
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 5, October 2021, pp. 2742~2750

ISSN: 2302-9285, DOI: 10.11591/eei.v10i5.2812 2742

Journal homepage: http://beei.org

Comparative analysis of the essential CPU scheduling

algorithms

Hoger K. Omar1, Kamal H. Jihad2, Shalau F. Hussein3
1,3Presidency of University of Kirkuk, University of Kirkuk, Iraq

2College of Science, University of Kirkuk, Iraq

Article Info ABSTRACT

Article history:

Received Jan 18, 2021

Revised Apr 30, 2021

Accepted Jul 14, 2021

 CPU scheduling algorithms have a significant function in multiprogramming

operating systems. When the CPU scheduling is effective a high rate of

computation could be done correctly and also the system will maintain in a

stable state. As well as, CPU scheduling algorithms are the main service in the

operating systems that fulfill the maximum utilization of the CPU. This paper

aims to compare the characteristics of the CPU scheduling algorithms towards

which one is the best algorithm for gaining a higher CPU utilization. The

comparison has been done between ten scheduling algorithms with presenting

different parameters, such as performance, algorithm’s complexity,

algorithm’s problem, average waiting times, algorithm’s advantages-

disadvantages, allocation way, etc. The main purpose of the article is to

analyze the CPU scheduler in such a way that suits the scheduling goals.

However, knowing the algorithm type which is most suitable for a particular

situation by showing its full properties.

Keywords:

Average waiting time

CPU scheduling

Non-preemptive

Operating systems

Preemptive

This is an open access article under the CC BY-SA license.

Corresponding Author:

Shalau F. Hussein

Presidency of University of Kirkuk

University of Kirkuk, Kirkuk, Iraq

Email: shalaufarhad@uokirkuk.edu.iq

1. INTRODUCTION

Scheduling is a major job of an operating system (O.S) [1]. The methods of scheduling play a big

role in the performance of the central processing unit (CPU) since it decides the utilization of the resources

[2]. For CPU switching between multi processes, there are a lot of algorithms. The primary aim of scheduling

is to check the fairness among processes in the ready queue with increasing the throughput and minimizing

some undesirable things such as the average waiting time [3]. Processes in the computer system have

dissimilar forms for example “dis-joint process, co-operating process, and interacting processes”. Figure 1

presents the process lifecycle [4].

Relying on the process types and features, the processes will be located in the process control block

(PCB). All the computation of the processes and also all of the data flow that happens inside the computer is

controlled by this CPU with using one of the scheduling algorithms [5]. In the environment of

multiprocessing, there is a lot of process at the same time consequently so, the demand for an efficient

scheduling algorithm is very necessary [6]. The main types of CPU scheduling algorithms are: “first come

first serve (FCFS), shortest job first (SJF), priority scheduling, and Round Robin (RR)” [7]. Furthermore,

with the huge development in this technical era the serve of “very large-scale integrated circuit VLSI” is a

good potential to create a processor with high power [8]. A Unitary standard that must be accomplished

through scheduler is reducing the average waiting time for the processes entirely [9]. The operating system

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Comparative analysis of the essential CPU scheduling algorithms (Hoger K. Omar)

2743

usually has three scheduler types which are long-term scheduler also called high-level (long-term) scheduler,

mid-term scheduler and short-term scheduler it also called CPU scheduler or dispatcher [10].

Figure 1. Process lifecycle [4]

The long term determines which tasks or processes are to be accepted to get the ready queue so

when establishing an attempt for process execution, its admission to the band of executing processes

currently which is either authorized or stayed (delay) through the long-term scheduler. Hence, this scheduler

orders which processes are to run on a system and the concurrency level should be backed at any time.

The mid-term scheduler temporarily deletes the processes of primary memory and puts them on the

secondary memory for example, put them in a disk drive or contrariwise. This is usually concerned as

processes swapping out or processes swapping in as well as incorrectly as paging out or paging in [11].

The short-term scheduler which is also called the CPU scheduler determines which of the processes

being in the ready queue and in memory to be executed in another term of meaning which one is inserted in

the CPU. As well as, it is controlled multiprogramming degrees for knowing how many jobs are accepted.

This type of schedule can be preemptive by meaning that it is capable to delete processes forcibly from the

CPU when it needs to settle another process to that CPU or it can be non-preemptive in that situation the

scheduler is unable to remove the processes forcibly from the CPU.

The objective and motivation of this article are to know all the characteristics of the basic CPU

scheduling algorithms. However, comparing between them based on many criteria for selecting appropriate

algorithm according to the job and system requirements. The organization of the rest paper is depicted as;

section 2 presents the related work. In section 3, the criteria of the CPU scheduling are explained. Describing

the policies of scheduling algorithms are given in section 4. In section 5, many types of CPU scheduling

algorithms are illustrated. In section 6, the comparisons between many scheduling algorithms are presented.

Section 7 concludes the article.

2. RELATED WORK

A huge number of researches are published on the subject of operating system scheduling

algorithms recently. This paper is the extension of the previous researches that printed in this field. A lot of

the research workers formulate different scheduling algorithms, these different algorithms provide different

work based on the model that they used to enhance these algorithms. There have been several approaches for

CPU scheduling, this part of the article concentrates on the latest contributions of CPU scheduling.

S. Almakdi and et al., 2015 [12] discussed the significance of multi-programming, and how

scheduling the processes by utilizing several CPU scheduling algorithms. Also simulated and assessed the

algorithms in the state of more than one core. As well as they make a comparison among the performance of

CPU scheduling algorithms with dissimilar parameters such as processes number. In addition, R. Guadaña

and et al., 2013 [13] give an elaborate search on the CPU scheduling and investigated a lot of kinds of

scheduling. Also, two scheduling strategies were mentioned in their papers which are the preemptive and

non-preemptive scheduling strategies. For knowing which type of algorithms are suitable for the particular

CPU scheduling goals, and for that many illustrations were given in each algorithm. However, they identify

how does CPU helps jobs that are established by a user via a Scheduling Algorithm. CPU fulfills every

program instruction in a chronological sequence and executes the fundamental arithmetic, logical, and I/O

tasks of the system when the algorithm of scheduling is utilized through the CPU to cover all processes. L.

Kishor and et al., 2013 [14] have talked about scheduling and then several kinds of scheduling.

Comparing the major algorithms is also presented by applying the MATLAB program which means

they are implemented practically. Through such an observational install, they put an analysis for evaluating

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2742 – 2750

2744

the function of every basic scheduling algorithm. However, N. Goel and et al., 2012 [10] they explained

some mechanism about the handling of shortest process in SJF scheduling that tends at the consequences

increasing in the long processes waiting time so, the process with the long job never served and though that

gives the smallest average waiting time and average turnaround time. The suggestion is that every type of

simulation that used in the CPU scheduling contains accuracy but it is limited. For that limitation, the sole

solution method for evaluation is a scheduling algorithm with coding it and then insert it into the real

operating system, after that the best potentiality of working in the algorithm is assessed in real-time.

Furthermore, S. Nager and et al., 2017 [15] find out that FCFS is the simplest scheduling algorithm and the

easiest one for implementation for that reason it is working properly with batch and interactional systems.

The SJF algorithm is implemented easily in case the next CPU request length is known. R.R algorithm

handle every process in an equal way and provide the same time quantum (TQ) for all process but, it is

difficult to determine the (TQ) properly and fitted for time sharing. Whenever if the process has priority than

the others it can schedule through priority scheduling. But the process with the lower priority has a problem

of starvation.

Recently, these scheduling algorithms are mixed to construct a new model named multilevel queue

scheduling. This type has starvation trouble for removing this problem it is changed into multilevel feedback

queue scheduling. In addition, I. Qureshi, 2014 [16] This researcher provides a newer rating work research

and used several algorithms, phases and methods about CPU scheduling in his paper, as well as he makes a

comparison based on the overhead, throughput, turnaround time and response time of the CPU. Besides, a

survey on many scheduling algorithms is illustrated through a group of parameters for example, the time of

running, waiting and expecting are discussed. Moreover, K. ElDahshan and et al., 2017 [17] present a huge

comparison on RR algorithm type with focusing on the pros and cons. Also, M. Abur and et al., 2011 [18]

noticed after applying each scheduling algorithm via utilizing exponential distribution that RR leads to a

minimum average waiting time but not in every environment. Simulations are costly and need a lot of time

but, the Simulation method gives an accurate outcome in assessing the CPU Scheduling. Similarly, V.

SINGH and et al., 2013 [19] utilized simulation of exponential probability distribution function. This

simulator is applied for computing the waiting time (W.T) since W.T is the measure for examining the

performance of the CPU.

3. THE CRITERIA OF CPU SCHEDULING

Different scheduling algorithms exist and the performance of each one can be evaluated by several

criteria. Also, each one has dissimilar properties, and the selection of a special algorithm may favor one

processes class above another one. In selecting an algorithm to be used in a particular place there is a point

which is the properties of the various algorithms. A lot of measures have been proposed for CPU scheduling

algorithm comparison and, any features are applied for comparison can make a crucial difference. Some

features are [20], [21]:

a. Utilization of CPU: ahead of time till CPU stays as busy as possible, or maintain the CPU 100% busy all the

time.

b. Throughput: the number of processes that finish the execution per time unit.

c. Burst time: the total time needed for executing the process.

d. Completion time: when the process finishes its execution that is called the completion time.

e. Turn-around time: the needed time to execute a process which means starting from the submission time until

the completion time. It is referred by:

Turnaround time=completion time-arrival time

f. Time of waiting: the sum of time that process spent in a queue. It is referred by:

Waiting time=turnaround time-burst time

g. Response time: the quantity of time starting from the submission of a request to producing the first reaction.

h. Fairness: ensuring that every process obtains a fair CPU share.

4. CPU SCHEDULING POLICIES

Generally, the policies of scheduling either pre-emptive or non-preemptive [22].

4.1. Non-preemptive scheduling

Non-preemptive occurs in a multiprogramming system which means the short-term scheduler

permits the process to run until it terminates or in some cases waiting for an event. In another word, the

current process frees the CPU either by finishing or by changing to the state of waiting.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Comparative analysis of the essential CPU scheduling algorithms (Hoger K. Omar)

2745

4.2. Preemptive scheduling

Pre-emptive rules push the process which is active currently for releasing the CPU on particular

events for instance, a clock interrupts, input & output interrupts and a call of the system. The process that is

executed currently needs to release the CPU involuntarily if a high-priority process puts into the ready queue.

5. CPU SCHEDULING ALGORITHMS

Scheduling stands for deciding which jobs run whenever there are more than runnable jobs. There

are various objectives for competing these scheduling algorithms. These objectives are the throughput and

turnaround time as well as the response time [23]. In another term of meaning the scheduling of CPU is the

procedure of identifying which process in the queue will allocate firstly to the CPU. Many types of well-

known scheduling algorithms will be described in the next subsections.

5.1. First come first served scheduling

It is the simplest type of scheduling algorithm and according to its name, any process that comes

first will be executed first which means it is a FIFO queue. Hence there are a lot of troubles linked with this

type such as if the process that served firstly is too long then other processes that are shorter must wait for a

long time and as consequence, this will lead to increasing the average waiting time. This trouble is also called

the convoy effect. The process does not abandon the CPU until it either finishes or performs I/O [24].

5.2. Shortest job first scheduling algorithm (non-preemptive)
In this scheduling algorithm, the selection of the process is according to the smallest burst time of

the process execution. Because we get a minimum waiting and turnaround time, this scheduling algorithm is

good when compares with FCFS scheduling algorithms [25]. But also, it contains some weaknesses such as it

is extremely hard to know the following CPU burst time request. As well as this algorithm is not applied for

the shortest level CPU scheduling. Finally, the major drawback of this type is the process starvations [26].

5.3. Longest job first scheduling non-preemptive
This type of algorithm is directly the opposite applies of the SJF type. It differs from its working by

taking and putting the processes that are longer jobs before the shorter jobs to the CPU. In general, the

advantages consist of the easiness of calculating the longer jobs that causes calculating the shorter jobs much

easier. This type of schedule is very practicable in the engineering outfit especially in electro-mechanics [27].

5.4. Longest remaining time first scheduling

In this type, the burst time (BT) of the process is determined and examined after all the time units.

After finishing one unit the process that consisting of the biggest burst time will be scheduled the following.

It is also known as longest job first scheduling (LJFS) preemptive type.

5.5. Shortest remaining time first scheduling

In this case of the scheduling algorithm, the ready queue is prepared based on the burst times of the

processes. The procedures which need a little measure of time for completion are put ahead of the queue [28].

It is preemptive and this goes to the partition of the process into two divisions, hence producing extra context

switching. And the process burst time is watched after all time units. After finishing one unit check the

process that inducing the shortest burst time to be next scheduled. This type also is known as the “Shortest

Job First Scheduling-Preemptive type”.

5.6. Round Robin

The RR CPU scheduling algorithm is cited as standard RR and it is a preemptive type that allocates

a slice of time named TQ which stands for time quantum. For every process in the ready queue [29].

Whenever the TQ completes, the current process is preempted and put in the rear of the ready queue [30]. RR

is usually applied in real-time and time-sharing operating system because it provides every process an

average share of time to utilize the CPU and gives a small response time. Moreover, the Standard RR

algorithm has many weaknesses such as small throughput and big turnaround time as well as the big waiting

time and also the huge context switches number [31]. The most exciting thing with the RR algorithm is the

time quantum. On the one hand, putting a low TQ makes many context switches that lead to low performance

of the CPU On the other hand, putting a large TQ might lead to a bad response time. The RR algorithm

works as FCFS.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2742 – 2750

2746

5.7. Priority scheduling for preemptive and non-preemptive types

In the priority scheduling algorithm, there is a classification of processes according to some system

criteria depending on the processed type. The priority of the process is made by a group of measures and any

process inserting the ready queue provides its importance as a priority. Only the priority number determines

the allocating decision to the CPU for a process in a way that the high-value priority of the process will arrive

at the CPU first or next. Two types of version exist for this algorithm which is preemptive and non-

preemptive. In the preemptive Type of this algorithm, the lowest priority process may be suffering from

starvation in case of a process with big priority keep to coming to the ready queue [32], [33].

5.8. Multilevel queue scheduling

The processes can be categorized into dissimilar parts based on their position. For instance, the

general partition among processes is foreground processes and background processes. Foreground processes

are known as interactive processes and background processes are known as batch processes. These cases of

processes contain dissimilar response-time demands and scheduling requirements. Besides, foreground

processes consist of a priority above background processes. So, the ready queue is divided into various divide

queues. Also, every queue contains its scheduling algorithm. For instance, the foreground queue applies

Round-Robin Scheduling plus the background queue applies FCFS scheduling type [34]. In general, the big

priority process is located at the top of the ready queue stage and small priority processes are invested in a

backside ready queue stage. Whenever this method is adopted then the process is put at the bottom of the

ready queue stage the problem of starvation may be increased. Figure 2 illustrates the state diagram of

multilevel queue scheduling (MLQ).

Figure 2. State diagram of multilevel queue scheduling

5.9. Multilevel feedback queue scheduling

This same idea of multilevel queue scheduling is repeated here only, the processes that do not finish

their execution at the top stage are disrupted and put in the following stage of the ready queue for removing

the starvation problem. But, the essential troubles with this type of scheduling are firstly: how to determine

and select the optimal queue numbers for scheduling? Secondly: how much the duration of time quantum for

each queue is being? Finally: how the priority is put for every job. Hence, starvation will not occur. The

majority of the multilevel feedback queue scheduling (MLFQ) schedulers allow for variable quantity

duration of the time quantum TQ in the queues. Usually, big priority queues are allocated to small-time

quantum for interactive jobs and the smaller priority queues are allocated to the long-time quantum. Hence,

there are variances in the length of TQ between several queues. This algorithm attempt to optimize the

medium turnaround time and MLFQ wants that the system must be reactive more so, that it leads to reduce

the response time [35]. Nevertheless, this algorithm such as RR reduces the response time but regrettably

maximizes the turnaround time [36].

6. COMPARISON BETWEEN VARIOUS SCHEDULING ALGORITHMS

In this section, all the characteristics of the upper mentioned scheduling algorithms are explained by

the following Tables 1-4 which are consist of many significant criteria that related to each algorithm.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Comparative analysis of the essential CPU scheduling algorithms (Hoger K. Omar)

2747

Table 1. Algorithm’s complexity & allocation way
No. Algorithms Complexity Allocation
1 FCFS Not complex According to the order of the process arrives the CPU will allocate
2 SJF More complex than FCFS The allocation of the CPU is based on the lowest CPU burst time

(BT).
3 LJFS More complex than FCFS The allocation of the CPU based on the highest CPU burst time (BT).
4 LRTF More complex than FCFS Such as LJFS the allocation of the CPU based on the highest CPU

burst time (BT). But it is a preemptive type
5 SRTF More complex than FCFS Such as SJF the allocation of the CPU based on the lowest CPU burst

time (BT). But it is a preemptive type
6 R. R The complexity depends on TQ

size
according to the order of the process arrives with fixed time quantum

(TQ)
7 PR preemptive This type is complex According to the priority. The bigger priority task executes first
8 PR non-

preemptive
This type is less complex than PR

non-preemptive
According to the priority. with monitoring the new incoming higher

priority jobs
9 MLQ, More complex than the previous According to the process that resides in the bigger queue priority

10 MFLQ Complex but also the complexity

rate depends on the TQ size

According to the process of a bigger priority queue.

Table 2. Algorithm’s AWT & starvation problem
No Algorithms Average waiting Time (AWT) Starvation
1 FCFS Large. No
2 SJF Smaller than FCFS Yes
3 LJFS Depend on some measures e.g., arrival time, process size, etc. Yes
4 LRTF Depend on some measures e.g. arrival time, process size, etc. Yes
5 SRTF Depend on some measures e.g. arrival time, process size, etc. Yes
6 R. R Large as compared to SJF and PR No
7 PR preemptive Smaller than FCFS Yes
8 PR non-preemptive Smaller than FCFS Yes
9 MLQ, Smaller than FCFS Yes

10 MFLQ Smaller than all scheduling types in many cases No

Table 3. Algorithm’s preemption support & performance
No Algorithms Preemption Performance
1 FCFS No Slow performance
2 SJF No Minimum AWT
3 LJFS No Big turn-around time.
4 LRTF Yes The preference is given to the longer jobs
5 SRTF Yes The preference is given to the short jobs
6 R. R No Each process has given a fairly fixed time
7 PR preemptive Yes Well performance but contain a starvation problem
8 PR non-preemptive No Most beneficial with batch systems
9 MLQ, No Good performance but contain a starvation problem

10 MFLQ No Good performance

Table 4. Algorithm’s implementation & advantages-disadvantages
No Algorithms Implementation Advantages Dis- advantages

1 FCFS Easiest scheduling algorithm type. The overhead of

Scheduling is short

1-Low throughput
2-This type might head to poor

overlap of I/O

2 SJF This algorithm is more difficult than
FCFS. But compatible with a batch

system

1-reduce waiting time

2-I/O jobs have a priority

above CPU-bound jobs

Knowledge about the duration of the
next CPU is needed & it is hard to

estimate

3 LJFS Easy, it is the opposite of SJF Implementation is easy. Monopolise CPU
5 SRTF difficult applying it in interactional

systems
The little process executes

fastly.

potential of Starvation

6 R. R In this type, the performance relies

on the time quantum size
1-Performs all processes

fairly.

2-It is solved the

Starvation trouble.

1-Difficult to maintain TQ

2-Equal timeshare is not good

thought in every case for instance, in

highly interactive processes.
7 Priority

preemptive
More complex

than non-preemptive type.
Waiting time step by step
growths for equal priority

process.

Overhead of Scheduling &
Starvation.

8 “Priority non-
preemptive”

Moderate complexity. Big priority jobs are
completed much faster.

Get complex when priority selection
of process is not fair.

9 “MLQ” This type is hard to understand. Various algorithms are

used for various process
types.

The problem of starvation.

10 “MFLQ” More complex than MLQ & the

performance relies on the TQ size.
Neglect the starvation

problem
Additional context switching is

wanted.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2742 – 2750

2748

7. CONCLUSION AND FUTURE WORK

CPU scheduling is one of the extremist and significant duties of the operating system. Scheduling

algorithm should be selected relying on the whole essential scheduling factors such as response time, waiting

time, and turnaround time, in addition, all the other factors should be regarded as a major role for

construction. In this paper, a comparison between ten major scheduling algorithm characteristics is

introduced. Furthermore, a brief analysis of nine important criteria and measures that belongs to the

mentioned ten algorithm types are presented. For instance, performance, implementation, advantages, and

disadvantages as well as some other factors are demonstrated for showing the strength and weakness of every

single algorithm type. This study concludes that there are a lot of techniques for CPU scheduling but on the

other hand, none of them meets all the requirements. Because every single scheduling algorithm has its

weakness. For example, FCFS and RR have a long average waiting time. However, SJF, LJFS, LRTF, and

SRTF have a starvation problem, and MFLQ needs Additional context switching. So, selecting the best

algorithm type depends on the job and the system type according to the mentioned algorithm characteristics

in the tables. Nevertheless, there are also a lot of things that may occur in future researches for gaining the

best performance with minimum cost. Further investigations may find the ideal scheduling algorithms and

provide an effective solution in this field.

REFERENCES
[1] K. Noon, "A new Round Robin based scheduling algorithm for operating systems: Dynamic quantum using the

mean average," International Journal of Computer Science Issues, vol. 8, no. 3, pp. 224-229, May 2011.

[2] R. Dash, S. K. Sahu and S. K. Samantra, "An Optimized Round Robin CPU Scheduling Algorithm with Dynamic

Time Quantum," International Journal of Computer Science, Engineering and Information Technology (lJCSEIT),

vol. 5, no. 1, pp. 7-26, February 2015, doi: 10.5121/ijcseit.2015.5102.

[3] A. Alsheikhy, R. Ammar and R. Elfouly, "An improved dynamic Round Robin scheduling algorithm based on a

variant quantum time," 2015 11th International Computer Engineering Conference (ICENCO), 2015, pp. 98-104,

doi: 10.1109/ICENCO.2015.7416332.

[4] S. Zouaoui, L. Boussaid and A. Mtibaa, "Priority based round robin (PBRR) CPU scheduling algorithm,"

International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 1, p. 190-202, February 2019,

doi: 10.11591/ijece.v9i1.pp190-202

[5] M. Hannats, H. Ichsan and W. Kurniawan, "CPU implementation using only logisim simulator to achieve," Bulletin

of Electrical Engineering and Informatics, p. 748, April 2020.

[6] H. Kim, I. E. Hajj, J. Stratton, S. Lumetta and W. Hwu, "Locality-centric thread scheduling for bulk-synchronous

programming models on CPU architectures," 2015 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2015, pp. 257-268, doi: 10.1109/CGO.2015.7054205.

[7] J. Khatri, "An Enhanced Round Robin CPU Scheduling Algorithm," IOSR Journal of Computer Engineering

(IOSR-JCE), vol. 18, no. 4, p. 20, Jul.-Aug. 2016, doi: 10.9790/0661-1804022024.

[8] J. A. Trivedi and P. S. Sajja, "Improving efficiency of Round Robin scheduling using Neuro Fuzzy approach,"

International Journal of Research and Reviews in Computer Science, vol. 2, no. 2, pp. 308-311, 2011.

[9] M. U. Siregar, "A New Approach to CPU Scheduling Algorithm: Genetic round robin," International Journal of

Computer Applications, vol. 47, no. 19, pp. 18-25, June 2012.

[10] N. Goel and R.B. Garg, "A Comparative Study of CPU Scheduling Algorithms," International Journal of Graphics

& Image Processing, vol. 2, no. 4, pp. 245-251, November 2012.

[11] Abdulrafa Hoseen Maree, Najim Abdullah Tahhan, Maher Talal Alasaady, "New Optimized Priority CPU

Scheduling Algorithm by using Knapsack (NOPSACK)," GRD Journals- Global Research and Development

Journal for Engineering, vol. 5, no. 6, pp. 24-31, May 2020.

[12] S. Almakdi, M. Aleisa and M. Alshehri, "Simulation and Performance Evaluation of CPU Scheduling Algorithms,"

International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 3, pp. 1-5,

March 2015, doi: 10.17148/IJARCCE.2015.4301.

[13] R. R. Guadaña, M. R. Perez, L. Rutaquio Jr., "A Comprehensive Review for Central Processing Unit Scheduling

Algorithm," IJCSI International Journal of Computer Science Issues, vol. 10, no. 1, No 2, pp. 353-358, January

2013.

[14] L. Kisho and, D. Goyal, "Comparative Analysis of Various Scheduling algorithms," International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), vol. 2, no. 4, pp. 1488-1491, April 2013.

[15] S. K. Nager and N. S. Gill, "Comparative Study of Various CPU Scheduling Algorithm," International Journal of

Emerging Trends & Technology in Computer Science (IJETTCS), vol. 6, no. 2, pp. 40-45, March - April 2017.

[16] I. Qureshi, "CPU Scheduling Algorithms: A Survey," Int. J. Advanced Networking and Applications, vol. 05, no.

04, pp. 1968-1973, 2014.

[17] K. El Dahshan, A. A. Elkader and N. Ghazy, "Round Robin based Scheduling Algorithms, A Comparative Study,"

Automatic Control and System Engineering Journal, vol. 17, no. 2, pp. 29-40, December 2017.

[18] M. Abur, A. Mohammed, S. Danjuma and S. Abdullahi, "A Critical Simulation of CPU Scheduling Algorithm

using Exponential Distribution," IJCSI International Journal of Computer Science Issues, vol. 8, no. 6, No 2, pp.

201-205, November 2011.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

 Comparative analysis of the essential CPU scheduling algorithms (Hoger K. Omar)

2749

[19] V. Singh and T. Gabba, "Comparative Study of Processes Scheduling Algorithms Using Simulator," International

Journal of Computing and Business Research (IJCBR), vol. 4, no. 2, pp. 1-9, May 2013.

[20] M. Shoaib and M. Z. Farooqui, "A Comparative Review of CPU Scheduling Algorithms," in Proceedings of

National Conference on Recent Trends in Parallel Computing (RTPC - 2014), November 1-2, 2014, pp. 20-28.

[21] R. Mahadevan and N. Anbazhagan, "An Efficient Framework to Improve QoS of CSP using Enhanced Minimal

Resource Optimization based Scheduling Algorithm, "Indonesian Journal of Electrical Engineering and Computer

Science, vol. 12, no. 3, pp. 1179-1186, December 2018, doi: 10.11591/ijeecs.v12.i3.pp1179-1186.

[22] P. K. Suri and S. Mittal, "Design of Stochastic Simulator for Analyzing the Impact of Scalability on CPU

Scheduling Algorithms," International Journal of Computer Applications, vol. 49, no. 17, pp. 4-9, July 2012, doi:

10.5120/7717-1065.

[23] S. J. Kadhim and K. M. Al-Aubidy, "Design and Evaluation of a Fuzzy-Based CPU Scheduling Algorithm," in

Communications in Computer and Information science, vol. 70, pp. 45-52, January 2010, doi: 10.1007/978-3-642-

12214-9.

[24] H. Arora, D. Arora, B. Goel and P. Jain, "An Improved CPU Scheduling Algorithm," International Journal of

Applied Information Systems (IJAIS), vol. 6, no. 6, pp. 7, December 2013, doi: 10.5120/ijais13-451057.

[25] S. M. Ali, R. F. Alshahrani, A. H. Hadadi, T. A. Alghamdi, F. H. Almuhsin and E. E. El-Sharawy, "A Review on

the CPU Scheduling Algorithms: Comparative Study," IJCSNS International Journal of Computer Science and

Network Security, vol. 21, no. 1, pp. 22-26, January 2021, doi: 10.22937/IJCSNS.2021.21.1.4.

[26] Xiao-Zhi Gao, S. Gurumurthy and S. Venkatesan, "Improved CPU Utilization using Advanced Fuzzy Based CPU

Scheduling algorithm (AFCS)," International Journal of Electrical Sciences & Engineering (IJESE), vol. 1, no. 1,

p. 1-5, 2015.

[27] M. R. Mahesh Kumar, B. R. Rajendra, C. K. Niranjan and M. Sreenatha, "Prediction of length of the next CPU

burst in SJF scheduling algorithm using dual simplex method," Second International Conference on Current Trends

In Engineering and Technology - ICCTET 2014, 2014, pp. 248-252, doi: 10.1109/ICCTET.2014.6966296.

[28] M. Akhtar, B. Hamid, I. ur-Rehman, M.a Humayun, M. Hamayun and H. Khurshid, "An Optimized Shortest job

first Scheduling Algorithm for CPU Scheduling," Journal of Applied Environmental and Biological Sciences, vol.

5, no. 12, pp. 42-46, October 2015.

[29] S. B. Bandarupalli, N. P. Nutulapati and P. S. Varma, "A novel CPU Scheduling Algorithm–Preemptive & Non

Preemptive," International Journal of Modern Engineering Research (IJMER), vol. 2, no. 6, pp. 4484-4490, Nov-

Dec 2012.

[30] R. Roshan and K. S. Rao, "Least-Mean Difference Round Robin (LMDRR) CPU Scheduling Algorithm," Journal

of Theoretical and Applied Information Technology, vol. 88, no. 1, pp. 51-56, June 2016.

[31] C. McGuire, and Jeonghwa Lee, "Comparisons of Improved Round Robin Algorithms," Proceedings of the World

Congress on Engineering and Computer Science, vol. 1, pp. 158-161, 2014.

[32] P. Singh, A. Pandey and A. Mekonnen, "Varying Response Ratio Priority: A Preemptive CPU Scheduling

Algorithm (VRRP)," Journal of Computer and Communications, vol. 3, no. 4, pp. 40-51, doi:

10.4236/jcc.2015.34005.

[33] K. Chandiramani, R. Verma, M. Sivagami, "A Modified Priority Preemptive Algorithm for CPU Scheduling,"

Procedia Computer Science, vol. 165, pp. 363-369, 2019, doi: 10.1016/j.procs.2020.01.037

[34] J. S. Somani and P. K. Chhatwani, "Comparative Study of Different CPU Scheduling Algorithms," International

Journal of Computer Science and Mobile Computing, vol. 2, no. 11, pp. 310-318, November 2013.

[35] S. Raheja, R. Dadhich and S Rajpal, "Designing of vague logic based multilevel feedback queue scheduler,"

Egyptian Informatics Journal, vol. 17, no. 1, pp. 125-137, September 2015, doi: 10.1016/j.eij.2015.09.003.

[36] S. Raheja, R. Dhadich and S. Rajpal, "An optimum time quantum using linguistic synthesis for round Robin CPU

scheduling algorithm," International Journal on Soft Computing (IJSC), vol. 3, no. 1, pp. 57–66, 2012, doi
10.5121/ijsc.2012.3105.

BIOGRAPHIES OF AUTHORS

Hoger K. Omar is currently an instructor at the University of Kirkuk and head of the Lab

section in the quality assurance Department/presidency of Kirkuk University. His research

interests include Big Data Analysis, Data Mining, Web Mining, Text Classification, Machine

Learning, Operating systems, Distributed System with Hadoop. He received a bachelor's

degree in Computer Science from the University of Kirkuk / College of Science, Kirkuk, Iraq

in 2008 and a Master's degree in Information Technology from SPU University, Sulaimaniyah,

Iraq in 2019.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 5, October 2021 : 2742 – 2750

2750

Kamal H. Jihad is currently an instructor at the University of Kirkuk, Kirkuk, Iraq. He

received a B.Sc. degree in Computer Science from Kirkuk University/ College of Science,

Kirkuk, Iraq in 2007 and an M.Sc degree in Computer Engineering from Selcuk University,

Konya, Turkey in 2011. His research interests include Intelligent Systems, Artificial

Intelligence, and Operating systems.

Shalau F. Hussein is currently an instructor at the University of Kirkuk, Kirkuk, Iraq. She

received a B.Sc. degree in Computer Science from Kirkuk University/ College of Science,

Kirkuk, Iraq in 2007 and an M.Sc degree in Information Technology from Cankaya University,

Ankara, Turkey in 2014. Her research interests include Operating systems, GIS, and AI.

