current collector with the 

ZnO electrode, while the positive terminal is connected to the current collector with Ni(OH)2 electrode as 

shown in Figure 3(b). Another charge-discharge analysis was done by reducing the amount of the binder by 

50% for both electrodes. This is to study the effect of reducing the binder amount on battery performance.  

 

 

 

 

  

(a) (b) 
 

Figure 3. These figures are, (a) Three-electrode setup for cyclic voltammetry for printed electrodes half-cell 

redox reaction analysis, (b) Experimental setup for charge-discharge test using battery tester 

 

 
3. RESULTS AND DISCUSSION 

The half-cell measurement results using the three-electrode setup for three different andoes: PVP-

based ZnO, PVB-based ZnO and PVB-based Ni(OH)2 are shown in Figure 4. The CV curve for PVP-based 

ZnO as shown in Figure 4(a) shows a less pronounced reduction peak as compared to PVB-based ZnO as 

shown in Figure 4(b). This shows that the printed ZnO electrode with PVB as binder performed better than 

PVP-based ZnO. The CV curve of PVB-based ZnO is also more stable since cycle 2 and 3 are consistent. 

The PVB-based Ni(OH)2 as shown in Figure 4(c) also shows pronounced redox peak current. Thus, both  

PVB-based ZnO and Ni(OH)2 can be used for printed zinc battery development. 

The next experiment performed was XRD and scanning electron microscopy (SEM) for the ZnO 

and Ni(OH)2 electrode samples. Figure 5(a) shows the XRD measurement results for the anode which 

indicates the presence of ZnO and carbon peaks. The XRD performed on the cathode shows distinct Ni(OH)2 

peaks that can be seen in Figure 5(b). This shows that the electro-active materials were successfully 

transferred to the sample. SEM image illustrated in Figure 5(c) show that the ZnO anode has smaller particle 

sizes which are less than 1 um in size. The Ni(OH)2 SEM image shown in Figure 5(d) show much larger 

particles with average sizes of 5 µm. This indicates that the ZnO has higher surface areas compared to the 

cathode. The structure of anode materials is also crucial for longevity of battery cycle life. Utilization of 
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nanoscale zinc oxide could increase the contact surface area between electrode and electrolyte thus 

improving the efficiency of the electrode, its volumetric capacity, and provides enhanced  

cycle stability [19]. 

 

 

   
   

(a) (b) (c) 

 

Figure 4. The half-cell reaction cyclic voltammogram for, (a) PVP-based ZnO anode, (b) PVB-based ZnO 

anode, (c) PVB-based Ni(OH)2 cathode. Each of the anodes were printed on a silver current collector 

 

 

  
  

(a) (b) 

  

  
  

(c) (d) 

 

Figure 5. These figures are, (a) XRD measurement results for anode ZnO, (b) SEM image of anode ZnO,  

(c) XRD measurements for nickel hydroxide cathode, (d) SEM image for nickel hydroxide cathode showing 

the larger grain sizes compared to ZnO 

 

 

Next the electrodes are packaged in the pouch cell and battery functionality tests are conducted. The 

charge discharge analysis was first performed using the battery tester and its results is as shown in Figure 6. 

At least 5 consistent cycles with nominal voltage of 1.56V can be observed. The discharge capacity at the 

2nd cycle was recorded as 1.3407 mAh or equivalent to 0.153 mAh.cm-2. The coulombic efficiency at the 

2nd cycle is 94.71% which can be obtained by calculating the discharge capacity over the charge capacity. 
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Despite having a fairly good charge-discharge curve, it was observed that after several cycles, the cathode 

current collector turns to black, while the separator turns yellow as shown in Figure 7(a). The printed battery 

lifetime also ends at this point. It is hypothesized that the current collector turns black is due to a chemical 

reaction which causes silver (white) to change into silver oxide (black) when exposed to the electrolyte. The 

yellow stain at the separator shows the presence of silver hydroxide in the electrolyte. The stain occurs when 

silver hydroxide dissolves into the electrolyte and then is stuck at the separator. To study this phenomenon 

further, an electrochemical study was done using three-electrode CV or half-cell reaction using an electrode 

covered only with silver ink. The CV results are shown in Figure 7(b). When comparing Figure 7(b) to 

Figure 4(c), both curves look similar. This confirms instead of a Ni-Zn battery; the device performs as an  

Ag-Zn battery. This is probably due to the fact that silver is more dominant and has higher tendency to 

reduce as compared to Ni(OH)2. The behavior of zinc silver is also confirmed by looking at the nominal 

voltage of the charge-discharge curve, which is between 1.5V-1.6V as mentioned before. 

 

 

 
 

Figure 6. Charge discharge curve of printed zinc battery 

 

 

The full cycle, two-electrode cyclic voltammetry with ZnO as its anode and Ni(OH)2 as its cathode 

was also conducted and its results are shown in Figure 7(c). It can be seen from the CV results that redox 

reaction occurs between the pair of electrodes. The peak current is observed between 0.4V to 1.7V, which 

confirms that the developed printed battery is functioning and matches the behaviour of zinc silver battery. 
 

 

 

  
   

(a) (b) (c) 

   

Figure 7. These figures are, (a) Image of the silver current collector turns to silver oxide (black) and silver 

hydroxide (yellow), (b) Half-cell reaction cyclic voltammogram of silver, (c) Full-cell reaction  

(two-electrode) cyclic voltammogram for printed zinc battery 

 

 

4. CONCLUSION 

A printed zinc battery was successfully fabricated and tested. The electrodes were formed using 

silver ink with either zinc or nickel hydroxide. Two different binders were tested when mixing the ink, 

namely PVB and PVP. It was found that the PVB binder delivered better electrochemical performance than 

PVP at the anode. XRD and SEM measurements were obtained for both electrodes to determine their 

material composition and surface area. The functionality of the printed battery was verified using cylic 
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voltammetry (both two and three electrode) tests as well as charge-discharge analysis. The nominal voltage 

recorded for the developed printed zinc battery is 1.56V with a discharge capacity of 1.3407 mAh, which also 

equivalent to 0.153 mAh.cm-2. Based on the experiments, it was found that silver ink is not a suitable current 

collector for Ni(OH)2 as a printed battery cathode as it will dominate the electrochemical reaction at the 

cathode due to its high reduction potential. Alternatively, printed current collector based on stainless steel or 

a high and inert carbon-based current collector such as graphene can be considered for future development.  
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