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 This paper aims to conduct an analysis of the SARS-CoV-2 genome variation 

was carried out by comparing the results of genome clustering using several 

clustering algorithms and distribution of sequence in each cluster. The 

clustering algorithms used are K-means, Gaussian mixture models, 

agglomerative hierarchical clustering, mean-shift clustering, and DBSCAN. 

However, the clustering algorithm has a weakness in grouping data that has 

very high dimensions such as genome data, so that a dimensional reduction 

process is needed. In this research, dimensionality reduction was carried out 

using principal component analysis (PCA) and autoencoder method with 

three models that produce 2, 10, and 50 features. The main contributions 

achieved were the dimensional reduction and clustering scheme of SARS-

CoV-2 sequence data and the performance analysis of each experiment on 

each scheme and hyper parameters for each method. Based on the results of 

experiments conducted, PCA and DBSCAN algorithm achieve the highest 

silhouette score of 0.8770 with three clusters when using two features. 

However, dimensionality reduction using autoencoder need more iterations 

to converge. On the testing process with Indonesian sequence data, more than 

half of them enter one cluster and the rest are distributed in the other two 

clusters. 
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1. INTRODUCTION 

In December 2019, a pneumonia outbreak pneumonia occurred in Wuhan which was caused by a 

new virus called covid-19 (coronavirus disease 2019) or SARS-CoV-2 (severe acute respiratory syndrome 

coronavirus 2). The virus was first detected in Wuhan City, China, on 12 December 2019 [1]. The virus has a 

very high transmission rate, so that in just two months, the virus can spread from Wuhan to all of China, as 

well as 33 other countries. As of November 30, 2020, there were 62,363,527 confirmed cases of covid-19 and 

1,456,687 deaths due to covid-19 worldwide [2]. In Indonesia, the first case of covid-19 was announced on 

March 2, 2020, and as of November 30, 2020, 534,266 positive cases have been detected and 16,815 people 

have died due to covid-19 [3]. Symptoms that often appear in covid-19 patients include fever, headache, 

cough, expectoration, fatigue, and dyspnea. However, some patients show symptoms of shortness of breath, 

haemoptysis, diarrhea, and there are even patients who do not show any symptoms at all [4]. 

The SARS-Cov-2 virus has a high mutation rate because it is included in viral RNA so that the 

variety of the virus increases [5], [6]. Therefore, analysis of variations in the viral genome is urgently needed. 
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Variations in the covid-19 virus can be detected through genome analysis from samples of infected patients. 

The samples are collected from parts of the body where the coronavirus collects, such as a person's nose or 

throat. These samples were inserted into the polymerase chain reaction (PCR) tool and used optimal primers 

and probes to extract RNA from the virus [7], [8]. Based on the extraction/sequencing results, the  

SARS-CoV-2 genome has a length of 29,891 bp with a frequency of G and C of 38% [9]. In terms of genetic 

structure, SARS-CoV-2 has a different genetic structure compared to the previously identified SARS-CoV 

and MERS-CoV viruses, with a similarity rate of 79% against SARS-CoV and nearly 50% against  

MERS-CoV [10]. 

In this paper, dimensionality reduction and clustering analyses were carried out to cluster genome 

data from patients with covid-19 indication to analyze virus variation in several country in Asia and 

Indonesia. The method used is the principal component analysis (PCA) and autoencoder for dimensionality 

reduction and several clustering algorithms for genome clustering. Dimensionality reduction is needed to 

reduce dimensions and remove redundant features [11] from genome data which has very high dimensions, 

so that the data can be processed in the clustering method. PCA reduces the dimension of the data by 

calculating the eigen value and eigen vector from the training data [12]. PCA has been applied to a wide 

variety of data including microarray data [13] and DNA sequence data [14]. Autoencoder is an effective 

method to reduce dimensions of image data, text, and other complex data [11], [15]-[18]. Then several 

clustering methods are used to cluster the data resulting from dimensionality reduction method, including  

K-means, Agglomerative hierarchical clustering (AHC), Gaussian mixture models (GMM), density-based 

spatial clustering of applications with noise (DBSCAN), and mean shift clustering. Furthermore, clustering 

performance is measured using a Silhouette score, which has a value in the range of -1 to 1. 

The findings of this research are the dimensional reduction and clustering scheme of SARS-CoV-2 

sequence data, the performance analysis of each experiment on each scheme and hyper parameters for each 

method, distribution of SARS-CoV-2 genome sample variations in China, Japan, South Korea, Singapore, 

and India for training data and Indonesia for testing data on each of the resulting clusters. Finally, this paper 

is arranged in the following order: section two (proposed method) about the proposed schema methodology, 

which includes data acquisition and preprocessing, PCA and autoencoder, and clustering algorithms; section 

three (results and discussion) about experimental scenarios, presentation of results and discussion; and the 

final section (conclusion) about the research conclusions. 

 

 

2. RESEARCH METHOD 

Figure 1 shows a diagram process of the SARS-CoV-2 sequence clustering system. Genome 

sequence data of patients infected with covid-19 were obtained from EpiCoV, GISAID [19] which amounted 

to 4935 data (access on 21 November 2020). The data taken comes from several countries in Asia, including 

China, Japan, South Korea, Singapore, India, and Indonesia. Genome sequence from China, Japan, South 

Korea, Singapore, and India will be training data, and genome sequence from Indonesia will be testing data. 

The data is stored in .fasta format so that it requires a parsing process for the acquisition of sequence data 

only, without other information. Raw data of SARS-CoV-2 sequence can be seen at Figure 2. 

 

 

 
 

Figure 1. Pipeline of SARS-CoV-2 sequence clustering system 

 

 

In addition to the parsing process, data preprocessing was also carried out to form a complete 

sequence with a size of 1xN, where N is the number of nucleotides in one data, because the raw sequence in 

the fasta file consists of several nucleotide lines. Mapping DNA sequences is needed to convert DNA 

sequences into numerical sequences so that they can be processed at a later stage. The mapping technique 

used is the integer representation [20], [21], by modifying the integer numbers assigned to the nucleotide A, 

C, T, and G, because the number 0 is used for the padding process and other values if there is a missing 

value. The equation used for sequence mapping is presented in (1). Then the padding process is carried out 
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with the number 0 so that the length of the sequence becomes the same and produces a sequence length of 

30,018. Padding process is needed because PCA and autoencoder requires the same input length for all data. 

 

 

 
 

Figure 2. Raw data of SARS-CoV-2 sequences 

 

 

 

𝑋′(𝑖) = {

1, 𝑋(𝑖) = 𝑇

2, 𝑋(𝑖) = 𝐶
3, 𝑋(𝑖) = 𝐴

4, 𝑋(𝑖) = 𝐺

  (1) 

To extract important features in sequence data and reduce dimension data, feature 

extraction/dimensionality reduction is performed using the PCA and autoencoder method as shown in  

Figure 3. PCA reduces data dimension by transforming it into principal component obtained from calculating 

the eigenvalues and eigenvectors of training data. The eigenvectors that have the highest eigenvalues 

generated by PCA represent the most important features [22]. The eigenvalues and eigenvectors are obtained 

by solving the (2), where 𝐶𝑋 is covariance matrix of input X, 𝑣𝑚 is eigenvectors, and 𝜆𝑚 is eigenvalues [13]. 

The eigenvectors are sorted based on their eigenvalues which then become the principal components. In this 

paper, three PC models from the PCA reduction dimensions are compared which produce data with 50 

dimensions (PCA_50), 10 dimensions (PCA_10), and 2 dimensions (PCA_2). 

 

𝐶𝑋𝑣𝑚 = 𝜆𝑚𝑣𝑚  (2) 

 

 

 
 

Figure 3. General autoencoder architecture [17] 

 

 

The autoencoder model that is built consists of encoder and decoder. The encoder functions to 

extract features from the data used and also to reduce the dimensions of the data, while the decoder is used to 

reconstruct the reduced data into initial data [23], [24]. There are three architectures of the autoencoder 

model used in this task as shown in Table 1, which have differences in the depth of the architecture and the 
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number of output features extracted. The first autoencoder architecture (AE_50) use four dense layers (fully 

connected layer) for model encoder which have 500, 250, 100, and 50 neurons for each layer, and four dense 

layers for model decoder (100, 250, 500, and 30,018 neurons for each layer). The second autoencoder 

architecture (AE_10) use five dense layers for model encoder (500, 250, 100, 50, and 10 neurons for each 

layer), and five dense layers for model decoder (50, 100, 250, 500, and 30,018 neurons for each layer). The 

third autoencoder architecture (AE_2) use five dense layers for model encoder (500, 250, 100, 50, and 2 

neurons for each layer), and five dense layers for model decoder (50, 100, 250, 500, and 30,018 neurons for 

each layer). These three models are trained with Adam's optimization algorithm [25], [26] which is a first 

order gradient descent optimization algorithm and estimates the adaptive learning rate based on lower order 

moments. This algorithm is computationally efficient and requires little memory, so it is suitable for 

problems with large amounts of data or parameters. Loss function used is the mean square error (MSE). 

 

 

Table 1. Autoencoder architecture model for dimensionality reduction of SARS-CoV-2 sequence. 

Model 

AUTOENCODER 1 (AE_50) AUTOENCODER 2 (AE_10) AUTOENCODER 3 (AE_2) 

Layer 

Type 
Output # Param 

Layer 

Type 
Output # Param 

Layer 

Type 
Output # Param 

Encoder: Input 30018 - Input 30018 - Input 30018 - 
 Dense 500 15,009,500 Dense 500 15,009,500 Dense 500 15,009,500 
 Dense 250 125,250 Dense 250 125,250 Dense 250 125,250 
 Dense 100 25,100 Dense 100 25,100 Dense 100 25,100 
 Dense 50 5,050 Dense 50 5,050 Dense 50 5,050 
    Dense 10 510 Dense 2 102 
 Total Param: 15,164,900 Total Param: 15,165,410 Total Param: 15,165,002 

Decoder: Input 50 - Input 10 - Input 2 - 
 Dense 100 5,100 Dense 50 550 Dense 50 150 
 Dense 250 25,250 Dense 100 5,100 Dense 100 5,100 
 Dense 500 125,500 Dense 250 25,250 Dense 250 25,250 
 Dense 30018 15,039,018 Dense 500 125,500 Dense 500 125,500 
    Dense 30018 15,039,018 Dense 30018 15,039,018 
 Total Param: 15,194,868 Total Param: 15,195,418 Total Param: 15,195,018 

Autoencoder: Input 30018 - Input 29946 - Input 29946 - 
 Encoder 50 15,164,900 Encoder 50 15,165,410 Encoder 100 15,165,002 
 Decoder 30018 15,194,868 Decoder 29946 15,195,418 Decoder 29946 15,195,018 
 Total Param: 30,359,768 Total Param: 30,360,828 Total Param: 30,360,020 

 

 

In this paper, we also compare the results of clustering the sequence data resulting from dimensional 

reduction using several clustering methods, including K-means, AHC, GMM, DBSCAN, and mean shift 

clustering. The K-means algorithm starts by randomly initializing the centroid points according to a 

predetermined number of clusters [27], [28]. Then calculate the distance of each data to each centroid to 

determine the cluster for each data point. The update of the centroid position is done by calculating the 

average value of the data points contained in each cluster. These processes are carried out until the positions 

of the centroid has not changed or the maximum number of iterations is reached. 

GMM is more flexible than K-means in formed clusters. In GMM, there are two parameters that are 

calculated to update the centroid point, namely the average value and standard deviation, so that the cluster 

formed can be various kinds of ellipses. In calculating the average value and standard deviation, GMM uses 

an optimization algorithm, namely expectation-maximization (EM) and Gaussian distribution for each cluster 

[29], [30]. AHC uses a bottom up algorithm where each data point is considered as one cluster and combines 

the clusters that have the closest distance [31]. Distance calculations can be done by calculating the average 

value of data points in a cluster or by calculating the shortest distance between data points in one cluster and 

data points in another cluster. This process is carried out until one large cluster is obtained and then the 

desired number of clusters is selected. 

The mean-shift clustering algorithm begins by randomly determining the data points that are the 

center points of the sliding window with a certain radius [32]. The sliding window will shift towards an area 

with a higher density level (number of data points in the window) until convergent conditions are reached. 

Mean-shift clustering has the advantage that the number of clusters does not need to be determined in 

advance because the algorithm can find the optimal number of clusters automatically. DBSCAN is an 

algorithm similar to mean-shift clustering that can determine the number of clusters automatically. DBSCAN 

starts by selecting a data point that has never been visited, then other data points adjacent to the data point 

within a threshold distance will be included in the same cluster [33]. If the number of data points in the 

cluster is more than the minPoints parameter (the minimum number of data points in a cluster), then the data 

points will become one cluster and marked as visited. The process will repeat until there are no more data 

points that can be visited. Data points that do not include to any cluster are considered noise. 
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Dimensionality reduction data using three autoencoder models and PCA will be the input for the 

clustering algorithm, which has 2, 10, and 50 features. For K-means, AHC, and GMM algorithms, the 

number of clusters is observed from 2 to 50 clusters. Meanwhile, for the mean-shift clustering algorithm and 

DBSCAN, the number of clusters does not need to be determined at the beginning. To evaluate the 

performance of the clustering algorithm, Silhouette analysis is used based on the Silhouette Score [34]. The 

silhouette score determines the degree of separation between clusters which has a value in the range [-1,1], 

where the value 1 indicates the sample data is very far from the other cluster, the value of 0 indicates the 

sample data is very close to the other cluster, and the value -1 indicates the sample data is included in the 

wrong cluster. 

 

 

3. RESULTS AND DISCUSSION 

In this paper a system was built to reduce dimension and cluster genome data form SARS-CoV-2 

virus to analize the genome virus variation. The method used is PCA and autoencoder for dimensional 

reduction, and several clustering algorithms which includes K-means, Gaussian mixture models (GMM), 

agglomerative hierarchical clustering (AHC), density-based spatial clustering of applications with noise 

(DBSCAN), and mean shift clustering. To test the system performance that has been built, experiment is 

done by comparing silhouette score of clustering methods for various input dimension from PCA and 

autoencoder for training and validation process. As for the testing process, the genome sequence from 

Indonesia was included in the dimension reduction and clustering model that was previously built to analyse 

the variation of viruses found in Indonesia. Following are the results and analysis of the experiments that 

have been carried out. 

 

3.1. Autoencoder performance for dimensionality reduction 

This paper proposed three model autoencoder for dimensionality reduction, namely AE_50, AE_10, 

and AE_2, that produce data with 50, 10, and 2 dimensions, respectively. Based on the results presented in 

Table 2, the MSE training and validation of AE_50 and AE_10 is better than the AE_2. This shows that the 

AE_50 and AE_10 converge faster than the autoencoder 1. For AE_2, the dimensionality reduction process 

that occurs is very large, so the reconstruction process into original data is still not good. The training and 

validation running time does not have a significant difference because there is only a slight difference in the 

number of parameters/weights of the autoencoder architecture of the three models. 

 

 

Table 2. MSE and running time comparison of training and validation processes for autoencoder models 1, 2, and 3 

Model 
MSE Running Time 

Training Validation Training Validation 

AE_50 0.101 0.098 2 s/epoch; 12 ms/step 1 s/epoch; 6 ms/step 

AE_10 0.1503 0.1531 2 s/epoch; 13 ms/step 1 s/epoch; 7 ms/step 
AE_2 0.7409 0.7527 2 s/epoch; 12 ms/step 1 s/epoch; 6 ms/step 

 

 

3.2. Number of clusters observation on K-means, GMM, and AHC 

The number of cluster effect parameters of the K-Means, GMM, and AHC clustering algorithms 

based on silhouette score of clustering results of the features generated by the PCA and autoencoder models. 

PCA and autoencoder model that was built produced data with 2, 10, and 50 features. The parameters used in 

the K-Means, GMM, and AHC algorithms were the number of clusters, and in this study the number of 

clusters was observed in the range of 2 to 50 clusters. K-means, AHC, and GMM are included in clustering-

based algorithms so that the selection of the number of clusters and the initial initialization of centroids 

greatly affect the results of clustering [35]. Based on the results obtained in Figure 4 to Figure 6, it can be 

concluded that the output of the PCA_2 with 2 features have the highest silhouette score using the K-means, 

GMM, and AHC algorithms, for all the number of clusters 2 to 50. However, AE_2 with 2 features have 

more stable silhouette score over all number of clusters. Data with 10 and 50 features have smaller silhouette 

score relatively. This can happen because of the clustering algorithm is more able to cluster fewer features so 

that the data contain less noise or redundancy. Based on the results of effect of the number of clusters 

observations, the greater the number of clusters, the higher the Silhouette score obtained for data with 10 and 

50 features. 
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Figure 4. Silhouette score of K-means clustering results 

 

 

 
 

Figure 5. Silhouette score of GMM clustering results 

 

 

 
 

Figure 6. Silhouette score of AHC clustering results 

 

 

3.3. Quantile parameter observation on mean-shift clustering 

The quantile parameter is used to calculate the bandwidth (window size/radius) in the mean-shift 

clustering algorithm, by calculating the median pairwise distance of the sample used. The value of the 

quantile parameter ranges in the range 0 to 1, value of 0.5 means that the median value of all pairwise 

distances is used. In this study, the observed quantile values were 0.01, 0.05, 0.1, 0.15, 0.2, and 0.25. Based 

on Table 3 and Table 4, the greater the quantile value, the bigger the resulting window size/bandwidth, so 

that the number of clusters produced is smaller. A large quantile value also results a higher silhouette score 

for data with two features, but this is not the case for data with 10 and 50 features. 
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Table 3. Estimated number of clusters of mean-shift clustering results 

Quantile 
Estimated Number of Clusters 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

0.01 564 367 96 17 354 120 
0.05 26 40 29 35 24 53 

0.1 - 4 5 2 11 5 

0.15 - 3 5 - 10 5 

0.2 - 2 4 - 10 5 

0.25 - 2 4 - 9 5 
 

 

Table 4. silhouette score of mean-shift clustering results 

Quantile 
Silhouette Score 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

0.01 0.738 0.799 0.771 0.302 0.67 0.546 
0.05 0.376 0.532 0.773 0.673 0.545 0.485 

0.1 - 0.229 0.776 0.155 0.701 0.783 

0.15 - 0.235 0.776 - 0.708 0.783 

0.2 - 0.381 0.784 - 0.708 0.783 

0.25 - 0.368 0.779 - 0.703 0.783 

 

 

3.4. Epsilon parameter observation on DBSCAN clustering 

The epsilon parameter is a parameter used to determine whether a data point belongs to the same 

cluster or not in DBSCAN. A data point can enter the same cluster if the distance is less than epsilon. In this 

study, the observed epsilon values were 0.5, 1, 5, 10, 20, 30, 40, and 50. Based on Table 5 to Table 7, it can 

be concluded that each different data will require a certain epsilon value that is different depending on the 

distribution of the data. However, data with less features will need smaller epsilon value. DBSCAN can also 

detect outlier data, where the data is very far from the existing cluster, rather than forcing the outlier data to 

enter a specific cluster. 
 

 

Table 5. Estimated number of clusters of DBSCAN clustering results 

Eps 
Estimated number of clusters 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

0.5 106 74 26 99 87 40 

1 99 72 13 87 76 23 
5 79 88 5 73 64 11 

10 88 95 4 80 35 7 

20 94 84 2 76 15 3 

30 82 15 2 68 12 2 

40 27 3 - 60 3 - 

50 2 2 - 52 3 - 

 
 

Table 6. Estimated number of noise points of DBSCAN clustering results 

Eps 
Estimated number of noise points 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

0.5 2106 1535 40 2084 1637 502 

1 1795 1425 16 1787 1443 245 

5 1323 1120 0 1396 757 39 
10 1173 672 0 1249 321 6 

20 869 261 0 737 106 0 

30 515 21 0 475 27 0 
40 145 6 - 343 9 - 

50 2 3 - 249 3 - 

 

 

Table 7. Silhouette score of DBSCAN clustering results 

Eps 
Silhouette Score 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

0.5 0.27 0.484 0.513 0.189 0.349 0.131 

1 0.364 0.533 0.603 0.314 0.448 -0.122 

5 0.566 0.592 0.682 0.525 0.548 0.692 
10 0.605 0.656 0.79 0.568 0.393 0.649 

20 0.629 0.614 0.732 0.636 0.6 0.877 

30 0.548 -0.09 0.732 0.69 0.365 0.764 
40 0.076 0.068 - 0.715 0.141 - 

50 0.095 0.276 - 0.586 0.219 - 
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3.5. Comparison of five clustering algorithms results 

In Table 8 and Table 9, in the number of features 10 and 50 from AE_50 and AE_10, mean-shift 

clustering has the best silhouette score (0.7380 and 0.784) compared to other algorithms, but it is likely not 

optimal because the estimated number of clusters really large (564 and 367 clusters). This is different for data 

with 50 features from PCA_50 which gets a Silhouette Score of 0.7791 from the results of the AHC 

clustering algorithm and the resulting number of clusters is 48 clusters. Meanwhile, for data with 10 features, 

PCA_10 achieved a silhouette score of 0.7080 and the number of clusters was 10 using the mean-shift 

Clustering algorithm. Data with 2 features has the best silhouette score, both for the reduction of autoencoder 

(AE_2) and PCA (PCA_2) dimensions, namely 0.8133 for AE_2 and 0.877 for PCA_2. The two reduced data 

can be clustered into 3 clusters using the AHC algorithm for AE_2 and DBSCAN for PCA_2. This proves 

that the dimension reduction process carried out is quite good because the training data is taken from five 

countries, namely China, South Korea, Singapore, Japan, and India that have the geographical proximity of 

the country. 

DBSCAN and mean-shift clustering have the advantage of being able to determine the optimal 

number of clusters automatically, while in the K-means, GMM, and AHC algorithms the number of clusters 

must be initialized at the start. In terms of data clustering characteristics, AHC has similarities in the 

formation of phylogenetic trees, which construct trees by calculating the distance / similarity between 

sequences. DBSCAN can identify outliers in the data and consider them to be noise, whereas in Mean-shift 

clustering, the outliers are forced into a particular cluster. DBSCAN can have any shape and size of the 

cluster, while in Mean-shift, the cluster formed is circular. However, DBSCAN has the disadvantage of not 

having a good performance if the data has high dimensions because estimating the epsilon value becomes 

more difficult. 

 

 

Table 8. Silhouette score comparison of clustering algorithms 
Clustering 

Algorithm 

Silhouette Score 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

K-means 0.6196 0.6786 0.8180 0.7559 0.6939 0.8766 
GMM 0.5882 0.6006 0.7808 0.7704 0.6190 0.8258 

AHC 0.6139 0.6682 0.8133 0.7791 0.6778 0.8766 

Mean-Shift 0.7380 0.7990 0.7840 0.6730 0.7080 0.7830 
DBSCAN 0.6290 0.6560 0.7900 0.7150 0.6000 0.8770 

 

 

Table 9. Optimal number of clusters comparison of clustering algorithms 
Clustering 

Algorithm 
Optimal Number of Clusters 

AE_50 AE_10 AE_2 PCA_50 PCA_10 PCA_2 

K-means 50 49 2 46 46 3 

GMM 50 50 4 45 15 3 

AHC 50 50 3 48 49 3 
Mean-Shift 564 367 4 35 10 5 

DBSCAN 94 95 4 60 15 3 

 

 

3.6. Training and testing genome sequence in each cluster 

Figure 7 and Figure 8 show the distribution of training data in each cluster based on the best 

silhouette score from the experiments that have been carried out, namely AE_2 data are clustered using the 

AHC algorithm and PCA_2 data are clustered using the DBSCAN algorithm. The training data used is 

SARS-CoV-2 sequence data from China, Japan, South Korea, Singapore, and India. In both figures, the 

sample distribution from each country in each cluster is almost the same. So, it can be concluded that  

Cluster 1, Cluster 2, and Cluster 3 in Figure 7 are the same as Cluster 3, Cluster 1, and Cluster 2 in Figure 8, 

respectively. In the data resulting from AE_2 and PCA_2, the sample data is spread out over one cluster. This 

can be due to the SARS-CoV-2 sequences in the five countries that have a high majority of similarities. The 

testing data used were SARS-CoV-2 sequences from Indonesia, totaling 109 sequences. Figure 9 shows the 

distribution of testing data in each cluster, which is the result of the dimensional reduction and clustering 

processes using the two best models obtained in the training process, namely AE_2 data are clustered using 

the AHC algorithm and PCA_2 data are clustered using the DBSCAN algorithm. These results show that the 

Indonesian sequence data has a slightly different distribution from the training data. However, half of the data 

is still gathered in one cluster such as training data, while the other data is spread over the other two clusters. 
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Figure 7. Distribution of training data in each cluster with the results of the AE_2 reduction and the AHC 

algorithm 

 

 

 
 

Figure 8. Distribution of training data in each cluster with the results of the PCA_2 reduction and the 

DBSCAN algorithm 

 

 

 
 

Figure 9. Distribution of testing data in each cluster 
 

 

4. CONCLUSION 

In this paper, a dimensional reduction and clustering system was developed for the genome data of 

the SARS-CoV-2 virus. Dimensional reduction is done by using PCA and autoencoder with three models that 

produce reduced data with 2, 10, and 50 features. The clustering algorithms used are K-means, GMM, AHC, 

Mean-shift clustering, and DBSCAN. Based on the experimental results, the system built can achieve the 

highest silhouette score of 0.8770 with three clusters when using two features of PCA and DBSCAN 

algorithm. As well as a silhouette score of 0.8133 with three clusters using two features of the autoencoder 

and the AHC algorithm. Meanwhile, the reduced sequences with features 10 and 50 have a smaller silhouette 
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score in all clustering algorithms used. The K-means, GMM, and AHC algorithms require a predefined 

number of clusters. Meanwhile, mean-shift clustering and DBSCAN algorithms can find the optimal number 

of clusters automatically, so that it is an advantage when compared to the K-means, GMM, and AHC 

algorithms. The optimal number of clusters with the highest silhouette score consists of three clusters, either 

using data result from the reduction dimension of the autoencoder or PCA with two features. 

This paper also analyses the distribution of training data and testing in each cluster formed using 

two models that have the best silhouette scores. The training data is a SARS-CoV-2 sequence from China, 

Japan, South Korea, Singapore, and India, and testing data from Indonesia. Based on the results of clustering 

using the two best models, both training data and testing data, more than half of data enter one cluster and the 

rest are distributed in the other two clusters. It can be concluded that the SARS-CoV-2 virus found in China, 

Japan, South Korea, Singapore, India, and Indonesia, mostly has similarities in virus sequences. The future 

research plan that can be done is to detect mutations that occur in each cluster using alignment and machine 

learning approaches. 
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