
Bulletin of Electrical Engineering and Informatics

Vol. 10, No. 4, August 2021, pp. 2110~2118

ISSN: 2302-9285, DOI: 10.11591/eei.v10i4.2760 2110

Journal homepage: http://beei.org

The influence of data size on a high-performance computing

memetic algorithm in fingerprint dataset

Priati Assiroj1, Harco Leslie Hendric Spits Warnars2, Edi Abdurachman3, Achmad Imam

Kistijantoro4, Antoine Doucet5
1,2,3Computer Science Department, BINUS Graduate Program-Doctor of Computer Science, Bina Nusantara University,

Jakarta 11480, Indonesia
4School of Electrical Engineering and Informatics, Institut Teknologi Bandung, West Java 40132, Indonesia

5Laboratoire L3i-Université de La Rochelle, Avenue Michel Crépeau, F-17 042 La Rochelle Cedex 1, France

Article Info ABSTRACT

Article history:

Received Dec 31, 2020

Revised Apr 29, 2021

Accepted Jun 1, 2021

 The fingerprint is one kind of biometric. This biometric unique data have to

be processed well and secure. The problem gets more complicated as data

grows. This work is conducted to process image fingerprint data with a

memetic algorithm, a simple and reliable algorithm. In order to achieve the

best result, we run this algorithm in a parallel environment by utilizing a

multi-thread feature of the processor. We propose a high-performance

computing memetic algorithm (HPCMA) to process a 7200 image fingerprint

dataset which is divided into fifteen specimens based on its characteristics

based on the image specification to get the detail of each image. A

combination of each specimen generates a new data variation. This algorithm

runs in two different operating systems, Windows 7 and Windows 10 then we

measure the influence of data size on processing time, speed up, and

efficiency of HPCMA with simple linear regression. The result shows data

size is very influencing to processing time more than 90%, to speed up more

than 30%, and to efficiency more than 19%.

Keywords:

Biometric recognition

Fingerprint identification

High performance computing

Memetic algorithm

This is an open access article under the CC BY-SA license.

Corresponding Author:

Priati Assiroj

Computer Science Department, Binus Graduate Program-Doctor of Computer Science

Bina Nusantara University

Jl. Raya Kebon Jeruk No.27, DKI Jakarta 11480, Indonesia

Email: priati@binus.ac.id

1. INTRODUCTION

Nowadays, the growth of data and information cause scientists and researchers from various fields

enter to an era that the requirement of computation resources and data storage capacity exceeds the available

capacity. Scientists and researchers are more aware to utilize the computer system in their researches. This

condition causes more effort to create the systems that available to run in large-scale computation to process

the big data.

Fingerprint identification becomes an interesting research topic for two decades [1]. In this work, we

use a memetic algorithm that runs in a parallel system to identify fingerprints. Parallel computation is a

computation technique that runs by utilizing several computer resources simultaneously, actually caused by

the required computation is very large such as to process big data or in a large computation process. In this

computation model, the problem complexities are divided into smaller parts and run in a parallel

environment.

The data that have a high complexity is fingerprint data and its problem is equal to the amount of

fingerprint dataset, it needs a superfast process in identification. The memetic algorithm [2] is an

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The influence of data size on a high-performance computing … (Priati Assiroj)

2111

improvement of the evolutionary algorithm with a separate local search [3]. A memetic algorithm is a simple

algorithm with reliable performance [4], [5], generates high-quality solutions to solve problems in the real

world [6]-[8].

The speed is a reason for the selected algorithm, the faster will be selected than the slower algorithm

[9]. To process a high scale and big data in a reasonable time, we need a high-performance computation

system. The effective and efficient time to simulate, compute and the process is a must, besides the quality

and accuracy of the generated information must be maintained. The board of management in an organization

needs fast and high-quality information to make a decision in the production process and to purchase raw

materials for the next periods.

To generate high quality and fast information, it needs a system with specific hardware that supports

the process of large scale data quickly and has a high performance, with the client-server based application

and distributed database that accessible across the entire computers in the local or public computer network.

The advances in various fields of science require computer systems with high performance in speed

and computing capacity. The implication is the technology of personal and supercomputer increases rapidly.

The main obstacles of supercomputers are procurement cost, operation, and maintenance, and the alternative

is parallel processing. A parallel distributes a work package that will be processed by all the entire computers

in the system. With this parallel system, the investment cost can be reduced. Note that this system has high

flexibility to adapt to the changes in computer technology. Users can customize the system based on their

purposes. To get a fast computation process, it only needs to upgrade the processors and RAM without

storage media in every computer, and for the application that produces a lot of data, it only needs to upgrade

the storage media.

There are two ways to aim an efficient computation time in a high-performance computation (HPC)

system, firstly is to produce a high-speed processor, and secondly is run the application in a parallel

environment with multi-processors. For the first way, the processor manufacturer will meet a difficulty

because the lithography technique is almost reaching the limit. The newest processor is made with 45nm

fabrication technology and if it is reduced the processor’s reliability will also reduce. Therefore, the big

chance to improve the computation speed with a high possibility is a parallel computation technique [10].

HPC is a method to address the problem with high complexity related to workload and a large

number of data [11]. One of the techniques in HPC is parallel computation [10]. A parallel processing system

is a group of connected computers that working together as an integrated computer system to address the

same problem with one goal [12].

2. PARALLEL COMPUTING ARCHITECTURE

Based on the instruction and data stream, the computer categorized into 4 groups, single instruction

stream, single data stream (SISD), single instruction stream, multiple data streams (SIMD), multiple

instruction streams, single data stream (MISD), and multiple instruction streams, multiple data stream

(MIMD) [13]. There are several styles in parallel programming:

2.1. Single program, multiple data (SPMD)

Data and programs are distributed to each processor and the execution is scheduled. Each processor

executes the same program but the processed data is different.

2.2. Master-slave

A processor as a master and several processors as slaves.

2.3. Multiple program, multiple data

Data and programs are distributed to each processor. Every processor executes a different program

and data. The parallel computation system is included in the MIMD group, this group can be divided into a

multi-processor system and multi-computer system. A multi-processor system is a parallel computing system

that is based on the single memory utilization at the same time simultaneously. A multi-computer system is a

parallel computer system with an independent processor and RAM in every computer. In this paper, we

propose the high-performance computation using memetic algorithm (HPCMA) for fingerprint identification.

3. RESLATED RESEARCH

The related conducted researches are the researches about fingerprint identification that has been

conducted by other researchers. [14] conducts research to identify fingerprints in the big data framework with

a distributed model. [15] states that a memetic algorithm can improve efficiency, reduce memory

consumption, and has a better ability to utilize the resource system. In the research [16], the memetic

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2110 – 2118

2112

algorithm is used to do a feature selection in handwritten word recognition. Moscato et al. [17], explained

that a memetic algorithm can outperform the proposed method even this algorithm needs more computation

time and also generates a high-quality solution. Feng et al. [18], uses a memetic algorithm to do a treatment

plan faster and [19] proposes a memetic fingerprint matching algorithm (MFMA) without local matching to

do a fingerprint matching. The MFMA significantly reduces the generation that has to be identified [19]. To

design a memetic algorithm, the considered problem is optimization as a specific problem [20]. Assiroj et al.

[21], use the original memetic algorithm to process the fingerprint dataset and this algorithm works properly.

This algorithm is also could be parallelized, Mirsoleimani et al. [22], implements parallel type on the

graphics processing unit (GPU). This technique solves task scheduling problems for several multi-processing

systems as also conducted by [23]. Island model of parallel memetic algorithms was proposed by [24]-[27]

with dynamic local search.

4. METHOD

In this work, we propose a high-performance computing memetic algorithm (HPCMA) method. We

run the original memetic algorithm in HPC mode. In Figure 1 is a framework of HPCMA. According to

Figure 1, we modify the original memetic algorithm to run in HPC as a parallel condition. We use this

HPCMA framework to process the image fingerprint dataset and here are the steps:

Figure 1. HPCMA framework

4.1. Local search in HPC mode

This process is to read all the entire file and folder image datasets that have been divided into four

groups. After this reading process, the algorithm will convert all the image data. Firstly algorithm converts

the image to an array string then secondly, the algorithm converts the string array to binary code. When this

conversion is finished algorithm compares the number of converted data to all image fingerprint data and if it

gets the same number process will be continued to the next selection, if not the process will wait until the

local search process is complete.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The influence of data size on a high-performance computing … (Priati Assiroj)

2113

4.2. Selection in HPC mode

We use 2% of the population as the sample randomly. These 140 parents candidates will be divided

into 2 groups, male and female then compare the number of the selected candidate to the number of data

selection samples. If it gets the same number process will be continued to the next crossover and if not the

process will wait until the selection process is complete.

4.3. Crossover in HPC mode

Crossover is a mating process for all the entire parent candidates to get new offspring. Each member

of the male population will be crossed to all members of the female population. This crossover process will

be looped until all the entire membership of both population, male and female, are well crossed then compare

the number of crossed data to the number of multiplication of male and female, if it gets the same number

process will be continued to the Next Mutation and if not the process will wait until crossover is complete.

4.4. Mutation in HPC mode

This is the final process of the memetic algorithm. A mutation is a process that reverses the value of

the binary code of the generated offspring from the crossover process. The value 1 in binary code will be

reversed into 0 and 0 will be reversed into 1. Therefore we will get the newest and highest quality offspring.

When the mutation process is finished, the algorithm will measure the number of the mutated data and

compare it to the generated offspring from a crossover, if it gets the same number process will be finished

and if not the process will wait until the mutation is complete. Based on Figure 2, the left side, MA, is

Memetic algorithm in original condition, and on the right side, HPCMA is a memetic algorithm that runs in

HPC utilizes the threads feature of processors.

Figure 2. Illustration MA to HPCMA

Reads folder and file

(local search with 4
criterions)

Converts image files
to string array

Converts string array
to binary mode

Selects parents

candidate from the

total population

Crossover. MA mates
the parents candidate

each other

Mutation. MA
mutates the data from

crossover

Reads folder and file

(local search with 4
criterions)

Converts image files
to string array

Converts string array
to binary mode

Selects parents
candidate from the

total population

Crossover. MA mates

the parents candidate

each other

Mutation. MA
mutates the data from

crossover

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2110 – 2118

2114

This work implements the FVC2006 with data 7200 fingerprint data then categorized into 4

characteristics. Firstly is a full-sized image, secondly is 60% with dark color boundaries, thirdly is 60% with

bright color boundaries, and fourthly is 80% with bright color boundaries and unclear image. Then we make

15 specimens from the combination of data. 1st specimen consists of 7200 fingerprint data, 2nd specimen

consists of 1800 fingerprint data, 3rd specimen consists of 1800 fingerprint data, 4th specimen consists of

1800 fingerprint data, 5th specimen consists of 1800 fingerprint data, 6th specimen consists of 3600

fingerprint data, 7th specimen consists of 3600 fingerprint data, 8th specimen consists of 3600 fingerprint

data, 9th specimen consists of 3600 fingerprint data, 10th specimen consists of 3600 fingerprint data, 11th

specimen consists of 3600 fingerprint data, 12th specimen consists of 5400 fingerprint data, 13th specimen

consists of 5400 fingerprint data, 14th specimen consists of 5400 fingerprint data, and the last specimen,

15th, consists of 5400 fingerprint data.

5. RESULT AND DISCUSSION

This work uses a 7200 synthetic fingerprint dataset from FVC2006 and runs in the computer system

with Intel i5 2540M 2.6GHz 4 core and 16GB RAM, 500GB SSD as HPCMA machine and computer system

with Intel i5 2430M 2.4GHz 4 core and 8GB RAM, 250GB SSD as database machine. Testing begins with

data mapping and thread creation in each computer with different numbers of data. With more data to be

processed and more created threads, the mapping time is also longer.

In this work, we compare the test in two environments of operating systems. The first is the

Windows 7 operating system and the second is Windows 10 operating system. Data are divided into fifteen

specimens with each character to see the data holistically then we measure the size of each specimen and

measure the speed up and efficiency. Below are the results of the experiment from each operating system.

Table 1 and Table 2 are a list of data size for each specimen, speed up, and efficiency of HPCMA on

Windows 7 and Windows 10. Figure 3 is the speed-up visualization of each specimen in Windows 7, and

Figure 4 is the speed-up visualization for each specimen in Windows 10.

Table 1. Experiment result in Windows 7
Specimen Data Size Speed up (ms) Efficiency

1 22.8GB 249.0038057 10.37067904

2 0.237 GB 34.55627211 2.053812416
3 4.8 GB 294.3173384 13.56162175

4 4.3 GB 269.0168797 12.45388033

5 2.4 GB 160.8715959 7.943400165
6 8.8 GB 288.9740842 12.50843364

7 7.8 GB 266.42708 11.6195177

8 4.5 GB 162.3858895 7.275164187
9 11.4 GB 301.0793305 13.35765794

10 8 GB 200.1693822 9.272002684

11 7.6 GB 191.844378 8.976055725
12 17.2 GB 306.8103217 12.95318989

13 13 GB 241.1332293 10.30241264
14 15.7 GB 249.0009356 10.99598499

15 12.2 GB 224.7810952 9.629383921

Table 2. Experiment result in Windows 10
Specimen Data size Speed Up (ms) Efficiency

1 22.8 GB 241.3684533 9.843870006

2 0.237 GB 31.73842967 1.917808586
3 4.8 GB 274.3291009 12.76242446

4 4.3 GB 237.2079802 11.17275106

5 2.4 GB 152.7474748 7.587524869
6 8.8 GB 268.1426055 11.68635096

7 7.8 GB 238.2088843 10.37998272

8 4.5 GB 156.0196491 6.972254909
9 11.4 GB 271.8752708 12.19454521

10 8 GB 187.7135075 8.90476869

11 7.6 GB 149.3226829 7.231500221
12 17.2 GB 275.2537613 11.52186279

13 13 GB 218.8803572 9.308268217
14 15.7 GB 236.1300983 10.44332603

15 12.2 GB 206.8560388 8.757247622

Figure 3. Speed up of HPCMA on Windows 7

249,00

34,56

294,32
269,02

160,87

288,97
266,43

162,39

301,08

200,17191,84

306,81

241,13249,00
224,78

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

S
p

ee
d

 u
p

 (
m

s)

Specimen

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The influence of data size on a high-performance computing … (Priati Assiroj)

2115

Figure 4. Speed up of HPCMA on Windows 10

Figure 5 is a visualization of HPCMA efficiency for each specimen in Windows 7. The efficiency of

HPCMA in specimen 1 is 10.37067904, and in specimen 2 is 2.053812418. The efficiency of HPCMA in

specimen 3 to specimen 15 is also displayed in Figure 5.

Figure 5. Efficiency on Windows 7

Figure 6 is a visualization of HPCMA efficiency for each specimen in Windows 10. The efficiency

of HPCMA in specimen 1 is 9.84387006, and in specimen 2 is 1.917808586. The efficiency of HPCMA for

specimen 3 to specimen 15 is also displayed in Figure 6.

Figure 6. Efficiency on Windows 10

241,3684533

31,73842967

274,3291009

237,2079802

152,7474748

268,1426055

238,2088843

156,0196491

271,8752708

187,7135075

149,3226829

275,2537613

218,8803572
236,1300983

206,8560388

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

S
p

ee
c

U
p

 (
m

s)

Specimen

10,37067904

2,053812416

13,56162175
12,45388033

7,943400165

12,50843364
11,6195177

7,275164187

13,35765794

9,2720026848,976055725

12,95318989

10,30241264
10,99598499

9,629383921

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

E
fi

si
en

si

Specimen

9,843870006

1,917808586

12,76242446

11,17275106

7,587524869

11,68635096
10,37998272

6,972254909

12,19454521

8,90476869

7,231500221

11,52186279

9,308268217
10,44332603

8,757247622

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

E
ff

ic
ie

n
cy

Specimen

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2110 – 2118

2116

Visualization of the influence of data size with processing time. The bigger data size needs a longer

processing time and the smaller data size is faster to be processed. From figure 4 above, specimen 1 with

22.8GB data size needs 72.904 seconds, and specimen 2 with 0.237GB data size only needs 8.347 seconds.

The performance of HPCMA in Windows 7 and Windows 10 is almost similar. For example, HPCMA

processed specimen 1 in 72.904 seconds in Windows 7 and 80.982 seconds in Windows 10 shown in Figure 7.

Figure 7. Processing time of each Specimen

6. CONCLUSION

In the simple linear regression, the experiment result of data size influence to HPCMA’s processing

time in Windows 10 is 0.937 or 93.7%. It means data size is very influential to HPCMA’s processing time in

Windows 10 for 97% and 6.3% depends on other variables. For Windows 7, data size is very influential to

HPCMA’s processing time for 95.9% and 4.1% depends on other variables. The experiment result of data

size influence to HPCMA’s efficiency in Windows 10 is 0.195 or 19.5%. It means data size is only

influencing efficiency for 19.5%, and 80.5% depends on other variables. For Windows 7, data size is

influencing efficiency for 19.3%, and 80.7% depends on other variables. The experiment result of data size

influence to HPCMA’s speed up on Windows 7 is 0.286 or 28.6%. It means data size is only influencing

speed up for 28.6%, and 71.4% depends on other variables. For Windows 10, data size in influencing speed

up for 31.7%, and 68.3% depends on other variables. On the other hand, data size is very influential to

HPCMA’s processing time in Windows 7 and Windows 10 about 90%. It influences about 30% on speed up

and not for efficiency in Windows 7 or Windows 10.

ACKNOWLEDGEMENTS

This work is supported by Research and Technology Transfer Office, Bina Nusantara University as

a part of Bina Nusantara University’s International Research Grant entitled MEMETIC ALGORITHM IN

HIGH-PERFORMANCE COMPUTATION with contract number: No.026/VR.RTT/IV/2020 and contract

date: 6 April 2020.

REFERENCES
[1] A. K. Jain and J. Feng, "Latent Fingerprint Matching," in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 1, pp. 88-100, Jan. 2011, doi: 10.1109/TPAMI.2010.59.

[2] P. Moscato, “Memetic Algorithms: A Short Introduction,” New ideas in optimization, pp. 219-234, 1999.

[3] J. Lin and Y. Chen, "Analysis on the Collaboration Between Global Search and Local Search in Memetic

Computation," in IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 608-623, Oct. 2011, doi:

10.1109/TEVC.2011.2150754.

[4] P. Merz and B. Freisleben, “Fitness Landscapes and Memetic Algorithm Design,” Electrical Engineering, pp. 1-19,

1999.

[5] Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu and Kok-Wai Wong, "Classification of adaptive memetic algorithms: a

comparative study," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 36, no. 1,

pp. 141-152, Feb. 2006, doi: 10.1109/TSMCB.2005.856143.

[6] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore and M. Sumner, "A Fast Adaptive Memetic Algorithm for Online

and Offline Control Design of PMSM Drives," in IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 37, no. 1, pp. 28-41, Feb. 2007, doi: 10.1109/TSMCB.2006.883271.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

The influence of data size on a high-performance computing … (Priati Assiroj)

2117

[7] M. Gong, Z. Peng, L. Ma and J. Huang, "Global Biological Network Alignment by Using Efficient Memetic

Algorithm," in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 13, no. 6, pp. 1117-

1129, 1 November 2016, doi: 10.1109/TCBB.2015.2511741.

[8] M. Urselmann, S. Barkmann, G. Sand and S. Engell, "A Memetic Algorithm for Global Optimization in Chemical

Process Synthesis Problems," in IEEE Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 659-683, Oct.

2011, doi: 10.1109/TEVC.2011.2150753.

[9] V. Pachori, G. Ansari, and N. Chaudhary, “Improved performance of advance encryption standard using parallel

computing,” International Journal of Engineering Research and Applications, vol. 2, no. 1, pp. 967–971, 2012.

[10] P. Assiroj, A. L. Hananto, A. Fauzi and H. L. Hendric Spits Warnars, "High Performance Computing (HPC)

Implementation: A Survey," 2018 Indonesian Association for Pattern Recognition International Conference

(INAPR), 2018, pp. 213-217, doi: 10.1109/INAPR.2018.8627040.

[11] M. Abd Rahman and A. Mamat, “A Study of Image Processing in Agriculture Application under High Performance

Computing Environment,” International Journal of Computer Science and Telecommunications, vol. 3, no. 8, pp.

16-24, 2012.

[12] P. Assiroj et al., “The Form of High-Performance Computing: A Survey,” IOP Conference Series: Materials

Science and Engineering, vol. 662, no. 5, p. 052002, 2019.

[13] J. L. Hennessy and D. a Patterson, "Computer Architecture," Fourth Edition: A Quantitative Approach. 2006.

[14] D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, and J. M. Benitez, “Fast fingerprint identification for large

databases,” Pattern Recognition, vol. 47, no. 2, pp. 588-602, 2014, doi: 10.1016/j.patcog.2013.08.002.

[15] R. Welekar and N. V Thakur, "An Enhanced Approach to Memetic Algorithm Used for Character Recognition,"

Springer Singapore, vol. 768, pp. 593-602, 2019, doi: 10.1007/978-981-13-0617-4_57.

[16] M. Ghosh, S. Malakar, S. Bhowmik, R. Sarkar, and M. Nasipuri, “Memetic Algorithm Based Feature Selection for

Handwritten City Name Recognition,” Springer, vol. 775, pp. 599-613, 2017, doi: 10.1007/978-981-10-6430-2_47.

[17] P. Moscato, A. Mendes, and R. Berretta, “Benchmarking a memetic algorithm for ordering microarray data,”

BioSystems, vol. 88, no. 1-2, pp. 56-75, 2007, doi: 10.1016/j.biosystems.2006.04.005.

[18] L. Feng, A. H. Tan, M. H. Lim, and S. W. Jiang, “Band selection for hyperspectral images using probabilistic

memetic algorithm,” Soft Computing, vol. 20, no. 12, pp. 4685-4693, 2016, doi: 10.1007/s00500-014-1508-1.

[19] W. Sheng, G. Howells, M. Fairhurst, and F. Deravi, “A memetic fingerprint matching algorithm,” IEEE

Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 402–411, 2007.

[20] W. Sheng, G. Howells, M. Fairhurst and F. Deravi, "A Memetic Fingerprint Matching Algorithm," in IEEE

Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 402-412, Sept. 2007, doi:

10.1109/TIFS.2007.902681.

[21] P. Assiroj, H. L. H. S. Warnars, E. Abdurrachman, A. I. Kistijantoro, and A. Doucet, “Measuring memetic

algorithm performance on image fingerprints dataset,” Telkomnika (Telecommunication Computing Electronics and

Control), vol. 19, no. 1, pp. 96-104, 2021, doi: 10.12928/telkomnika.v19i1.16418.

[22] S. A. Mirsoleimani, A. Karami, and F. Khunjush, “A parallel memetic algorithm on GPU to solve the task

scheduling problem in heterogeneous environments,” GECCO 2013 - Proceedings of the 2013 Genetic and

Evolutionary Computation Conference, 2013, pp. 1181–1188, doi: 10.1145/2463372.2463518.

[23] R. Cheng and M. Gen, "Parallel machine scheduling problems using memetic algorithms," 1996 IEEE International

Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929), 1996,

pp. 2665-2670 vol.4, doi: 10.1109/ICSMC.1996.561355.

[24] J. Tang, M. H. Lim, and Y. S. Ong, “Adaptation for parallel memetic algorithm based on population entropy,”

GECCO 2006 - Genetic and Evolutionary Computation Conference, vol. 1, pp. 575-582, 2006, doi:

10.1145/1143997.1144100.

[25] M. Blocho and Z. J. Czech, "A Parallel Memetic Algorithm for the Vehicle Routing Problem with Time Windows,"

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 2013, pp. 144-151,

doi: 10.1109/3PGCIC.2013.28.

[26] A. Mendes, C. Cotta, V. Garcia, P. Franca and P. Moscato, "Gene ordering in microarray data using parallel

memetic algorithms," 2005 International Conference on Parallel Processing Workshops (ICPPW'05), 2005, pp.

604-611, doi: 10.1109/ICPPW.2005.34.

[27] E. Armstrong, G. Grewal, S. Areibi and G. Darlington, "An investigation of parallel memetic algorithms for VLSI

circuit partitioning on multi-core computers," CCECE 2010, 2010, pp. 1-6, doi: 10.1109/CCECE.2010.5575207.

BIOGRAPHIES OF AUTHORS

Priati Assiroj was born in Cirebon, Jawa Barat, Indonesia. She has Bachelor and Master's in

Computer Science. She received the Bachelor from STMIK Bani Saleh Bekasi, in 2011and

received her Master from STMIK LIKMI, Bandung, Indonesia, in 2016. From 2014 to 2016,

she was a lecturer in Universitas Singaperbangsa Karawang, Indonesia, and from 2016 to 2019

she was a lecturer in Universitas Buana Perjuangan Karawang in Information System Dept.

Since January 2019 she is a lecturer in Politeknik Imigrasi, Ministry of Law and Human

Rights, Republic of Indonesia. She is a doctoral student in Computer Science since March

2018 at Bina Nusantara Graduate Program, Doctor of Computer Science, Bina Nusantara

University Jakarta, Indonesia. Her research fields are data mining, high-performance

computing, and evolutionary algorithm.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 : 2110 – 2118

2118

Harco Leslie Hendric Spits Warnars received a Ph.D. degree in Computer Science from

Manchester Metropolitan University. Since September 2015 he is a Head of Information

Systems concentration at department Doctor of Computer Science Bina Nusantara University,

works some project research with my doctoral computer Science students in research area such

as Game, Artificial Intelligence including Data Mining, Machine Learning and Decision

Support System application such as DSS, BI, Dashboard, Data Warehouse, and so on

Edi Abdurrachman, received B.Sc and Master of Statistics in Applied Statistics from Bogor

Agricultural University then received M.Sc and Ph.D. in survey statistics and statistics from

IOWA State University, USA. He is currently a professor and dean of the Binus Graduate

Program, Doctor of Computer Science, Bina Nusantara University Jakarta. His research

interest includes statistics, survey statistics, and applied statistics and management information

systems. Mr. Abdurrachman’s awards and honors include the MU SIGMA RHO Society

(1985) and Best Lecturer Binus University (2012). He is also a member of the American

Statistical Association, International Association of Engineers (IAENG), Gamma Sigma Beta,

and as a Vice President of the Asian Federation for Information Technology in Agriculture.

From 1980-2015 actives in the ministry of agriculture in many positions of the director. He is

also active as a public speaker in national and international seminars.

Achmad I Kistijantoro, received the B.Eng. degree in informatics from the Institute of

Technology Bandung, (ITB), Bandung, Indonesia, the masters’ degree from TU Delft, Delft,

The Netherlands, and the Ph.D. degree from the University of Newcastle upon Tyne,

Newcastle upon Tyne, U.K., His current research interests includes distributed systems,

parallel computation, and high-performance computation.

Antoine Doucet is a Full Professor in computer science at the L3i laboratory of the University

of La Rochelle since 2014. He leads the research group in document analysis, digital contents,

and images (about 40 people) and is additionally the director of the ICT department of the

Vietnam-France University of Science and Technology of Hanoi. Additionally, he is the

principal investigator of the H2020 project NewsEye, running until 2021 and focusing on

augmenting access to historical newspapers, across domains and languages. He further leads

the effort on semantic enrichment for low-resourced languages in the context of the H2020

project Embeddia. His main research interests lie in the fields of information retrieval, natural

language processing, and (text) data mining. The central focus of his work is on the

development of methods that scale to very large document collections and that do not require

prior knowledge of the data, hence that are robust to noise (e.g stemming from OCR) and

language-independent. Antoine Doucet holds a Ph.D. in computer science from the University

in Helsinki (Finland) since 2005, and a French research supervision habilitation (HDR) since

2012.

